~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSC Data Analytics

Devika Kulkarni
Student ID: X19202865

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Devika Kulkarni
Student ID: X19202865
Programme: MSC Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Catherine Mulwa
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 970
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Devika Kulkarni

Date: 29th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Devika Kulkarni
X19202865

1 Introduction

This is a configuration manual document that outlines a step-by-step approach for putting
the project on US visa analysis into action. The goal of this project was to analyze US
visas.Five machine learning models were run to identify the best match model. The
performance of all the five models were implemented, evaluated and the results, Details
on the installation and overall implementation of the code are provided in the following
sections.

2 Prerequisites

This section contains information about the software specs that were utilized to complete
this project and the minimum requirements. It also walks you through the process of
installing the program or application step by step.

2.1 Hardware Requirements

Operating system: Windows 10
e Processor: Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99 GHz
RAM: 8 GB

System type: 64-bit operating system, x64-based processor
HDD: 1 TB

2.2 Software Requirements

Python was utilized as the programming language for this project, while Jupyter Note-
book and Google colab were both used to implement the code. However, in this document,
Jupyter Notebook is used to guide through the implementation of the code. Python’s
seaborn and matplotlib libraries were used to create the visualizations. A step by step
guide to download Python on windows is available at [learning Lounge| (2021). Following
are the versions of these software:

e Python: 3.8.3

e Jupyter Notebook: 6.0.3

3 Environment Setup
This sections guides through the environment setup required for running the code.

e To use Jupyter notebook, Anaconda software can be downloaded here. Also, to
install anaconda you can refer [Anacondal (2021) [
Figure 1 shows the website to download Anaconda software.

'..) ANACONDA. Products Pricing Solutions Resources Partners Blog Company

Q

Individual Edition

YO u r d a ta SC I e n Ce Anaconda Individual Edition
toolkit

With over 25 million users worldwide, the open-source Individual For Windows

Figure 1: Website to download Anaconda

e Once Anaconda is installed, Jupyter notebook needs to be installed through Anaconda

software. Open Anaconda software and refer to Figure 2 to install Jupyter Note-
book.

thttps:/ /www.anaconda.com/products/individualwindows

) Anaconda Navigator

File Help

{0 ANACONDA NAVIGATOR

v 2

Home .
. applicatonson | swecos -] e
‘ Environments -3 -3]
S
S Jupyter
Mg Learning :.._/
Glueviz JupyterLab Notebook
c it 0.15.2 125 6.0.2
ommunity Multidimensional data across An ible environment For interactive Web-based, interactive computing
files. Explore relationships within and and repreducible computing, based on the notebook environment. Edit and run
among related datasets. Jupyter Notebook and Architecture. human-readable docs while describing the
data analysis.
Documentation
Developer Blog

&

Figure 2: Installing Jupyter Notebook using Anaconda

e Figure 3 shows how to launch Jupyter Notebook.

O Anaconda MNavigator

File Help

{O ANACONDA NAVIGATOR

ﬁ Home

. Environments
(] =

M Learning

an Community

men {{=]a]
Developer Blog
You
Yy & 2

Applications on | 3¢ |

.
jupyter
L
Notebook
6.0.2
Web-based, interactive computing
notebook environment. Edit and run

human-readable docs while describing the
data analysis.

Lzunching netebook

* Channels

Glueviz
0152
Multidimensional data wisualization across

hiles. Explore relationships within and
among related datasets.

JupyterLab
125
An extensible environment For interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Refresh

Figure 3: Launch Jupyter Notebook

e After Jupyter notebook is launched, click on the "New” button and then click on
"Python 3” to create a notebook. Please refer Figure 4.

=
~ J u pyter Quit Logout
Files Running Clusters
Select items to perform actions on them. Upload z
Notebook
0 ~ [/ Deskto Name 4 te
g G Python 3
O
Other.

Figure 4: Creating a Notebook

e To start with the code, libraries needs to be imported first. To import the libraries
refer the Figure 4 and run the cell by typing the code and press shift + enter
together to run the cell.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

Figure 5: Importing Libraries

4 Data Preprocessing and Data Cleaning

e The data set was acquired from Kaggle.com El

e To read the.csv file, set the file on the location or path, and then provide the path
to read the data. Figure 6 shows the code to read the .csv file in the notebook.

