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Configuration Manual

Kishore Lakshmanan
x20253583

1 Introduction

The configuration manual gives the step-by-step guide to execute the modules which will
be useful for this research project. The steps includes from software installation to model
building process. This project comprises of two different stages such as fault identification
part and another is price evaluation process. This manual contains code snippet as well
to run the project without any problems.

2 System Configuration

2.1 Software Requirements

The research project was developed using the open source IDE called Jupyter Notebook
which is available through the Anaconda software. This environment works based on
python module. All these packages needs to be installed before building the project.

2.2 Hardware specifications

e System Name: DESKTOP-SM51BMP

Processor: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz, 2601 Mhz, 2 Core(s), 4
Logical Processor(s)

Installed RAM: 8.00 GB

Storage Size: 465.76 GB SSD (500,105,249,280 bytes)

OS type: 64-bit operating system, x64-based processor

3 Installation and Environment Setup

e Python
Python module was used in this project. Since, it has many in-build libraries which
support most of the Deep Learning and Machine Learning Projects. It ease the
model building and analyse with various plots. The first requirement is to install
the latest version python in the system. Based on the operating system, the package
installer can be downloaded from the website [[] through browser. After successful

Thttps://www.python.org/downloads/



installation of python from the website as shown below figure [I type ’python
-version’ in the command prompt to verify it.

g python’
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Figure 1: Python Website Page

e Anaconda

Anaconda package comprises of several IDE which will be useful for developing the
code and for analysing the outputs through the python package. This package can
be downloaded and installed from the website Pl There were lot of different IDE
available in this navigator [2} In this project, Jupyter Notebook is used for building

the model.
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Figure 2: Anaconda
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The python libraries are installed during the implementation of code using pip
command. The required libraries for this project are numpy, pandas, tensorflow,
matplotlib, seaborn and plotly.

Command: pip install 'LibraryName’

4 Data Collection

There were two datasets used for this project which is taken from kaggle. Following
sections are divided into two parts for building both defect detection E|Which contains the
pre-processed image bunddle and cost evaluation E|Which includes the information about
the vehicles. The output from each parts will be used to satisfy the project objectives.

5 Implementation of Defect Detection

5.1 Importing Libraries

Before implementation of model, the required libraries needs to be imported for smooth
execution. The below figure [3|shows the imported libraries of our research.

In [1]: | #Importing Libraries
import numpy as np
import pandas as pd
import tensorflow as tf
import os
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator, img to_array, load_img, img to_array
from tensorflow.keras.preprocessing import image
from keras.models import Sequential
from tensorflow.keras.models import Model
from tensorflow.keras.applications import MobileNet
from keras.layers import Dense,Activation,Dropout, Conv2D, MaxPool2D
from keras.callbacks import EarlyStopping, ModelCheckpoint

In [2]: | print("NUMPY Version: ¥s' ¥ np._ version_ )
print( PANDAS Version: ¥s' ¥ pd._ version_ )
print( TENSORFLOW Version: {}'.format(tf._ version_))

MUMPY Version: 1.28.1
PANDAS Version: 1.2.4
TENSORFLOW Version: 2.9.1

Figure 3: Importing Libraries for Defect Detection Model

5.2 Splitting of Train and Test Data

The dataset needs to be divided into training and validation data to develop the model
as shown in the below figure

Shttps://www.kaggle.com/datasets/anujms/car-damage-detection
4https://www.kaggle.com /nehalbirla/vehicle-dataset-from-cardekho



In [3]: train_data = "D:/Masters in DA/Research Project/Datasets/Defect/training”
test_data = "D:/Masters in DA/Research Project/Datasets/Defect/validation”

In [4]: img = plt.imread(os.path.join(train_data, "@@-damage/@2e5.IPEG"})
plt.imshow(img)
height, width, dim = img.shape
print({"size of image (h x w)",height,width)

size of image (h x w) 194 259

Figure 4: Splitting of Train and Test Data

5.3 Data Augmentation and Normalization

The data augmentation and normalization was done by the following code shown in the
figure [1§

In [6]: from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_gen = ImageDataGenerator({rescale=1/255)
test_gen = ImageDataGenerator({rescale=1/255)

In [7]: train_dataset = train_gen.flow_from_directory(train_data,
target size=(158,15@),
batch_size = 32,
class_mode = ‘binary")

test_dataset = test_gen.flow_from_directory(test_data,
target_size=(158,15@),
batch_size =32,
class_mode = ‘binary")
test_dataset.class_indices

Found 184@ images belonging to 2 classes.
Found 468 imsges belonging to 2 classes.

