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A Comparative Study of Pixel Values and Landmark
Detection Features to Solve for Facial Emotion
Recognition

Tiago Leonel do Nascimento
19143486

Abstract

Understanding and recognizing various human emotions is foundational to how
our society works. In recent decades, researchers have tried to train machine learn-
ing models that can replicate emotion recognition by utilizing Facial Emotion detec-
tion. This study aims to build different machine learning models that can effectively
classify human emotions using Facial Emotion Recognition (FER) and produce a
comparison between pixel values and landmark detection as features to achieve
the classification. Using both posed and spontaneous datasets, different models
such as Random Forest, Extra Trees classifier, Support Vector Machine and a Con-
volutional Neural Network are developed to achieve high accuracy. An ensemble
machine learning model using hard voting created utilizing Random Forest, Extra
Trees Classifier and SVM with grid search achieved 89% accuracy using pixel values
as features.

1 Introduction

Emotion is a complex topic explored in various domains, including psychology and com-
puter science. Understanding and recognizing various human emotions is a foundational
component of how our society works and an essential factor in human daily experiences
and survival. Humans have the inherent ability to interpret and understand emotions,
and in recent decades researchers have tried to train machine learning models that can
replicate emotion recognition. Identifying a friendly face, anger, or a dangerous threat
has helped our society evolve (Comas et al.; 2020; Haghpanah et al.; [2022; Ong; 2021;
Stark and Hoey; 2021). Rosalind Picard (Aranha et al.; 2021; Wessler et al.; 2021) coined
the term Affective Computing (AC) which looks into the recognition, interpretation, pro-
cessing, and simulation of human emotions. Facial Expression Recognition (FER) is the
field that looks into facial expressions to understand facial identification and emotional
state. The advancements in emotion recognition and classification have been shaped by
many computer capability advancements and deep learning developments in the recent
years(Algahtani et al.; 2019; Booth et al.; |2021; Haghpanah et al.; 2022; Ong; |2021; Stark
and Hoey: 2021). This study aims to build different machine learning models that can
effectively classify human emotions.



1.1 Motivation

As a whole, emotion interpretation can be subjective in human-to-human exchanges, and
much of how we interpret emotions is influenced by our surroundings and past experi-
ences. Different theories of emotion showcase different approaches used to try to explain
emotions. Although researchers frequently utilize emotion theories, there is no consensus
on how accurate they are in practice, how inclusive they can be of diverse cultures, or
how to improve them. While there is no global agreement in the scientific community
on what emotions are and how they work, different AC models and commercial solutions
are deployed, raising concerns around ethics and bias (Stark and Hoey; 2021).

Researchers creating solutions for FER face challenges of technical nature and nav-
igating the uncertainty of what emotions are. Moravec’s paradoxEL which explains the
difficulties in teaching computers to execute activities that humans consider simple, is
one of the essential concepts in Artificial Intelligence (AI). The paradox explains that
while some human abilities, such as motor skills and the ability to generalize, are second
nature, they are complicated for computers to perform. Meanwhile, tasks that are diffi-
cult for humans, such as extensive math computation and logic calculations, are standard
tasks for computers.

One of the technical issues faced by researchers in AC, as explored by Takalkar and
Xu (2017) is issues around accuracy in labelling emotions, with some emotional classes
producing less accurate results than others. According to the author, some expressions are
so nuanced that even humans have difficulty determining the correct label for a depicted
emotion during the validation phase of an FER database creation. Different people have
different reactions to the same pre-recorded emotion. As machine learning models learn
from humans, bias can affect models; as humans struggle to identify emotions and their
definitions, so do the models that we create Masson et al. (2020); Booth et al. (2021).

1.2 Research Question and Objectives

The research questions that will be explored in this paper are:

1. How does the usage of traditional machine learning techniques compare to deep
learning solutions’ accuracy?

2. Does the usage of Landmark detection points increase model accuracy in comparison
with pixel values?

3. Which baseline or fine-tuned models outperform others in classifying Facial Emotion
Recognition classes?

Based on the explored literature review in the related works section, this work will
compare pixel value features and facial landmark detection used to train machine learning
(ML) and a Convolutional Neural Networks (CNN) model. The main contributions of
this paper are:

e Creation of multiple algorithms that classify FER using different methods such as
K-nearest neighbor (KNN), Random Forest, Extra Trees classifier, Support Vector
Machine (SVM), Ensemble ML model and a CNN.

'Moravec’s paradox: https://medium.com/@froger_mcs/moravecs-paradox-c79bf638103f


https://medium.com/@froger_mcs/moravecs-paradox-c79bf638103f

e Performance comparison between ML models in both posed and spontaneous emo-
tion datasets.

e Comparison of accuracy between single and multicultural datasets.

1.3 Paper Structure

This paper is further divided into different sections. Section 2 looks into related works and
discusses relevant papers from 2017 to 2022, looking at emotion theory models, FER, and
landmark detection. Section 3, research methodology, explores the different approaches
for dataset selection, pre-processing and algorithms used. Section 4 covers information on
design specifications and implementation, providing the framework utilised to reach the
solution proposed by this paper and discusses the outputs of the project, including code
written and models’ development. Section 5, evaluation, looks into the results collected
by this research and the overall models’ performance. Section 6, conclusion and future
work, closes the paper with the findings and how successfully the research question is
answered. Future work guides how future studies could further the research this paper
has started and what limitations impacted the final results.

2 Related Work

This section provides a literature review on recent publications in Facial Expressions Re-
cognition. The Related Work section comprises peer-reviewed studies published between
2017 and 2022 discussing FER and emotional classification. The first part delves into
some of the most used types of emotion theory researchers employ to drive the creation of
databases, FER models and emotion classification. The second part of the related works
looks into different primary papers and the techniques used to create FER solutions. A
comparison of features utilized, techniques and achieved accuracy is produced, and a brief
conclusion closes this study section.

