‘

\‘ .
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc in Data Analytics, MSCDAD_JAN21A |

Sachin Pralhad Langute
Student ID: 19234635

School of Computing
National College of Ireland

Supervisor: Prof. Jorge Basilio

‘—-
\ National

National College of Ireland College of
MSc Project Submission Sheet Ireland
School of Computing

Student Sachin Pralhad Langute
Name:
Student ID: ... RS 0 T TG 1 PRSP REPPRR
Programme: MSC in Data Analytics MSCDAD_JAN21A_1 Year: ..2021-22........
Module: ... RESEAICH PrOJECL.......iiiiiie e s
Supervisor: Prof. Jorge BasSiliO.......ccccveieiieiiee e e
Submission
Due Date: ... 3158 JaNUAIY 2022t e
Project ...Facial Emotion Recognition using Deep Convolutional Neural Network...
Title:
Word
Count: ... 1041............... Page Count..................... 12 .

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ... Sachin Pralhad Langute.........cocoooiiiiiiice e

Date: = ... G R oY 10 1= V2 0 72 R

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Sachin Pralhad Langute
Student I1D: 19234635

1 Introduction

In this configuration manual, the author has given end-to-end details of all the process that was
equipped in the study for the facial expression recognition system. Based on these aspects, the
results were predicted. This manual also highlights the technical study which shows all the
Python libraries which were used to study the working of the CNN model which was used for
predictive analysis. The aim of this configuration manual is to make it easy for the reader to
understand how things were processed from start to end.

2 Design Specification

It is a documented artifact explaining every single detail of the product, the use or the
requirement of the product, the elements that make the product more important, and the
technicalities associated with the product. This document must incorporate all the précised
work equipped in this study including the challenges faced during the research.

2.1 Machine Hardware Configuration
Following hardware combinations were used to finish the project.

Windows edition

Windows 10 Home Single Language

© Microsoft Corporation. All rights reserved.

System
Processor: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz
Installed memory (RAM): 8.00 GB (7.69 GB usable)
System type: 64-bit Operating System, x64-based processor

Pen and Touch: No Pen or Touch Input is available for this Display

2.2 Machine Software Configuration

The specifications of the software utilized for the system were as follows:

1

Software Configurations
Operating System Windows 10 (64-1-)it Operating system)
IDE Spyder (Anaconda Navigator)
Scripting Language Python
Scripting Language version Python 3.7

2.2.1 Anaconda Installation

For the machine learning models, the most recent version of anaconda was installed. Its setup
procedure involved the below steps: -

Go to the official anaconda website and select the link for windows installation.

o G.'%‘l

{0 ANACONDA DOCUMENTATION

» Home

Installing on Windows

? Anaconda Enterpaise 4

1 Download the Anace nstatier

* Anaconda Distribution
2. RECOMMENDED: Yerlty data intequity with SHA 256 For mote information on hashes, see Yhat about crvotographic hash vetfication?

3. Double ciick the Instalier 10 launch

To prevent permission errors, do not launch the installes from the Eavoaies foldes

S

If you encounter kssues during installation, temporanly disable your antivirus software during install, then re-enable It after the instaliation concludes. i you
Instaied for all users, uninstall Anaconda and re-install it for your user only and try agam.

4 Chick Newt

unless you're instaling for a8 users (which requires Windows Administrator privileges) and click Next u

foldet 1o Install Anaconda and cick the Next bution. See EAQ

Download the Anaconda installer file and once downloaded, install the software on the machine.

2 Anaconda3 2019.10 (64-bit) Setup - x

Welcome to Anaconda3 2019.10
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2019. 10 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possble to update
relevant system files without having to reboot your
computer,

Click Next to continue,

ANACONDA.

| Cancel
) Anaconda3 2019.10 (64-bit) Setup —=
£ > ANACONDA please review the license terms before instaling Anaconda3
2019. 10 (64-bit).
Press Page Down to see the rest of the agreement,
L & & 2 3 % % 3 3 3 & 3 % 3 3 3 3 % 3 3 3 & 3 & 3 3 & 3 %2 3 3 3 3 3 J ~

End User License Agreement

yright 2015, Anaconda, Inc.
rights reserved under the 3-clause BSD License:

edistribution and use in source and binary forms, with or without modification, are
tted provided that the following conditions are met:

If you accept the terms of the agreement, diick I Agree to continue. You must accept the
agreement to install Anaconda3 2019. 10 (64-bit).

oo | hee] [t

Click on all the positive terms mentioned in the installation setup.