Out[7]: {'@e-damags': @, '@l-whole': 1}

Figure 5: Data Augmentation and Normalization



5.4 CNN Model

The below code gives the overview of model building, setting hypertuning parameters
and accuracy with graphs of CNN model.

Model Building

In [3@]: from keras.models import Sequential
from tensorflow.keras.models import Model
from tensorflow.keras.spplications import MobileNet
from keras.layers import Dense,Activation,Dropout, Conv2D, MaxPool2D
from keras.callbacks import EarlyStopping, ModelCheckpoint

s

In [2]: | # using CNN Model

madel = Sequential()

In [1@]: |# Convolutional Layer & maoxpool Layer 1 to 4
model.add(Conv2D(32,(3,3),activation="relu’,input_shape=(15@,15@,3}))
model.add(MaxPool2D(2,2))

model.add(Conv2D(64,(3,3),activation="relu"))
model.add(MaxPool2D(2,2))

model.add(Conv2D (128, (3,3),activation="relu'))
model.add(MaxPool2D(2,2})

model.add(Conv2D (128, (3,3),activation="relu'))
model.add(MaxPool2D(2,2))

In [11]: |# Converting image array to 1D array
model.add(tf.keras.layers.Flatten())

# Activation function with relu and sigmoid
model.add(Dense (256, activation="relu"})
#model . add (Dropout(8.1))
model.add(Dense(1,activation="sigmoid"))

model. summary ()

Figure 6: CNN: Model Building Process

In [12]: model.compile(loss="binary_crossentropy',optimizer="adam',metrics=["accuracy"'])

early_stop = tf.keras.callbacks.EarlyStopping(monitor="val_loss', mode="min", verbose-1, patience=4, min_delta-0.861)
1r_reduce = tf.keras.callbacks.ReducelLROnPlateau(monitor="val_loss', verbose=1, patience=2, factor=2.1, min_lr=6.8881)
model_check = tf.keras.callbacks.ModelCheckpoint( best_model.hdf5', monitor="wal accuracy', verbose=1,save_best only=True,mode="r

»

Training Model

In [3@]: modell = model.fit(train_dataset,
validation_data-test_dataset,
epochs=2@,
callbacks=[early_stop, lr_reduce, model_check],
batch_size=32)

Epoch 1/2@

58/58 [ ] - ETA: @s - loss: ©.6933 - accuracy: 8.5364

Epoch 1: val_accuracy improved from -inf to @.61522, saving model to best_model.hdfs

58/58 [ 1 - 635 1s/step - loss: @.6933 - accuracy: @.5364 - val_loss: @.6469 - val_accuracy: 8.615

2 - 1r: 9.0018

Figure 7: CNN: Hyperparameter Tuning and Model Training



5.5 MobileNet Model

The below code gives the overview of model building, setting hypertuning parameters
and accuracy with graphs of MobileNet model.

In [48]: def build model():
model = MobileNet(weights="imagenet™,include_top=False, input_shape=(3@e, 3@@, 3), pooling='avg')
for layer in model.layers[:-2]:
layer.trainable = False
predictions = Dense(2, activation="softmax")(model.output)
model = Model{inputs=model.input, outputs=predictions)
return model

model = build_model()

WARNING:tensorflow: ™ input_shape® is undefined or non-square, or “rows® is not in [128, 168, 192, 224]. Weights for input shape
(224, 224) will be loaded as the default.