2.1 Emotion Identification, Commonly agreed research meth-
ods

The paper titled by Masson et al. (2020) is a review of 220 papers on emotion identifica-
tion. The author describes how different academics employ emotional models to identify
emotions and stresses the difficulty of constructing models to address AC. The following
are some of the most common types of emotional model theory groups used in emotional
identification and AC research:

e Basic Emotions
e Action Units
e Complex Emotions model

e Valence and Arousal

Basic Emotions was theorised by Paul Ekman and Carrol E. Izard (Masson et al.;
2020; |Stark and Hoey; |2021) is the most widely accepted emotion theory, utilised in 70%



of the 220 papers reviewed by Masson et al.| (2020). It is based on Darwin’s original ideas
that some emotions are hardwired as second nature to humans. These raw emotions (fear,
surprise, sadness, joy, anger and disgust) support us in adapting to our environment and
social interactions. As per the theory, these emotions are observed in humans across
all cultures with little to no variance. The Action Units (AUs) theory investigates the
movement of various facial muscles and classifies their movement as a response to various
emotions. Complex Emotion Theory looks into combinations, usually two or more, emo-
tions formed from basic emotions. The Valence and Arousal theory views emotions as
a continuous organisation rather than a distinct entity. Arousal examines the intensity
of the exhibited emotion, whereas valence examines the emotional scale, which can be
positive or negative. Instead of using a discrete, categorical list model for valence and
arousal, emotions can be plotted in a two- or three-dimensional space (Masson et al.;
2020).

While FER researchers widely accept the theory of the basic emotions as a means
of identifying them, other academics have expressed concerns about how the ideas are
not challenged and no additional research is done to understand better how we deal with
emotion classification (Stark and Hoey} 2021; Masson et al.; 2020). According to |Masson
et al. (2020), the current theoretical and technical debates and lack of agreement make
the approaches to solve for AC convoluted. The author also believes that the categorical
approach of the basic emotions model is being phased out in favour of more robust
theoretical models that better account for the complexity of emotions.

Models that identify human emotion can be created using a variety of methods. One
of these methods is Landmark detection. Landmark detection is a computer vision task
that can map facial features to different key points around a subject’s face. Those points
can vary in number and usually are positioned around eyes, eyebrows, nose, mouth and
face contouring. These points can be used directly to infer emotions based on their
position on a face or distance. Landmark detection first identifies a subject’s face and
then applies points to specific areas. Landmark detection applications usually focus
on two approaches: mapping the face from a neutral expression until peak emotion is
reached or utilizing a set of static images where the subject is displaying an emotion.
(Haghpanah et al.; [2022: |Qiu and Wan; [2019; |Ozseven and Diigenci; 2017). This work
focuses on pixel values and landmark detection features, which are collected from static
images, as a way to solve FER problems. Pixel Values look into the intensity, brightness
and respective color of a pixel with numbers in a range from 0 (black) to 255 (white).
Facial landmark detection was chosen as it identifies facial features and highlights them;
This is something the researcher initially assumed to be very important, particularly for
spontaneous datasets, where different backgrounds, poses and artefacts could potentially
impact to the accuracy results from pixel values alone. The assumption is that landmark
detection and distances could increase accuracy by keeping track of the points while pixel
values does not have this precise mapping of facial features and captures pixel values for
the entire image.

Other methods explored to solve for AC and emotion classification are the use micro-
expressions, where computer vision is used to look for micro-movements in human facial
expressions (Wang et al.; 2020; Stanciu and Albu; [2019), Electrodermal Activity (EDA)
sensors (Canabal et al.; 2020), Electroencephalography (EEG) (Shen et al.; 2020), elec-
trocardiogram (ECG) (Alqahtani et al.; 2019), audio files with vocal recordings, infrared
sensors and changes in semantics (Wang et al.; 2021).

The accuracy of the created models varies depending on the method selected. While



Picard’s concepts for Affective Computing have been widely accepted, other academics
have recommended that emotion classification employ a broader set of methods rather
than only tracking and sensing computational data.

2.2 Usage of Landmark Detection and Pixel Values in Facial
Emotion Recognition

This section discusses papers with relevant usage of pixel values, landmark detection, and
FER applications. The papers selected make different decisions, both on how features
are used and what machine learning or deep learning models are developed to achieve
emotion classification.

The paper by Ozseven and Diigenci (2017) uses distance and slope between 14 different
landmark detection points. A dataset named BiolD composed of 1523 images and 23
subjects was used in this study. Different ML techniques are also explored in this paper.
The author states that the higher the number of points used in landmark detection, the
higher the accuracy is observed, mentioning works that utilize 68 points; however, the
author decides to focus on 14 points. Although the number of points extracted from
the different images is smaller than other mentioned works in this literature review, the
author reports an accuracy of 94.6% utilizing an MLP classifier model.

The study by Barman and Duttal (2017), published in the 2017 Third International
Conference on Research in Computational Intelligence and Communication Networks
(ICRCICN) makes use of an MLP and Nonlinear AutoRegressive with eXogenous (NARX)
model and landmark detection to classify emotion using the datasets JAFFE, CK+4, MUG
and MMI. Landmarks are extracted, and a grid is created to be used as features to train
the models. For the JAFFE dataset, 92.0% accuracy is achieved utilizing an MLP model
and 97.6% for NARX. Results for CK+ reach 100% accuracy using NARX.

Paper by Thannoon et al. (2018) makes use of 8 selected AUs and utilizes these points
to classify emotion deception using MLP, VG-RAM, Support Vector Machine (SVM)
and k-nearest neighbors (KNN), with KNN and VG-RAM producing the best accuracy.
Although not trying to identify basic emotions or other sets of emotions like the rest of
the papers cited in this work, it is still relevant based on the applied methodology and
process used by the author to reach the results. This paper separated results based on
genders achieving the highest accuracy at 90% for males in both KNN and VG-RAM
and 84% for both genders. Results are compared to different features, with the 8 AUs
exceeding accuracy for most of the results apart from Micro-expressions at 85%.

Author Wu and Ji (2019) discusses using datasets created in near-perfect conditions
with less challenging images. These datasets usually tend to have perfect lighting and
background and receive a much higher accuracy, but this accuracy does not translate
when models are used in real-world scenarios. The author mentions a shift in interest
from researchers in the past decade, from posed datasets to datasets containing ”in-
the-wild” conditions. ”In-the-wild” datasets offer a more diverse set of images, subjects
facial features, and artefacts, for example, having spontaneous poses and artefacts such
as sunglasses, different beard styles that could partially cover a subject’s face, hats and
others.

The article published in the 2019 International Conference on Advanced Science and
Engineering (ICOASE) by the author Dino and Abdulrazzaq (2019), utilizes machine
learning techniques and MLP to classify eight emotions utilizing the dataset CK+. The
author resized the images to 256 by 256 pixels in greyscale, and a PCA is also used for



feature dimensional reduction and suggests that other researchers use PCA to reduce
redundant feature information. The 10-fold Cross-validation method is used for the
validation of results, with SVM achieving the highest accuracy score at 93.89%, followed
by MLP neural network at 82.97%. The author shared a table with information on the
number of detected faces per class which seems to indicate an imbalance in the number of
examples used, such as 50% neutral examples (317 examples) against 4.1% representing
26 examples for the emotion sadness.