2 Anaconda3 2019.10 (64-bit) Setup = X

Select Installation Type

‘) ANACONDA please select the type of installation you would lke to perform for
Anaconda3 2019. 10 (64-bit).

Install for:

(®) Just Me (recommended)
O All Users (requires admin priviieges)

T T

2 Anaconda3 2019.10 (64-bit) Setup =

£ > ANACONDA Please wait while Anaconda3 2019. 10 (64-bit) is being installed.

< Back Next > Cancel

The setup starts installing the application.

. Anaconda3 2019.10 (64-bit) Setup —

Thanks for installing Anaconda3!

Anaconda is the most popular Python data scence platform.

ANACONDA. mmwv packages, projects and environments

[Learn more about Anaconda Cloud

[Learn how to get started with Anaconda

o |]

Name: | Mew environment name

Location:

Packages: [Python -
or [[

Cancel Create

G G000 G000 6 0 (

Create a new environment and give it a name.

2.3

Libraries used for model implementation

import json

import zipfile
import os

import pandas as pd

from
from

matplotlib import pyplot
math import sqgrt

import numpy as np
import scipy.misc

from
from
from
from
from
from
from
from
from
from
from

from
from

IPython.display import display

keras.utils import np_utils
keras.preprocessing.image import ImageDataGenerator
keras.utils.vis_utils import plot_model
keras.models import Model, Sequential

keras.layers import Input, Dense, Flatten, Dropout, BatchNormalization
keras.layers.convolutional import Conv2D
keras.layers.pooling import MaxPooling2D
keras.layers.merge import concatenate
tensorflow.keras.optimizers import Adam, SGD
keras.regularizers import 11, 12

matplotlib import pyplot as plt
sklearn.metrics import confusion_matrix

import itertools

from

pylab import rcParams

Model 3: VGG16

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sn

import skimage.io

import keras.backend as K
import tenscrflow as tf

from
from
from
from
from
from
from

tensorflow.keras.preprocessing.image import ImageDataGenerator
tensorflow.keras.applications import VGG16

tensorflow.keras.layers import Dense, Flatten, Dropout,BatchNormalization ,Activation
tensorflow.keras.models import Model, Sequential

keras.applications.nasnet import NASNetLarge

tensorflow.keras.callbacks import ReducelLROnPlateau, ModelCheckpoint, EarlyStopping
tensorflow.keras.optimizers import Adam

3 Dataset:

= kaggle Q search
+ Create
@ Dataset
® Home
Facial Expression Recognition Challenge Dataset
€ Competitions . N 3
Learn facial expressions from an image
@ Datasets |
U
e Debanga Raj Neog « updated 2 years ago (Version 4)
<> Code
@ Discussions
0 Courses
8 Usability 5.3 % Tags
v More
@ Your Work
~ RECENTLY VIEWED
@ Facial Fmotion Dete s
@ View Active Events 7

Data Explorer
777.8 MB < test.csv (1 files)

~ [icmli_face_data.csv
M0 icml_face_data.csv

test.csv

example_submission.csv

face_embs.npy
fer2013.tar test.csv

metadata_processed.csv 60.13 MB

BEEOB0

Summary
» [6 files

» M 8 columns

The data comprises grayscale pictures of faces 48x48 pixels in size. The faces have been
already selected in such a way that highlights the center of the image with equal size for
each image. There is a need for feature mapping for each image such that every image is
categorized into one of the seven Ekman’s emotions classes which include the facial
expressions with a labeled numerical class (0=Angry, 1=Disgust, 2=Fear,3=Happy, 4=Sad,
5=Surprise, 6=Neutral).

The dataset used for the FER system has two CSV files namely, train.csv and test.csv. The
training dataset includes two-column data having the pixel value of the input image and
the emotion associated with the pixel. There is also a column named “feeling” which
depicts the mapped emotion class. The emotion column comprises the string value of the
emotion which is enclosed in a quotation mark.

There is a single column in the testing dataset file with an emotion column enclosed with a
string value for a particular emotion and the job is to predict the emotion depicted in that
string value.

The training dataset includes 28,709 instances whereas, the leaderboard's public test set
has 3,589 samples.

4 Data Preprocessing:

In Data preprocessing the author has converted the images from grayscale to RGB and also
amplified the pixels of each image.