#Reading the csv file
df = pd.read_csv(r'C:\Users\dkulk\Desktop\Research Project\us_perm_visa.csv')
df.head()

Figure 6: Reading .csv file

e To display the first 10 rows, following line of code can be used shown in Figure 7.

https://www.kaggle.com/

In [4]: # Displaying 10 First rows
df .head(10)
Out[4]: add_these_pw_job_title_S089 agent city agent firm_name agent state application type case no case_number case received date case status class_of a
A
0 NaN NaN NaN NaN PERM 07323- NaN NaN Certified
97014
A
1 NaN NaN NaN NaN PERM 07332- NaN NaN Denied
99439
A
2 NaN NaN NaN NaN PERM 07333- NaN NaN Certified
99643
A
3 NaN NaN NaN NaN PERM 07339- NaN NaN Certified
01930
A
4 NaN NaN NaN Nan PERM 07345- NaN NaN Certified
03565
A
5 NaN NaN NaN NaN PERM 07352- NaN NaN Denied
06288
5 Ceriified-
6 NaN NaN NaN NaN PERM 07354- NaN NaN "
Expired
08926
A
7 NaN NaN NaN Nan PERM 08004- NaN NaN Denied
10147
A
8 NaN NaN NaN NaN PERM 08004- NaN NaN Certified
10184
A
9 NaN NaN NaN NaN PERM 08010- NaN NaN Denied
1785
10 rows x 154 columns

Figure 7: Displaying first 10 rows in the data set

e To display the columns from the data set, refer Figure 8.

In [6]: print(df.columns.values)

["add_these_pw_job_title_9@89"' 'agent_city' 'agent_firm_name’
"agent_state' 'application_type' 'case_no' 'case_number'’
"case_received_date' 'case_status' 'class_of_admission’
"country_of_citizenship® 'country_of_citzenship' ‘'decision_date’
"employer_address_1' 'employer_address_2' 'employer_city'
"employer_country' 'employer_decl_info_title' ‘employer_name'
"employer_num_employees® 'employer_phone' 'employer_phone_ext'
"employer_postal_code' 'employer_state' 'employer_yr_estab’
"foreign_worker_info_alt_edu experience’
"foreign_worker_info_birth_country®' 'foreign_worker_info_city'
"foreign_worker_info_education' 'foreign_worker_info_education_other’
"foreign_worker_info_inst' 'foreign_worker_info_major'
"foreign_worker_info_postal_code' 'foreign_worker_info_rel_occup_exp'
"foreign_worker_info_req_experience' 'foreign_worker_info_state’
"foreign_worker_info_training_comp' 'foreign_worker_ownership_interest’
"foreign_worker_yr_rel_edu_completed’ 'fuw_info_alt_edu_experience’
"fw_info_birth_country' 'fw_info_education_other' 'fw_info_postal_code’
"fw_info_rel_occup_exp' 'fw_info_req_experience' 'fu_info_training_comp’
"fw_info_yr_rel_edu_completed' 'fw_ownership_interest'
"ji_foreign_worker_live_on_premises' 'ji_fw_live on_premises'
"ji_live_in_dom_svc_contract’ 'ji_live_in_domestic_service’
"ji_offered_to_sec_j_foreign worker' 'ji_offered tc_sec_j_fw'
"job_info_alt cmb _ed oth_yrs' 'job_info_alt combo_ed'
"job_info_alt_combo_ed_exp' 'job_info_alt_combo_ed_other'
"job_info_alt_field' 'job_info_alt_field_name' 'job_info_alt_occ'
"job_info_alt_occ_job_title' 'job_info_alt occ_num_months'
"job_info_combo_occupation' 'job_info_education’
"job_info_education_other' 'job_info_experience'’
"job_info_experience_num_months' 'job_info_foreign_ed’
"job_info_foreign_lang_req' 'job_info_job_req_normal’
"job_info_job_title' 'job_info_major' 'job_info_training’
"job_info_training field' 'job_info_training_num_months'
"job_info_work_city' 'job_info_work_postal_code’ 'job_info_work_state’
"naics_2007 us_code' 'naics_2007 us_title' 'naics_code' 'naics_title'
"naics_us_code' 'naics_us_code_2087' 'naics_us_title’
"naics_us_title_2087' 'orig_case_no' 'orig_file_date’
"preparer_info_emp_completed' 'preparer_info_title' 'pw_amount_9889°
"pw determ date' 'pw expire date' 'pw job title 988" 'pw job title 988%'

Figure 8: Displaying columns in the data set

e All the null values were dropped from the data set. To execute the code please refer
Figure 9 below.