Author |Qiu and Wan (2019) utilises 68 landmark detection points and the CK+
dataset to classify seven emotions, stating that reported accuracy using traditional ML is
comparable to state-of-the-art CNN-based models. In this research, points are distributed
in the subject’s face and normalised based on the point in the subject’s nose or on
multiple points named origin points. Classification is achieved by utilising an MLP with
three layers. The proposed approach reported for one-origin points is 87% and 92% for
multi-origin points. The paper also produced a running time comparison of different
state-of-the-art models such as VGG16(Simonyan and Zisserman; 2014)and Resnet18(He
et al.; 2016), showing it produced results in a much faster manner. Not all papers reported
on time to run models so this information is only discussed above.

Active Shape Modeling (ASM) is used in this study. The author (Cao and Qi (2021)
proposes an algorithm that can construct a three-dimensional face model with 48 face
feature points and feature vectors composed of 10 connecting lines to recognise different
emotions (angry, tired, daze, pleasure, sad, interest, normal) reaching an accuracy of
69%. This type of tracking is meant to be utilised in a classroom environment to under-
stand students’ attention and emotions. This is a fascinating study because it looks at
classifying emotions outside the usual six basic emotions but looks at FER specifically
from an interesting angle for a classroom environment.

The study by |Chouhayebi et al. (2021) utilised three different datasets to classify emo-
tions: happiness, surprise and neutrality. The author utilised two different algorithms to
perform the classification, SVM reaching 91.5% accuracy and MLP at 96%. The author
extracted features utilising different methods, including features collected individually
from different parts of the subject face and the usage of landmark detection. The dlib
library and 68 landmark points were collected. The author states that for smaller data-
sets, SVM performs better, whereas MLP achieves better accuracy for larger datasets.
Results on the different experiments with a smaller dataset achieved over 90% accuracy,
with dlib landmark detection achieving 98.5%.

The paper by Maurya and Sharma, (2022) created a CNN for classifying emotions
from images. CNN is utilised as it can automatically detect essential features for image
classification and emotion recognition without needing supervision/feeding the correct
features. The author used images of 48 by 48 pixels and five emotional classes. Accuracy
reported after training is around 69%

The paper by Haghpanah et al.| (2022) discusses the application of 68 landmark detec-
tion points and the Facial Action Coding System (FACS) in a neural network model to
identify human emotions in the Cohn-Kanade (CK+) dataset. Landmarks are collected
utilising the python library dlib (King; [2009). In this paper, the features are extracted
and used in a single neural network. The author calls out that the euclidean distance is
used as a feature in a mentioned paper in their literature review. This study will also
use the euclidean distance between points similar to this paper; however, it will also be
applied in different datasets and compared with other features. The author uses a con-
siderably small number of images to train their model, but MLP enables them to achieve



96% accuracy in their test data. This MLP model reached 2-3% lower results than the
state-of-the-art CNN-based models.

The author Cho et al. (2022) introduces a novel multi-label dataset with over 38 thou-
sand images classifying Korean drama video clips into 23 different emotions. The author
went through different categorisation and labelling processes and utilised Autoencoder,
CNN and transfer learning. Images were classified manually, and later a model was cre-
ated to classify the new dataset. The dataset is used with ResNet50 achieving 68.03%
accuracy.

2.3 Comparison of Landmark Detection Reviewed Results

Table 1 provides an overview of the results discussed in the section above. Results from
the different studies vary in accuracy, achieving between 68-100% reported accuracy. Most
published papers utilised 68 facial landmark points and a mixture of machine learning
techniques, with KNN and SVM, highlighted.

Table 1: Features and Techniques presented in the Literature Review.

Author Names Feature / Technique Accuracy
Ozseven and Diigenci (2017) | 14 points. MLP 94.6%
Barman and Dutta (2017) Salient Landmarks. MLP, NARX 92% - 100%
Thannoon et al. (2018) 8 AUs. MLP, VG-RAM, SVM, KNN | 84% - 90%
Cao and Qi (2021) 48 points, 10 connecting lines. ASM | 69%

Dino and Abdulrazzaq| (2019) | SVM, KNN, MLP 82.97% - 93.89%
Qiu and Wan| (2019) 68 points. MLP 87% - 92%8
Maurya and Sharma (2022) CNN extracted features 69%

Cho et al.| (2022) Resnet 68.03%
Chouhayebi et al. (2021) 68 points 91.5% - 96%
Haghpanah et al. (2022) 68 points. FACs. MLP 96%

2.4 Related Works Conclusion

This section covered current discussions in the research community about emotion re-
cognition and some of the different options utilized to solve emotion classification issues.
The Usage of Landmark Detection in Facial Emotion Recognition section covered papers
that utilized landmark detection and different machine learning techniques, reaching ac-
curacy comparable with state-of-the-art models while being faster to train results. SVM
and KNN are mentioned in various papers with good results, so these techniques will be
utilized in this research. Dlip library will also be utilized to extract facial landmark point
features.



3 Methodology

3.1 Introduction

This section will focus on the Methodology used, which takes inspiration from the cross-
industry process for data mining (CRISP-DM) methodology (Wirth and Hipp; 2000) and
the selected approaches to feature extraction and classification present in the literature
review, discussed in the previous section. The methodology section looks into Business
Understanding, Data Understanding, Data-preparation, Modeling, and Evaluation. Each
stage of the process is explained below, and figure 1 shows a graphic representation of
CRISP-DM.

CRISP-DM Methodology Applied for Image Feature Classification

Business Data
Understanding f#——{ Understanding

N

Data

Preparation
A
Deployment Q L

Modelling

Evaluation

Figure 1: Cross-industry process for data mining (CRISP-DM) (Wirth and Hipp; 2000)

3.2 Business Understanding

As we evolve technically and as a society, the applications of FER and emotion clas-
sification gain traction and advancements. The literature review shows that FER can
obtain significant results even when using traditional machine learning. Achieving good
classification results with models that can produce good accuracy at short running times
and resources opens up the possibilities for multiple researchers and companies to create
FER solutions. For businesses, understanding a consumer reaction to a product, ad,
or customer support received or tracking emotions from how a customer arrives to seek
solutions and what emotion they display after having their issue addressed might prove
very valuable. In psychology, recognising an individual’s state of mind and emotion and
tracking how they respond to stimuli and progress over time is another application of
FER and emotion classification. The same tools and systems can also be used for image
recognition and are utilised by different governments and police from different countries



such as China?lP| and the United Kingdon[f} There is an ongoing discussion of Al and
FER’s impacts on our society with both positive and negative outlooks. Researchers
must be aware of bias issues and mindful of the solutions they create.