In [24]:

Preprocessing

def gray_to_rgb(im):

converts images from single channel images to 3 channels
T

w, h = im.shape

ret = np.empty((w, h, 3), dtype=np.uints)

retf:; 2521 == retl:; 5 1) = retf:,; :; 0] = im
return ret

def convert_to_image(pixels, mode="save", t="gray"):

convert the input pixels from the single string row to 48*48 array with real pixel values
when mode = "save" it keeps the images in flat array shape, otherwise it converts it to 48%*4s
when t (for type) = "gray, it keeps the pixels single channel, otherwise it converts it to 3 channels

if type(pixels) == str:
pixels = np.array([int(i) for i in pixels.split()])
if mode == “"show":
if -t = "gray”:
return pixels.reshape(48,48)
else:
return gray_to_rgb(pixels.reshape(4s,48))
else:
return pixels

data[“"pixels"] = data["pixels"].apply(lambda x : convert_to_image(x, mode="show", t="gray"))

from sklearn.model_selection import train_test_split

#split the dota to train, test, and validation

X_train, X test, y_train, y_test = train_test split(data[“pixels"], data["emotion"], test_size-=0.2, random state-=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size-8.2, random_state-1)

X_train = np.array(list(X_train[:]), dtype=np.float)
X_val = np.array(list(X_val[:]), dtype=np.float)
X_test = np.array(list(X_test[:]), dtype=np.float)

y_train = np.array(list(y_train[:]), dtype=np.float)
y_val = np.array(list(y_val[:]), dtype=np.float)
y_test = np.array(list(y_test[:]), dtype=np.float)

X_train = X_train.reshape(X_train.shape[@], 48, 483, 1)
X_val = X_val.reshape(X_val.shape[e], 48, 48, 1)
X_test = X _test.reshape(X_test.shape[e], 48, 48, 1)

In [25]:

num_train = X_train.shape[@]
num_val = X_val.shape[e]
num_test = X_test.shape[e]

5 Data Augmentation:

The first strategy is data augmentation, which was utilized in all of our models as a
preprocessing step. The author used Keras' "ImageDataGenerator"” for data augmentation. It
generates 32 augmented images from a single image by rotating, flipping, and employing
other predefined techniques.

Data Augmentation

In [27]: datagen = ImageDataGenerator(
rescale=1./255,
rotation_range = 18,
horizontal_flip = True,
width_shift_range=0.1,
height_shift_range-0.1,
fill_mode = 'nearest’)

testgen = ImageDataGenerator(
rescale=1./255

)
datagen.fit(X_train)
batch_size = &4

In [28]: for X_batch, y_batch in datagen.flow(X_train, y_train, batch_size=9):

for i in range(e, 92):
pyplot.axis(‘off’)
pyplot.subplot(33e + 1 + 1)
print(np.where(y_batch[i] == 1)[e][e])
pyplot.title(emotion_labels[np.where(y_batch[i] == 1)[@][@]])
pyplot.imshow(X_batch[i].reshape(48, 48), cmap-pyplot.get_cmap('gray’))

pyplot.axis('off')

pyplot.show()

break

Happy Surprise

Happy

-
> -
-
-
Surprise Angry

7 &

6 Design specification:

The author has used 3 models namely:
1. Convolutional Neural Network with 5 convolutional layers
2. Convolutional Neural Network with 3 convolutional layers
3. VGG16 model

Out of all the three models, VGG performs the best with an accuracy of 85.75% and a loss of
1.73. The CNN model with 5 convolutional layers has the lowest accuracy of 25.65% and
loss of 1.78 and on the other hand, the CNN model with 3 convolutional layers performs the
second-best with an accuracy of 57.27% and loss of 1.89.

6.1 Convolutional Neural Network with 5 convolutional layers:

Model 1: 5-Layered CNN 1

convs_model = Sequential()

convs_model . add{Conv2D(64, kermel_size=(3, 2}, activation='relu", input_shape=({43,48,1)))
conys_model . add({BatchMormalization())

convs_model . add{Conv2D(&4, kernel_size=(3, 2}, activation="relu',name = "convl'))
conys_model . add(Eatchwormalization())

convS_model . add({MaxPooling2D(pool_size=(2, 2}})

conySs_model . add({Dropout(8.25))

convs_model . add{Comv2D(128, kernel size=(3, 3),padding="same”, activation="relu', name = ‘conv2'))
convs_model . add{EatchNormalization())

convS_model.add{Conv2D(128, kernel_size=(3, 3), padding="same", activation='relu', name = "conv3'}))
conys_model . add{BatchMormalization()}

convs_model . add({Comv2D(1238, kernel_size=(3, 3), padding="same", activation="relu', name = "conv4'))
conys_model . add({Eatchnormalization())

convS_model . add{MaxPooling2D(pool_size=(2, 2}})

convs_model . add{Dropout (@.25))