In [11]: #Dropping all empty columns
df = df.dropna(axis=1, how='all");

#Dropping all empty rows
df = df.dropna(axis=e, how='all");

df.shape

Out[11]: (356168, 153)

Figure 9: Dropping null values from the data set

e Missing values must be eliminated or discarded from the data collection in order
to erase the columns and clean the data. The code to display missing columns is
shown in Figure 10.

In [12]: # Displaying number of missing values in each column
for column in df.columns:
print("Attribute '{}' contains ".format(column), df[column].isnull().sum().sum(), " missing values")

Attribute 'add_these_pw_job_title_9@89' contains 317831 missing values
Attribute 'agent_city' contains 153452 missing values

Attribute 'agent_firm_name' contains 157646 missing values
Attribute 'agent_state' contains 156544 missing values

Attribute 'application_type' contains 229320 missing values
Attribute 'case_received_date' contains 126848 missing values
Attribute 'case_status' contains @ missing values

Attribute 'class_of_admission' contains 21085 missing values
Attribute 'country_of_citizenship' contains 19272 missing values
Attribute 'country_of_citzenship' contains 336951 missing values
Attribute 'decision_date' contains © missing values

Attribute 'employer_address_1' contains 37 missing values

Attribute 'employer_address_2' contains 141826 missing values
Attribute 'employer_city' contains 16 missing values

Attribute 'employer_country' contains 126920 missing values
Attribute 'employer_decl_info_title' contains 126885 missing values
Attribute 'employer_name' contains 8 missing values

Attribute 'employer_num_employees' contains 126925 missing values
Attribute 'employer_phone' contains 126883 missing values

o e e e e e e e 3 S s S e e

Figure 10: Number of missing columns in the data set

Exploratory Data Analysis

To study the data set, EDA is required. With the use of visuals, EDA allows to
better examine and understand the data set. The data set employed was huge, and
there were numerous fields that could be studied in a variety of ways. Only a few
visualizations are given in this document to provide context and familiarity with
the data set. Figure 11 shows 20 most popular cities for which visa applications
were filed.

In [14]: # Displaying 15 most popular cities
df['employer_city'] = df['employer_city"'].str.lower()
df['employer_city'].value_counts().head(20)

Out[14]: new york 17198
college station 11985
santa clara 18519
san jose 9147
redmond 8485
mountain view 8121
houston 6720
san francisco 6352
sunnyvale 6104
plano 5687
chicago 5561
seattle 5851
edison 4056
los angeles 4045
san diego 3762
dallas 3693
philadelphia 3526
cupertino 3310
palo alto 3229
irving 3144

Name: employer_city, dtype: intée4

Figure 11: Most popular cities in the US for visa applications

e To set the plot parameters the two variables were chosen as x and y axis. On x axis,
employer city was taken and on y axis total number of visa applications. Figure 12
shows the plot parameters to show the number of applications in the employer city.

Setting plot parameters

tig, ax = plt.subplots()

Mig.set_size inches(13.7, 3.27)

cns_set_context("paper”, rc={"font.cize":12,"aves titleciza™:13,"axes_labelciza™12})
sns.countplot(x="employer_city . hue="year’, data=di. order=dtf.employer_city.value counts().iloc|:18].index)
plt.xticks(rotation=28)

ax.set(xlabel-"Employer city', ylabel-'Total number of wvisa applications')

[Text(@, 9.%, 'Total number of visa applications'),
Text(@.5, 8, "Employer city')]

1 year
8000 L__I. iR
.1
LB k]
4 L R
TJOoOo0 015
L. L)
wi
5 6000
5
& 5000
m
-]
9
=
&5 4000 |
e
-5}
=]
£ 3000
=
g
= 2000
1000 |

e
e
o
e
=

station
caclara
in jose
n view

iImond

1uston
ncisco
1yvale
plano

Figure 12: Total visa applications on employer city

e Another visual in Figure 13 depicting the number of applications for particular
organization.

[Text(®, ©.5, 'Number of Visa applications'), Text(®.5, ©, 'Employer name')]
2000 | 11936
10000
(5]
2 8082
5 8000 4
@
=
a
=N
m
a
s 6000
B
I~
[T
2
E
5
< 4000
2498
20007 1689
0 T T T T
g é § 2 ! E H E g 3
E = = = E
2 2 2 o & g 4] g 2
g 2 8 2 g B E B g 3
w
g E 8 3 g g 5 z 2
wi [=] (=)
- g E g 2 3 E
z 8 = =}
=] = © =]
5 =] % o
= a
=]

Figure 13: Total visa applications for different companies

e Converted all the values into lower case in order that the value count () method
accurately calculate them. Figure 14 shows the code and output.