In [808]:
model.compile(loss="sparse_categorical_crossentropy',optimizer='adam’,metrics=[ accuracy’])
early_stop = tf.keras.callbacks.EarlyStopping(monitor="val loss', mode='auto', wverbose=1, patience=4, min_delta=8.201)

1r_reduce = tf.keras.callbacks.ReducelROnPlateau{monitor="val loss', verbose=1, patience=2, factor=8.1, min_lr=28.8881)
model_check = tf.keras.callbacks.MedelCheckpoint( "MobileNet_Car_Classifier.h5', monitor='val_accuracy', verbose=1,save_best_only:

»

In [61]: modell = model.fit(train dataset,
validation_data=test_dataset,
epochs=28,
callbacks=[early_stop, lr_reduce, model check],
batch_size=32)

Epoch 1/28

53/58 [ ] - ETA: @5 - loss: @.6978 - accuracy: @.500@

Epoch 1: val_accuracy improved from -inf to @.5800@, saving model to MobileNet_Car_Classifier.hs

53/58 [ 1 - 4Bs 736ms/step - loss: ©.6978 - accuracy: @.508@ - val_loss: @.6956 - val_accuracy: @.

see@ - lr: ©.0010

Figure 8: MobileNet: Model Building Process

5.6 Performance Analysis

The code shown below is given to find the accuracy of the CNN model and graph of train
and test accuracy. This code can be used for both the model.

In [32]: plt.plot{modell.history['accuracy’], label="train accuracy')

plt.plot({modell.history[ ‘val_accuracy'], label="validation accuracy")
plt.legend()
plt.show()

— train accuracy
09 validation accuracy
08 ,«//’//—P—r

or

06

In [33]: | print('Training accuracy achieved', modell.history['accuracy’][-2])

Training accuracy achisved @.945652186870575

Figure 9: CNN: Plot and Performance Analysis



5.7

Severity Assessment

The below code is given to find the prediction of car damage and severity level of the
vehicle in the images.

In [98]:

In [91]:

from tensorflow.keras.preprocessing import image
img=image.load_img('D:/Masters in DA/Research Project/Datasets/Defect/validation/@@-damage/2081.jpeg’, target_size=(150,158)]
#img = image.load img(“training”,target size=(158,158))
plt.imshow(img)
Y = np.array(img)
X = np.expand_dims(Y,axis=2)
val = model.predict(X)
print(val)
if val < 8.5:
plt.xlabel("Car Damage“,fantsize=25ﬂ
elif val »>= 8.5:
plt.xlabel("Car Not Damage",fontsize=25)
4 13
1/1 [ =====] - B85 42ms/step
[[1.47416342-14]]
5 5 100 135
Car Damage
Figure 10: Prediction of Car Damage
img = load_img('D:/Masters in DA/Research Project/Datasets/Defect/validation/@a-damage/@0@1.jpeg’, target size=(15@, 15@)) #
x = img_to_array(img) # this is a Numpy array with shape (3, 256, 256)
x = x.reshape((1,) + x.shape)/255 # this is a Numpy array with shape (1, 3, 256, 256)
pred = model.predict(x)
print (pred)
pred_label = np.argmax(pred, axis=1)
pred=int(pred*1a)
print (pred_label)
d = {@: 'Minor', 1: ‘Moderate®, 2: 'Severe’}
for key in d:
if pred == key:
print (“"Assessment: {} damage to vehicle".format(d[key]))
print ("Severity assessment complete.™)
4 3
1/1 [ ==== ===] - @s 3%ms/step

[[2.29291642]]

e]

Assessment: Severe damage to wvehicle
Severity assessment complete.