3.3 Data Understanding

The literature review guided the research to answer the research questions, and based on
the papers added as references; different datasets were selected as possible candidates to
complete this study. Datasets are built differently and to suit different purposes. Datasets
can be posed, spontaneous or mixed, and their images offer different combinations of
subjects which can be male, female, young or old, presenting many different physical
features and image backgrounds. Some datasets aim to aid in classifying 2 emotions
(smiling or not smiling), five emotions, and seven emotions, such as basic emotions and
complex combinations resulting in up to 18 emotion classes.

The selected datasets are available under request and EULA signing. Different data-
sets had different waiting times to receive a response and link to download the data. Most
had the requirement that a faculty professor request access on the student’s behalf.

1. The posed dataset Japanese Female Facial Expression (JAFFE) created by |[Lyons
et al.| (2020) consists of 10 Japanese female subjects displaying the 6 basic facial
emotions plus neutral emotion. There are 213 images in total in 256 by 256 pixels
grey-scale. Images are in the Tiff format with no compression. Images were created
with excellent lighting and background. This dataset was created over 25 years and
is utilized in many different papers (Lyons; 2021).

2. The spontaneous dataset Static Facial Expressions in the Wild (SFEW) (Dhall
et al.; 2012) was selected to contrast the JAFFE dataset for having ”in-the-wild”
type of images. The dataset contains 700 images and 68 subjects. The images
were collected from different movies and display a variety of genders, occlusions,
different illumination and poses, being referred as close to real life environment by
the authors.

The difficulty of classifying emotions increases with SFEW as the near-perfect to per-
fect conditions found on the JAFFE dataset are erased in SFEW _2.0. Training accuracy
is impacted, but the results are closer to the ones achieved in real-life usage scenarios.
Masson et al. (2020) states that a clear preference can be seen from researchers in choos-
ing datasets for Affecting Computing where 74% of researchers part of their 220 paper
reviews, chose posed datasets over spontaneous and 29% of the 220 studies worked with
the JAFFE dataset. Accuracy in the different papers has been increasing with the author
mentioning an average overall accuracy increase from 83.5% to 85.3% between 2014 and
2019 papers. There are considerable differences in accuracy between posed and spon-
taneous results, as reported in this study. Masson et al. (2020) reports that the average
accuracy of posed datasets was 21.29 points higher than for spontaneous datasets, with
the average accuracy of spontaneous datasets at 63.75% in their study.

ZAI emotion-detection software tested on Uyghurs:https://www.bbc.com/news/
technology-57101248

3China growing use of emotion recognition tech raises rights concerns: https://www.reuters.com/
article/china-growing-use-of-emotion-recognition-idUSL8N2K2500

“London is buying heaps of facial recognition tech: https://www.wired.co.uk/article/
met-police-facial-recognition-new
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3.4 Data Preparation

In this step, data is preprocessed. The selected datasets were stored in Google Drive for
easy access. The researcher utilised Google Colaboratory (Colab) to conduct the research.
Images are retrieved utilising OpenCV library, reading from their existing folders. During
the image importing, labels were created by appending their values based on their stored
folder names. Images were resized to 224 by 224 pixels and converted from GBR (Green,
Blue, Red) to the more traditional RGB (Red, Green and Blue). Here data visualisation
takes place by printing the different types of emotion being displayed.

From the loaded data, three different sets of features were extracted. Pixel data both
in RGB and greyscale to suit the different datasets. Pixel data is also normalised by
dividing the collected values by 255, the maximum value for pixels. Sixty-eight landmark
detection points were extracted utilising the library Mlxtend. The number of points were
chosen based on the literature review (Haghpanah et al.; 2022; (Chouhayebi et al.; |2021;
Qiu and Wan; |2019). Calculating the euclidean distance between landmark points is also
used to infer emotion.

For landmark detection, Mlxtend presented difficulties finding faces in most of the
"in-the-wild” pictures. This resulted in a much smaller number of available images to
train models using landmark detection—more details in the implementation section.

3.5 Modeling

The algorithms selected to be part of this research were guided by the literature review and
domain research to answer the research questions. Although many recent publications
in the past decades have transitioned from utilizing traditional ML to deep learning,
papers in FER, particularly those utilizing Landmark Detection, rely on traditional ML.
This could be due to the results achieved utilizing traditional machine learning, which is
comparable to state-of-the-art deep learning models and can be processed more quickly.

The models selected will aid in answering the research question. KNN, Random
Forest, Extra Trees, SVM and Ensemble of highest scoring models are selected for results
comparison. Pixel value features will be used to train both ML algorithms and a CNN
model. Landmark detection and landmark distances will be used with ML techniques.

Further information is discussed on models and model architecture in the next section
of the research paper.

3.6 Model Evaluation

This study utilises different approaches for model evaluation. The selected methods are
splitting the data into Train, Test and Train, and Test and Validation for the CNN.
Stratify is also used to ensure balance amongst the different classes.

A Confusion Matrix was also utilised to evaluate the different performances of the
models and the different emotion scoring across different models and datasets.

Accuracy = (TP +TN)/(TP+ FP+TN + FN)

10



4 Design Specification

The techniques and framework utilized in this research are explored in depth in this
section. As mentioned, datasets are created differently and can have different angles,
subjects of a singular gender or males and females. They can be representative of various
ethnicities or just one. For this reason, results will be compared with the accuracy
achieved when applying the same algorithms but not between datasets. Equally, the
type of features extracted plays an essential role in some aspects of the framework used
to classify emotions. Figure 2 displays the process flow framework followed to aid in
completing this study and answering the research questions. In preprocessing, the images
are read using OpenCV, converted from BGR to RGB and resized to 224 by 224. The
labels are created, and data augmentation is considered. In Transformation, different
features are extracted, both Landmark points and distances and Pixel values, missing
values removed, and the data is split into train and testing and ready for modelling.
Different ML techniques are applied in Modeling, and model evaluation takes place.
Further details are explained in the following sections.

Framework for FER Image Feature Classification

Modeling

Model Evaluation
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Figure 2: Structure for Image Facial Emotion Recognition

4.1 Data Augmentation

Data augmentation was attempted to increase the number of available samples. JAFFE
and SFEW have a reasonable number of examples to train a machine learning model
but not enough to train models using deep learning architecture. Data augmentation was
applied at some stages of the project but not all, creating new images from existing ones by
applying random zoom and random rotation to images. This type of data augmentation
was used in the CNN creation with JAFFE. A different type of augmentation was applied
to SFEW images utilizing the python library Augmentor, applying distortion, flipping
images from left to right, rotating and applying a random crop.