convs_model . add({Comv2D(1238, kernel_size=(3, 3), padding="same", activation="relu', name = "comvs'))
conys_model . add({Eatchnormalization())

convS_model.add{Conv2D(128, kernel_size=(3, 3), padding="same", activation='relu', name = "conve'))
conys_model . add{BatchMormalization()}

convs_model . add{Conv2D(128, kernel_size=(3, 3), padding="same", activation="relu', name = "comv7'})
convs_model . add({EatchMormalization())

conys_model . add({Comv2D(128, kernel size=(3, 3), padding="same", activation="relu', name = "convi'))
convSs_model . add({BatchMormalization())

convs_model . add{MaxPooling2D({pool_size=(2, 2}}}

convs_model . add({Dropout(2.25))

convS_model.add{Conv2D(128, kernel_size=(3, 3), padding="same", activation='relu', name = "conva'}))
convSs_model . add({BatchMormalization())

convs_model.add{Comv2D(123, kernel size=(3, 3}, padding="same", activation="relu', name = "comvia'})
convs_model . add({EatchMormalization())

convs_model . add{Comv2D(128, kernel size=(3, 3), padding="same", activation="relu', name = "comvil'})
convS_model . add{BatchNormalization())

convs_model . add{Comv2D(123, kernel_size=(3, 3}, padding="same", activation="relu', name = "comvi2'})
conys_model . add({BatchMormalization())

conys_model . add{MaxPooling2D(pool_size=(2, 2}})

conys_model . add({Dropout(@.25))

convs_model . add{Comv2D(256, kernel size=(3, 3}, padding="same", activation="relu', name = "comvi2'})
convs_model . add({EatchMormalization())

convs_model . add{Comv2D(256, kernel size=(3, 3}, padding="same", activation="relu', name = "comvi4')})
conys_model . add(Eatchwormalization())

convS_model.add{Conv2D(256, kernel_size=(3, 3), padding="same", activation='relu', name = 'convlg'}}
conys_model . add({BatchMormalization())

convs_model . add{Comv2D(256, kernel size=(3, 3), padding="same", activation="relu', name = "comvl7')})
conys_model . add({Eatchnormalization())

convs_model . add({MaxPooling2D(pool_size=(2, 2)})

conySs_model . add{Dropout(8.25))

conys_model . add{Flatten(})
convs_model . add{Dense{num_classes, activation='softmax'})
print{convs_model . summary())

Model: "sequential"

Result Evaluation for CNN5:

loss = comvSs_model.evaluate gemerator{test flow, steps=len(X_test) / batch_size)
print{"Test Loss " + str{loss[a]})
print{"Test Acc: " + str{loss[1])})

C:\Usershlanguanaconda3\lib\site-packages\keras\engine\training.py:2866: UserWarning:
and will be removed im a future version. Please use “Model.evaluate™, which supports g
warnings.warn(" Model.evaluate_generator’ is deprecated and °

Test Loss 1.7883416851864624
Test Acc: @.2565388213233948

6.2 Convolutional Neural Network with 3 convolutional layers:

Model 2: CNN with less convulational layers.

-

#let's try smaller Conv model
model conv = Seguemtial()

model_conv.add({Conv2D{32, kernel_size=(2, 3}, activation='relu', imput_shape=({48,48,1}))
model conv.add{Conv2D{&4, kernel size={3, 3}, activation='relu'}}
model_conv.add({MaxPooling2D{pool_size=({Z, 2}))

model conv.add({Dropout{a.25))

model _conv.add({Conv2D{128, kernel_size=(3, 2), activation="relu'})
model _conv.add({MaxPooling2D{pool_size=({2, 2}))

model _conv.add({Conv2D{128, kernel_size=(3, 2), activation="relu'})
model conv.add{MaxPooling2D({pool_size={2, 2)))}
model_conv.add({Conmv2D{128, kernel_size=(3, 2), activation="relu'})
medel conv.add({MaxPooling2D{pool_size={Z, 2}))

model conv.add({Dropout(@.25))

model conv.add{Flatten()})

model _conv.add({Dense{1824, activation="relu'))
medel conv.add({Dropout(a.5))

model conv.add({Dense(7, activation="softmax'))

Result:

loss = model conv.evaluate_generator(test_flow, steps=len(X_test) / batch_size)
print{"Test Loss " + str{loss[8]})
print{"Test Acc: " + str{loss[1]})