Figure 11: Severity Assessment of the Car




6 Price Estimation Model

6.1 Importing Libraries

Before implementation of model, the required libraries needs to be imported for smooth
execution. The below figure shows the imported libraries of our research.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import plotly.express as px

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import accuracy_score, mean_squared_error, r2_score
from sklearn import metrics

Figure 12: Importing Libraries for Defect Detection Model

6.2 Loading and Reading the Data

The loading and reading the data is the first step to analyze the data by the following
code shown in the figure (13|

In [67]: # Load data
df = pd.read_csv('D:/Masters in DA/Research Project/Datasets/CAR DETAILS FROM CAR DEKHD.csv')

In [68]: #displaying information about the attributes present in the dataset
df.infa()
<class 'pandas.core.frame.DataFrame’>

RangeIndex: 434@ entries, @ to 4339
Data columns (total 8 columns):

#  Column Non-Null Count Dtype
2 name 4348 non-null  object
1 year 4348 non-null  ints4
2 selling_price 4348 non-null  inté4
3 km_driven 4348 non-null  intea
4 fuel 4348 non-null  object
5  seller_type 4348 non-null  object
6  transmission 4348 non-null  object

7 owner 4348 non-null  object
dtypes: int&4(2), object(s)
memory usage: 271.4+ KB

In [62]: # show first few rows
print({df.head(4))

name year selling price km_driven fuel A\
a Maruti 8aa AC 2807 GeRad 7oeea Petrol
1 Maruti Wagon R LXI Minor 2007 135022 Seeee  Petrol
2 Hyundai Verna 1.6 X 2012 [lele ] 100282 Diesel
3 Datsun RediGO T Option 2817 250008 4g@R  Petrol
seller_type transmission owner
@ Individual Manual First Owner
1 Individusl Manual First Owner
2 Individusl Manual First Owner

Figure 13: Load and Read the Data



6.3 Data Preprocessing

The code shown in the below figure [ describes the preprocessing stages in the project.

In [7@]: #checking for null value
df.isnull().sum()

Qut[78]: name
year
selling_price
km_driven
fuel
seller_type
transmission
owner
dtype: inté4

DO

In [71]: |#visuglize the null data in g attributes using heatmap function
import seaborn as mis
mis.heatmap (df.isnull(), cmap="viridis")

Qut[71]: <AxesSubplot:>

Figure 14: Checking the Null Values

In [72]: |#Checking the NA values in dataframe
df.dropna(axis=0,inplace=True)

In [73]: | #Checking the duplicate values in dataframe
df .duplicated().sum()

out[73]: 763

In [74]: #Drop the duplicate data and save the data to other daotaframe as data
data = df.drop_duplicates()

In [75]: |#Checking the duplicate values in dataframe
data.duplicated().sum()

Out[75]: @

Figure 15: Checking the Duplicate Values

6.4 Visualizing the features in Dataset

The visualization of data is effective to analyse the features in the dataset which describes
the bar plots used in the project.



In [77]: plt.rcParams['figure.figsize'] = (8,4}
sns.countplot(data[ 'seller_type’])

C:\UsersiHP\anaconda34lib\site-packages\seaborn\_decorators.py:36: FutureWarning:

Pass the following variable as a keyword arg: x. From version @.12, the only valid positional argument will be “data”, and pas
ing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[77]: <hxesSubplot:xlabel="seller_type', ylabel="count'>

2000
£

1500
g

1000

500

Individual Dealer Fustmark Dealer
seller_type

Figure 16: Visualization 1

In [85]:  plt.rcParams[’'figure.figsize'] = (15,6)
sns.countplot(data[ "year'])
plt.title("year v/s vehicle's available for second’s ™)
C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning:

Pass the following variable as a keyword arg: x. From wversion @.12, the only walid positional argument will be “data”™, and pass
ing other arguments without an explicit keyword will result in an error or misinterpretation.