4.2 Grey-Scale and RGB Pixel Value Feature

Grey-Scale and RGB Pixel Value Features are extracted from the images and flattened to
serve as input for the different ML models created. Different stratified data splits are cre-
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ated as a result of feature extraction, PCA, LDA and data normalisation. GridsearchCV
is also utilised with different ML models to help find the proper hyper-parameters that
increase model accuracy. Pixel values are also collected from images without .fatten()
function, keeping the data in the desired shape (244,244, 3), which is later fed into a
CNN model. X_validation is created only for training the CNN model, and the data here
is utilised in different epochs to aid in training a model with reasonable accuracy.

4.3 Landmark Detection Features

68 Landmark detection points are extracted from the images and used directly to infer
emotion, or further processing is done to calculate the distance between points, which
can also be used to classify emotions. Here the researcher utilizes the library Mlxtend.
Landmark features are used normalized and not normalized to achieve and compare res-
ults. Only traditional ML and MLP were created with Landmark Detection points. Here
the utilization of stratified X _train and X _test is also tested with the different transform-
ations applied, such as PCA, LDA and data normalization. GridsearchCV is performed
to aid in model fine-tuning. Figure 3 displays facial landmarks mapped and overlapped
in the subject’s face.

4.4 Convolutional Neural Network Design

For RGB pixel feature classfication, a convolutional neural network (CNN) was created.
CNN is one of the most used computer vision solutions applied to many recent papers over
the decades. The main goal of creating a CNN for this study is to compare its performance
to the traditional machine learning algorithms. When using landmark detection, most
libraries extract features in a way that makes them unusable in a CNN, and different
CNN-friendly approaches have been handcrafted to allow CNNs to automatically import
landmarks such as the paper by [He et al.(2017).

4.5 Design Specification Conclusion

This concludes the Design Specification section of this research paper. Features, datasets,
and literature reviews were essential in project architecture and design decisions. These
decisions will aid in answering the research question. Figure 4 displays the decisions from
data reading to assigning it to train and test splits.

12



Preprocessing and Transformation Design
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Figure 4: Preprocessing and Transformation Design. Dotted lines represent steps that
were applied to some iterations but not to all
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5 Implementation

This section provides details of the project’s implementation and focuses mainly on the
details after the pre-processing and data transformation steps are completed. Imple-
mentation discusses some of the difficulties, the multiple models developed and outlines
outputs produced and the final stages of the implementation.

5.1 Classes Balance and Issues With Faces Not Being Detected

JAFFE image classes are balanced but have a small number of samples. This can be
visualised in Figure 5. It is possible to train ML models, but deep learning models re-
quire a much larger number of examples to train a model properly. For the CNN model,
data augmentation is used by utilising Keras sequential layers that can be used to process
images. Depending on the feature selected, be that pixel values, Facial Landmarks or
Facial landmark distances, the number of features varies both in the shape if .flatten() is
used or not. In contrast, SFEW dataset classes, as displayed in figure 5, are imbalanced,
which impacts the training and testing of the models. Data imbalance was initially ad-
dressed by using data augmentation and stratification, but feature extraction difficulties
made this step redundant.

Mixtend had difficulties finding faces in images, as shown in figure 6, an issue that
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Facial Landmarks on SFEW Dataset
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Figure 6: Mxtend unable to find face on all image examples

impacted SFEW examples. Due to the nature of the dataset, different brightness, occlu-
sion and variety of face angles and artefacts, landmark detection was only able to return
over six thousand examples out of 35000 augmented images, leaving over 28000 images
without facial detection. To test if the data augmentation caused this issue, the same
feature extraction was run on the dataset without augmentation and out of 1394 images,
only 270 faces were detected.

5.2 Machine Learning Implementation

Once the data is split into Train and Test, it is ready to be either transformed by dimen-
sionality reduction or to be used to train and test an algorithm. The algorithms were
run with different features: Normalised variables, PCA, and LDA were used to com-
pare results and aim to achieve the highest possible accuracy. Data was also shuffled to
avoid models being trained in a specific order of classes which could impact the models’
performance.

Some of the ML algorithms went through gridsearchCV to fine-tune the hyperpara-
meters.

5.2.1 K-nearest neighbors

KNN was one of the models highlighted in the literature(Dino and Abdulrazzaq; 2019;
'Thannoon et al.; 2018) which weighted in the decision to have this algorithm selected
to be part of this study and to have hyperparameters optimised by gridsearchCV. The
grid parameters for number of neighbours are (3,5,11,15,19,23,25,33), Weights('uniform’,
"distance’) and Metrics ("euclidean’, 'manhattan’).

5.2.2 Random Forest

Random forest was also selected and hyperparameters were adjusted by utilizing a grid
search. The different parameters are Bootstrap set to 'True’ or ’false’, max depth (10,
20, 30, 40, 50, 60, 70, 80, 90, 100, None), max number of features (auto’, ’sqrt’), minimal
samples leaf (1, 2, 4), minimal samples split (2, 5, 10) and number of estimators (200,
400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000).

5.2.3 Support Vector Machine

SVM is also highlighted by two papers in the literature review(Dino and Abdulrazzaq;
2019; Thannoon et al.; 2018) which also contributed to the decision of having SVM to be
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compared in this research. A function was used to fit different Kernel types ("Polynomial’,
'RBEF’, ’Sigmoid’,'Linear’) and best Kernels results (Poly, Linear) were then used in a grid
search with further parameters C of 0.001, 0.1, 1, 10, 100 and Gamma of 1, 0.1, 0.01,
0.001.

Models were run with their baseline configuration and with grid search utilizing para-
meter grid as per the explanation above. Both accuracy and F1 scores will be utilized to
compare different models.

5.3 Convolutional Neural Network Implementation

The architecture of the CNN created for this study has three Convolutional layers. The
first layer is the input layer, a Keras Conv2d, with 16 filters, 3x3 kernel size and activation
‘relu’. It expects an input shape of 244 by 244 pixels and three channels (RGB). It passes
through MaxPooling, which halves the output shape. The second Conv2D layer has 32
filters, 3x3 kernel size, activation 'relu’, MaxPool2d, followed by batch normalization.
The third Conv2D layer has 16 filters, 3x3 kernel size, activation 'relu’, MaxPool2d,
0.2 dropout, followed by batch normalization, which helps control overfitting. Here the
output shape is (None, 26, 26, 16). The layers are flattened, and a fully connected
dense layer with 512 filters and activation 'relu” and the final dense layer with activation
‘softmax’ classifies the output shape into seven classes. Figure 7 shows the CNN model
plot and compiled model.