Test Loss 1.189395735331726
Test Acc: 8.5727969488835278

10

6.3 VGG model:

Building Model

model-Sequentiall)
model. add(base_model)
model . add(Flatten()}
model . add (Dropout(8.5))

model.add(Dense{ 4096, activation="relu"})

model . add(Dropout(8.5))

model.add(Dense{1824,activation="relu"})

model . add {Dropout{8.5))

model. add (Dense{7,activation="softmax"))

Model Summary

for layer in base_model.layers:
layer.trainable-False

model. summary ()

Model: "sequential_ia"

Layer (type) Output shape Param #
vggls (Funmctiomal) {Mone, 1, 1, 512} 14714538
flatten_ 2 (Flatten) {Mone, 512) a
dropout_8 (Dropout) {MNone, 512) =]
dense_11 (Dense) {MNone, 4896) 2181248
dropout_9 (Dropout) {Mone, 4896) =]
dense_12 (Dense) {MNone, 1824) 4195328
dropout_18 (Dropout) {Mone, 1824) a
dense_13 (Dense) {Mone, 7} 7175

Total params: 21,818,439
Trainable params: &,383,751
Mon-trainable params: 14,714,688

Result:

wistory=model.fit(train_dataset,validation_data=valid dataset,epochs = 5,verbose = 1,callbacks=[1rd,mcp,es])

tpoch 1/5

359/359 [] - 5955 1s/step - loss: 1.8986 - accuracy: ©.8560 - precision: @.3931 -
- auc: e.6741 - f1_score: 9.8259 - val_loss: 1.7264 - val_accuracy: ©.8581 - val_precision: ©.6194 - val_recall:

Jc: 8.7160 - val_f1_score: 2.8323
tpoch 2/5

359/359 [] - 671s 2s/step - loss: 1.7517 - accuracy: ©.8573 - precision: ©.5168 -
- auc: @.6938 - f1_score: 9.8399 - val_loss: 1.7014 - val_accuracy: ©.8580 - val_precision: ©.6957 - val_recall:

iC: 8.7267 - val_f1_score: ©.8219
tpoch 3/5

359/359 [] - 5095 1s/step - loss: 1.7398 - accuracy: ©8.8572 - precision: ©.5068 -
- auc: e.7eee - f1_score: ©.8426 - val_loss: 1.6899 - val_accuracy: ©.8591 - val_precision: ©.684@ - val_recall:

iC: 8.7316 - val_f1_score: ©.8430
tpoch 4/5

359/359 [] - 463s 1s/step - loss: 1.7365 - accuracy: ©.8571 - precision: e.4942 -
- auc: 8.7819 - f1_score: 9.8450 - val_loss: 1.7137 - val_accuracy: ©.8575 - val_precision: ©.8571 - val_recall:

JC: 8.73e4 - val_f1_score: ©.0063
tpoch 5/5

359/359 [] - 404s 1s/step - loss: 1.7344 - accuracy: ©.8575 - precision: ©.5249 -

recall:
2.0167

recall:
9.0111

recall:
@.8253

recall:
9.0031

recall:

- auc: e.7e36 - f1_score: ©8.8456 - val_loss: 1.6914 - val_accuracy: ©.8586 - val_precision: @.7e83 - val_recall: e.0178

JC: 8.7324 - val_f1_score: ©.9243

11

0.

8.

2.

2.

e143
val_a

2207
val_a

2226
val_a

.8241

val_a

2243
val_a

References

Facial Expression Recognition Challenge Dataset | Kaggle

Mishra S., Prasada G.R.B., Kumar R.K., Sanyal G. (2017) Emotion Recognition Through Facial Gestures - A Deep
Learning Approach. In: Ghosh A., Pal R., Prasath R. (eds) Mining Intelligence and Knowledge Exploration. MIKE
2017. Lecture Notes in Computer Science, vol 10682. Springer, Cham. https://doi.org/10.1007/978-3-319-
71928-3 2

Mehta, D.; Siddiqui, M.F.H.; Javaid, A.Y. Facial Emotion Recognition: A Survey and Real-World User Experiences
in Mixed Reality. Sensors 2018, 18, 416. https://doi.org/10.3390/s18020416

Castellano G., Kessous L., Caridakis G. (2008) Emotion Recognition through Multiple Modalities: Face, Body
Gesture, Speech. In: Peter C., Beale R. (eds) Affect and Emotion in Human-Computer Interaction. Lecture Notes
in Computer Science, vol 4868. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 540-85099-1_8

12

https://www.kaggle.com/debanga/facial-expression-recognition-challenge
https://doi.org/10.1007/978-3-319-%2071928-3_2
https://doi.org/10.1007/978-3-319-%2071928-3_2
https://doi.org/10.3390/s18020416