Out[85]: Text(®.5, 1.8, "year v/s vehicle's available for second’'s ")

year v/s vehicle's available for second's

350

300

0

00

count

150

100

0l
1992 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year

Figure 17: Visualization 2
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6.5 Data Transformation

The data transformation is important step to change the data from one format to another
which is done by the following code shown in the figure (18|

In [49]: data.replace({ 'fuel®:{'Petrol’:@, Diesel’:1, "LPG"':2, 'Electric’:3, "CNG':4}}, inplace=True)

C:\Users\HP\anaconda3\1lib\site-packages\pandashcore\indexing.py:1676: SettinghiithCopyWarning:

A value is trying to be set on a copy of a slice from & DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ve
rsus-a-copy

In [12]: data.replace({'seller_type':{'Dealer':®, 'Individual’:1, 'Trustmark Dealer':2}}, inplace=True)
In [13]: data.replace({ transmission':{'Manual’:®@, 'Automatic':1}}, inplace=True)

In [14]: data.replace({ owner’:{'First Owner':®, 'Second Owner':1,'Third Owner':2, 'Fourth & Above Owner®:3,'Test Drive Car':4}}, inplace=Ti
3

In [15]: data.head()

Out[15]: name year selling_price km_driven fuel seller_type transmission owner
L] Marufi 800 AC 2007 80000 70000 o 1 0 o
1 Maruti Wagen R LXI Minor 2007 135000 50000 L] 1 0 o
2 Hyundai Verna 1.6 SX 2012 600000 100000 1 1 0 o
3 Datsun RediGO T Option 2017 250000 48000 L] 1 0 o
4 Honda Amaze VX i-DTEC 2014 450000 141000 1 1 0 1

Figure 18: Data Augmentation and Normalization

6.6 Splitting of Train and Test Data

The dataset needs to be divided into training and validation data to develop the model
as shown in the below figure

In [58]: #Spliting the data and Target
X = data.drop([ 'name’, "selling price'], axis=1)
¥ = data['selling price"]

Figure 19: Splitting of Train and Test Data

6.7 Linear Regression Model

The code below shows the model building and performance analysis of linear regression
model was given in the figure [20]

11



In [52]: X_train,X test, Y_train,¥Y_test = train test split(X,Y, test size=0.3,random_state=2)

In [53]: #Training Data
lin_reg_model = LinearRegression()
lin_reg_model.fit(X_train,Y_train)

Out[53]: LinearRegression()

In [54]: training_data_prediction = lin_reg_model.predict{X_train)

In [59]: print("MSE value is : ",mean_squared error(¥Y_train, training_data_prediction))
print("R Square wvalue is : ",r2_score(Y_train, training data_prediction})
MSE value iz @ 154584853125.8385

R Square wvalue is : @.41735485636245517

In [68]: #Testing Data
lin_reg_model = LinearRegression()
lin_reg_model.fit(X_test,Y test)

out[ee]: LinearRegression()
In [61]: testing data_prediction = lin_reg_model.predict(X_test)

In [62]: print("MSE value is : ",mean_squared_error(Y_test, testing data prediction))
print("R Square wvalue is : ",r2 score(Y_test, testing data prediction))

MSE value is : 154341357657.48893
R Square wvalue is : @.3781376784975208

Figure 20: Linear Regression Model

6.8 Decision Tree Model

The code below shows the model building and performance analysis of decision tree model
was given in the figure 21}

In [71]: |#Training Data
lin_reg_model = DecisionTreeRegressor()
lin_reg_model.fit(X_train,Y_train)

Out[71]: DecisionTreeRegressor()

In [72]: training_data_prediction = lin_reg_model.predict(X_train)

In [73]: print("MSE value is : ",mean_squared_error(Y_train, training_data_prediction})
print("R Square wvalue is : ",r2_score(Y_train, training data_prediction))
MSE value is : 13811136@57.582731

R Square wvalue is : ©.94734423364279561

In [63]: |#Testing Data
lin_reg_model = DecisionTreeRegressor()
lin_reg_model.fit(X_test,Y_test)

Out[&3]: DecisionTreeRegressor()
In [64]: testing data_prediction = lin_reg_model.predict(X_test)
In [65]: print("MSE value is : ",mean_squared_error(Y_test, testing data_prediction))

print("R Square walue is : ",r2_score(Y_test, testing_data_prediction))

MSE wvalue is : 77492939@8.295181
R Square wvalue is : ©.9683753701871528

Figure 21: Decision Tree Model
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