6 Evaluation

The evaluation section discusses the performance of the applied algorithms. This study
used a confusion matrix to compare different models and results. As data was divided
into training, test and for the CNN validation splits, the test data is used to evaluate the
models” performance. The Confusion Matrix graphs contain information on Precision,
Recall, Fl-score, Support and Accuracy, both macro and weighted average. For this
study, accuracy and F1l-weighted average will be called out in all experiments. Fl-score
weighted will be used to discuss imbalanced data as it considers the performance of
correct predictions over all classes according to the number of samples in each class.
Model performance is calculated based on the values present in the confusion matrix once
fitting and prediction are completed. Legend: TP: True Positive, TN: True Negative, FP:
False Positive, FN: False Negative.

Accuracy = (tp +tn)/(tp + fn+ fp+tn)
Precision = tp/(tp + fp)

Recall =tp/(tp + fn)

F1 — Score = 2z(precision x recall) / (precision + recall)

6.1 Experiment 1 / Pixel Values

Pixel values were extracted from the images and flattened. After that, three different
approaches were experimented with: normalised pixel values, LDA values and a PCA to
reduce dimensionality and see if the results were further improved.
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CNN Model

conv2d_input | input:
[(None, 224, 224, 3)] | [(None, 224, 224, 3)]
InputLayer | output:
conv2d | input:
(None, 224, 224, 3) | (None, 222, 222, 16)
Conv2D | output:
max_pooling2d | input:
n (None, 222, 222, 16) | (None, 111, 111, 16)
MaxPooling2D | output:
conv2d_1 | input:
(None, 111, 111, 16) | (None, 109, 109, 32)
Conv2D | output:

)

max_pooling2d_1 | input:
MaxPoolngaD (None, 109, 109, 32) | (None, 54, 54, 32)
axPooling output:
batch_normalization | input:
BatchNormalization | output (None, 54, 54, 32) | (None, 54, 54, 32)
conv2d_2 | input:
ConvaD | output (None, 54, 54, 32) | (None, 52, 52, 16) Tayer (type) Gutput Shape Paran
l conv2d_45 (Conv2D) (None, 222, 222, 16) 448
max_pooling2d_2 input: max_pooling2d 45 (MaxPoolin (None, 111, 111, 16) 0
MaxPoolng2D (None, 52, 52, 16) | (None, 26, 26, 16) g2D)
axPooling output:
conv2d_46 (Conv2D) (None, 109, 109, 32) 4640
l max_pooling2d 46 (MaxPoolin (None, 54, 54, 32) 0
dropout | input: 92D)
P P (None, 26, 26, 16) | (None, 26, 26, 16)
Dropout | output: batch_normalization_22 (Bat (None, 54, 54, 32) 128
l chNormalization)
conv2d_47 (Conv2D) (None, 52, 52, 16) 4624
batch_normalization_1 | input:
— (None, 26, 26, 16) | (None, 26, 26, 16) | max pooling2d 47 (MaxPoolin (None, 26, 26, 16) 0
BatchNormalization output: g20)
l dropout_18 (Dropout) (None, 26, 26, 16) 0
flatten | input: izati
p (None, 26, 26, 16) | (None, 10816) batch_no;mal%zatxon_n (Bat (None, 26, 26, 16) 64
Flatten | output: chNormalization)
l flatten_15 (Flatten) (None, 10816) 0
dense input: dense_34 (Dense) (None, 512) 5538304
(None, 10816) | (None, 512)
Dense | output: dense_35 (Dense) (None, 7) 3591
l Total params: 5,551,799
dense_1 | input: Trainable params: 5,551,703
b e (None, 512) | (None, 7) Non-trainable params: 96
ense | output:

(a) CNN model plot (b) Compiled CNN Model

Figure 7: CNN Compiled model layers, output shape and parameters
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JAFFE Best Results Pixel Values

g Number of mislabeled points out of a total 53 points : 7

Predicted Predicted

precision recall fl-score support precision recall fl-score support

0 0.88 1.00 0.93 7 0 0.88 1.00 0.93 7

1 1.00 0.86 0.92 7 1 1.00 0.86 0.92 7

2 1.00 0.62 0.77 8 2 1.00 0.62 0.77 8

3 1.00 0.75 0.86 8 3 1.00 0.62 0.77 8

4 0.78 1.00 0.88 7 4 0.88 1.00 0.93 7

5 0.73 1.00 0.84 8 5 0.62 1.00 0.76 8

6 1.00 1.00 1.00 8 6 1.00 1.00 1.00 8

accuracy 0.89 53 accuracy 0.87 53

macro avg 0.91 0.89 0.89 53 macro avg 0.91 0.87 0.87 53

weighted avg 0.91 0.89 0.88 53 weighted avg 0.91 0.87 0.87 53
(a) Ensemble Model 89% (b) Extra Trees Classifier 87%

Figure 8: Best results for JAFFE pixel feature

6.1.1 JAFFE Dataset

On the JAFFE dataset, support shows balance amongst classes, so the overall average
will be used. KNN results were fine-tuned by performing a grid search, and an accuracy of
68% was observed with the normalised data and 75% accuracy with LDA baseline results.
Random Forest Classifier normalised results had an accuracy of 79% (The fine-tuning of
hyperparameters added 1% to the weighted average Fl-score) and LDA results of 85%
accuracy. Extra Trees Classifier achieved accuracy of 87% for normalised data and 79%
for LDA. SVM achieved overall accuracy of 85% for normalised data and 77% for LDA.
PCA results achieved much smaller accuracy results in a Extra Trees Classifier test with
34% accuracy. The full confusion matrix of the best-achieved results are displayed in
figure 8. An ensemble model was created with models with similar Fl-scores to try to
increase the maximum achieved accuracy. Utilising hard voting, an ensemble constructed
using Random Forest, Extra Trees Classifier and SVM with grid search configuration
was combined, and the results increased overall accuracy from 87% with the Extra Trees
classifier to 89% with the ensemble model. Figure 8 displays the best results for the
JAFFE dataset.

6.1.2 JAFFE CNN Results

The constructed CNN network was compiled with Adam optimizer, a learning rate of
0.0001 and sparse categorical crossentropy loss. An early stop was also created to stop
training in case of overfitting, with patience set to 5. After the model completed training,
it was used to predict the Test split of the data that it had not seen before. The results
show an accuracy of 81%. There’s evidence of overfitting based on the produced accuracy
and difference between training, validation and testing datasets. Particularly for posed
datasets overfitting is a common problem due to the near perfect conditions in which
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Learning stoped on epoch: 23
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(a) History Plotting

1 ### here we evaluate the model using the test dataset,
2 ###lthis files have not been seen by the DL model

3

4 test_loss, test_acc = model.evaluate(X_test, y_test, verbose=2)

5 print('\nTest accuracy:', test_acc)

6

7 # pick a sample to predict from the test set (30 chosen at random)
8 X_to_predict = X_test[5]

9 y_to_predict = y_test[5]

10

11 # predict sample

12 predict(model, X_to_predict, y_to_predict

» 2/2 - 0s - loss: 0.6847 - accuracy: 0.8140 - 26ms/epoch - 13ms/step

Test accuracy: 0.8139534592628479
Target: 2, Predicted label: [2]

(b) Test Accuracy

Figure 9: CNN layers, output shape, parameters and Resulting Accuracy

SFEW Best Results Pixel Values

Predicted

precision recall

0 0.52 0.59

1 0.57 0.55

2 0.45 0.47

3 0.59 0.54

4 0.55 0.46

5 0.53 0.65

6 0.53 0.42
accuracy

macro avg 0.53 0.53

weighted avg 0.54 0.54

(a) KNN

0
0
0
0
0
0
0

Number of mislabeled points out of a total 349 points :

Predicted
fl-score  support precision recall fl-score support
.55 64 0 0.50 0.64 0.56 64
.56 22 1 0.73 0.50 0.59 22
.46 36 2 0.79 0.42 0.55 36
.56 68 3 0.44 0.53 0.48 68
.50 59 4 0.51 0.54 0.52 59
58 62 5 0.57 0.66 0.61 62
.47 38 6 0.62 0.26 0.37 38
.54 349 accuracy 0.53 349
.53 349 macro avg 0.59 0.51 0.53 349
.53 349 weighted avg 0.56 0.53 0.53 349

(b) Extra Trees

Figure 10: Best Results for SFEW Dataset and Pixel Feature

the datasets are produced which impact model ability to generalise information. Model
accuracy can be different than real life accuracy. Figure 9 shows both the training history

and results achieved with the model test.

6.1.3 SFEW Dataset

The SFEW dataset KNN results had a max accuracy of 54% and a weighted F1-score
of 53%. With LDA transformation KNN results achieved both accuracy and an F1-
score of 38%. Extra trees classifier achieved 53% Fl-score and 35% with LDA data
transformation. Random Forest Achieved 47% F1-score and 48% overall accuracy. Other
algorithms achieved lower scores. Figure 10 shows the best SFEW results, KNN and

Extra Trees.
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JAFFE Best Results Landmark Points

4
Predicted Predicted

precision recall fl-score  support precision recall fl-score support

0 1.00 0.86 0.92 7 0 0.78 1.00 0.88 7

1 0.86 0.86 0.86 7 1 1.00 0.86 0.92 7

2 0.83 0.62 0.71 8 2 0.83 0.62 0.71 8

3 0.88 0.88 0.88 8 3 0.70 0.88 0.78 8

4 0.88 1.00 0.93 7 4 0.78 1.00 0.88 7

5 0.60 0.75 0.67 8 5 0.62 0.62 0.62 8

6 0.88 0.88 0.88 8 6 1.00 0.62 0.77 8

accuracy 0.83 53 accuracy 0.79 53

macro avg 0.85 0.83 0.83 53 macro avg 0.82 0.80 0.79 53

weighted avg 0.84 0.83 0.83 53  weighted avg 0.81 0.79 0.79 53
(a) SVM 83% (b) Random Forest Classifier 79%

Figure 11: Best results for JAFFE landmark points

6.2 Experiment 2 / Landmark Detection Points
6.2.1 JAFFE Dataset

KNN results accuracy peaked at 53%. KNN results of 45% accuracy were observed with
LDA baseline results. Random Forest Classifier Results had an accuracy of 79% and
LDA results of 36% accuracy. Extra Trees Classifier achieved an accuracy of 75% and
an accuracy of 40%. SVM achieved an overall accuracy of 83% and 43% for LDA. PCA
results achieved accuracy results in an SVM Classifier test with on 32% accuracy. Figure
11 shows the confusion matrix for the models with the best accuracy.

6.2.2 SFEW Dataset

SFEW landmark points achieved lower results compared to the results achieved by pixel
values. The highest accuracy was generated by utilizing Random Forest with 45% F1-
score followed by 40% in extra trees. Both LDA techniques and PCA resulted in lower
accuracy.

6.3 Experiment 3 / Landmark Distances

After the landmark detection points were collected the euclidean distance between points
was calculated and used as feature.

6.3.1 JAFFE Dataset

JAFFE dataset KNN results Accuracy peaked at 53% and LDA results of 55% accuracy.
Random Forest Classifier Results achieved an accuracy of 64%, LDA results of 57%
accuracy. Extra Trees Classifier achieved accuracy and weighted fl-score of 74% and
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JAFFE Best Results Landmark Distances

‘ 0
Predicted Predicted

precision recall fl-score support precision recall fl-score support

0 0.83 0.71 0.77 7 0 1.00 0.57 0.73 7

1 1.00 0.86 0.92 7 1 1.00 1.00 1.00 7

2 0.71 0.62 0.67 8 2 0.80 0.50 0.62 8

3 0.88 0.88 0.88 8 3 0.60 0.75 0.67 8

4 0.78 1.00 0.88 7 4 0.54 1.00 0.70 7

5 0.55 0.75 0.63 8 5 0.67 0.75 0.71 8

6 1.00 0.75 0.86 8 6 1.00 0.62 0.77 8

accuracy 0.79 53 accuracy 0.74 53

macro avg 0.82 0.80 0.80 53 macro avg 0.80 0.74 0.74 53

weighted avg 0.82 0.79 0.80 53 weighted avg 0.80 0.74 0.74 53
(a) SVM 79% (b) Extra Trees Classifier 74%

Figure 12: Best results for JAFFE landmark distances

36% weighted Fl-score for LDA with an accuracy of 58% overall. SVM achieved an
overall accuracy of 79% on accuracy and 57% for LDA. PCA achieved accuracy results
in an SVM Classifier test with 28% accuracy. Figure 12 displays the confusion matrix for
the models with the best accuracy.

6.3.2 SFEW Dataset

SFEW results for landmark distances were lower than the pixel value features, peaking at
35% Fl-score with SVM. Both PCA and LDA techniques applied to the dataset resulted
in lower scores.

6.4 Discussion

Table 2 provides an overview of the ten best-performing models trained with JAFFE
by accuracy; it includes the features used and the resulting accuracy and weighted F1-
score. The results achieved using the JAFFE dataset are satisfactory, with the highest
accuracy achieved by the ensemble model with 89% accuracy on the normalised pixel value
feature. PCA tests resulted in considerably smaller accuracy results, while LDA increased
accuracy for KNN pixel results compared to pixel feature data that was only normalised
but not LDA transformed. Looking at the 10 best performing models’ accuracy, the pixel
value feature appears on the list 7 out of 10 times with an accuracy range between 77%
and 89%, landmark points appear twice with an accuracy of 79% and 83% and landmark
distances once with an accuracy of 79%.

20



Table 2: JAFFE 10 Best Models per F1-Score

‘ Algorithm ‘ Feature ‘ JAFFE ‘
| | | Accuracy | F1-Score |
| Ensemble | Pixel Value | 89% | 88% |
| Extra Trees | Pixel Value | 87% | 87% |
| Random Forest (LDA) | Pixel Value | 85% | 85% |
| SVM | Pixel Value | 85% | 85% |
| SVM | Landmark Points | 83% | 83% |
| CNN | Pixel Value | 81% | - |
| Random Forest | Pixel Value | 79% | 79% |
| Extra Trees (LDA) | Pixel Value | 79% | 79% |
| Random Forest | Landmark Points | 79% | 79% |
| SVM | Landmark Distances | 79% | 80% |

The CNN constructed achieved test accuracy of 81% while both ensemble and ma-
chine learning models such as Extra Trees and SVM achieved higher accuracy with 89%
and 85%. Results from traditional machine learning are comparable to deep learning
results, which are displayed in table 1. Overall, pixel value features the best accuracy
outperformed landmark points’ best accuracy scores by 6 points.

Table 3 provides an overview of the ten best performing models trained with SFEW
by Fl-score; it includes the features used and resulting accuracy and weighted F1-score.
SFEW dataset achieved the highest accuracy, and F1-Score with Pixel values features
achieved 53% with Extra Trees classifier, Followed by KNN with an Fl-score of 53% and
54% overall accuracy. On Landmark points, the best result was with Random Forest
achieving an Fl-score of 45%. The calculation of euclidean distances between landmark
points resulted in a much smaller range of results, between F1-scores of 35% and 30% for
normalised data and more minor results for both LDA and PCA transformed data.

Table 3: SFEW 10 Best Models per F1-Score

Algorithm Feature SFEW
| | | Accuracy | F1-Score |
| KNN | Pixel Value | 4% | 5% |
| Extra Trees | Pixel Value | 53% | 53% |
| Random Forest | Pixel Value | 48% | 4T% |
| Random Forest | Landmark Points | 47% | 45% |
| SVM | Pixel Value | 44% | 44% |
| Extra Trees | Landmark Points | 43% |  40% |
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Table 3: SFEW 10 Best Models per F1-Score

Algorithm Feature SFEW
| | | Accuracy | F1-Score |
| KNN | Landmark Points | 40% | 39% |
| KNN (LDA) | Pixel Value | 38% | 38% |
| Random Forest (LDA) | Pixel Value 3% | 3T% |
| SVM (LDA) | Pixel Value 3% | 3% |

For JAFFE, the range between features is as follows. Pixel Value feature 68% to 89%.
Landmark points with a range between 83% and 36% with normalised only data in the top
four results (range between 53% 83%) and LDA results after (45% and 36%). Landmark
points distances between 79% and 53%. PCA results achieved the worse accuracy between
34% and 28%. For the SFEW dataset, LDA transformed data had lower accuracy than
just normalised data which can be visualised in all features as per Table 4.

Table 4: Ranges between Features

| | JAFFE | SFEW |
Feature
‘ ‘ Results Accuracy Range ‘
Pixel Value 68% - 89% Normalised 44% - 53%,

LDA 35% - 38%

Normalised 53% - 83%, | Normalised 34% - 45%,
LDA 36% - 45% LDA 18% - 24%

Normalised 30% - 35%,
LDA 13% - 19%

68 Landmark Points

Landmark Distances | 53% - 79%

Landmark detection in this study did not increase the overall accuracy of models, and
even in the best performing models and dataset, the usage of Landmark detection was 6
points short of the results achieved using pixel values, 10 points difference was observed
between low level feature pixel values and landmark distances in JAFFE. The decision to
use posed or spontaneous datasets can highly impact the results achieved when creating
solutions for FER. The JAFFE dataset has positive and negative implications depending
on the angle a researcher might look at it. It was created with near perfect conditions,
clear background, no distractions from the subject’s face, good lighting, good posing
and no occlusions. The same points that make this dataset near perfect for training
make it hard to translate to real-life scenarios. SFEW examples are more diverse, with
examples closer to real-life scenarios, but this also increases the difficulty in obtaining
higher accuracy.
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7 Conclusion and Future Work

This study aimed to build different machine learning models that can effectively classify
human emotions. Answering the proposed research questions on how traditional machine
learning techniques compare to deep learning solutions in accuracy, verify if the usage of
landmark detection points increases model accuracy and test which of the selected test
models outperform others when classifying FER. Results demonstrate that traditional
machine learning techniques such as SVM, Extra Trees classifier and ML ensemble can
achieve results comparable to some of the deep learning models preferred by researchers
and some of the results displayed in the related works section. Landmark detection, in this
study, did not outperform models created utilising pixel values extracted from images and
the best-produced model that outperformed others was a model ensemble which achieved
89% accuracy utilising pixel values as its features. This research showcases the usage of
traditional ML to solve FER problems with fewer resource needs, are quick to implement
and does not require a large number of examples to produce reasonably good accuracy. It
displays the impact that the type of dataset chosen by research has on the produced results
and how posed datasets’ performance is much higher to spontaneous datasets. Single
culture/etnicity datasets such as JAFFE have less variation than a multicultural dataset
such as SFEW. Datasets are created different and both have their value particularly when
looking from the point that basic emotions mentions that emotions are displayed in the
same way over different cultures. SFEW has over 60 subjects of various ethnic groups and
a model must be able to generalise well to accommodate different features, beards and
artefacts. While the model created using posed datasets might have more generalisation
issues and overfitting, businesses can try to recreate the favourable conditions in which
the posed datasets are created to enhance results in real life, such as adjusting brightness
and cropping background after the input image is collected before emotion classification
takes place.

This work can be improved for future works by focusing on data transformation and
augmentation, trying to recreate the conditions present in a posed dataset in ”in-the-wild”
datasets. Using different points or calculations for point distances might also be helpful
as some of the results reported in different papers achieved higher accuracy than the ones
in this study. Researchers should also consider utilising different landmark detection
libraries that might be more successful extracting facial points information from diverse
images. Further research is also needed to understand better emotions and how to label
them successfully.
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