In [28]: #Converting values to lower case
df['job_info_job title'] = df['job_info_job_title'].str.lower()

#Splitting job titles by '-°

df['job_info_job title'] = df['job_info_job_title'].astype(str).str.split('-').str[0]
#Splitting job titles by 'ii'

df['job_info_job_title'] = df['job_info_job_title'].astype(str).str.split('ii').str[@]
#Splitting job titles by '/

df['job_info_job_title'] = df['job_info_job_title'].astype(str).str.split('/"').str[0]
#Removing leading and ending spaces

df['job_info_job title'] = df['job_info_job_title'].astype(str).str.strip()
#Replacing "sr." values with "senior"

df['job_info_job title'] = df['job_info_job_title'].str.replace('sr.', 'senior')
#Replacing "NaN", "NaT" and "nan" values with np.nan
df['job_info job title'].replace(["NaN", 'NaT','nan'], np.nan, inplace = True)

df['job_info_job title'].value counts(dropna=True)[:18]

Out[28]: software engineer 18582
computer systems analyst 12854
senior software engineer 5802
software developer 4501
programmer analyst 3763
assistant professor 2869
software development engineer 2766
systems analyst 2587
senior programmer analyst 1884
senior software developer 1625

Mame: job_info_job_title, dtype: int64

Figure 14: Converting values to lower case

6 Feature Selection

e Columns with more than 330000 non null values were displayed. In Figure 15 it
can be seen that there are 19 columns with less than 12 percent missing values.

10

In [32]: #Leaving columns which have more than 338688 non-missing observations

df = df.loc[:,df.count() »= 336008]

df.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 356168 entries, & to 374353

Data columns (total 19 columns):

Column Non-Null Count Dtype
2] case_status 356168 non-null object
1 class of admission 335883 non-null object
2 country of citizenship 336896 non-null object
3 decision_date 356168 non-null object
4 employer_address 1 356131 non-null object
5 employer city 356158 non-null object
6 employer_ name 3561668 non-null object
7 employer_postal code 356135 non-null object
8 employer_state 356131 non-null object
9 job_info_ work city 356873 non-null object
18 job_info_work state 356872 non-null object
11 pw_amount_ 9689 356168 non-null Tloatsd
12 pw_soc_code 355778 non-null object
13 pw_soc_title 353847 non-null object
14 pw_source_name_ 9889 354881 non-null object
15 pw_unit_of pay_ 9889 354687 non-null object
16 casenumber 356168 non-null object
17 year 356168 non-null object
18 remuneration 356168 non-null category
dtypes: category(1l), floated(l), object(17)

memory usage: 62.68+ MB

Figure 15: Displayed entities wih more than non null values

e In order to make it easier to read, state names in the data set were named with
their abbreviations. Following Figure 16 and Figure 17 illustrates the same.

11

In [34]:

#Assigning Labels to Case Status
df .loc[df.case_status == 'Certified', 'case status'] = 1
df .loc[df.case_status == 'Denied’, 'case_status'] = @

#Filling missing values in "employer state" column with mode
df['employer state'] = df['employer state'].fillna(df['employer state'].mode()[©]);

#Mapping from state name to abbreviation

state _abbrevs = {
"Alabama’: "AL',
'Alaska': 'AK',
"Arizona': 'AZ',
'Arkansas': 'AR",
'California’: 'CA',
'Colorado’: "CO',
"Connecticut": "CT',
'Delawars': 'DE",
'Florida": 'FL',
'Georgia': 'GA',
'Hawaii': 'HI',
'Idaho": 'ID',
'Illinois': 'IL",
'‘Indiana': "IN',

'Towa': "IA',
'Kansas': 'KS',
"Kentucky': 'KY',
"Louisiana’: 'LA',

'‘Maine': "ME',
'Maryland': "MD",
'Massachusetts': 'MA',
'Michigan': 'MI",
‘Minnesota': 'MN',
'Mississippi': "MS',
'Missouri': 'MO",
'Montana': "MT',
'Mebraska': 'MNE',
"MNevada': "NV',

Figure 16: Labels to states assigned

12

'New Hampshire': 'NH',
'New Jersey': 'NI',
'New Mexico': "NM',
'‘New York': "NY',
'North Carolina': "NC',
'North Dakota': 'ND',
'Ohio': 'OH',
'Oklahoma’: 'OK',
‘Oregon’: 'OR',
'‘Pennsylvania’: "PA',
'Rhode Island': 'RI',
'South Carolina': 'SCY,
'South Dakota': 'SD',
'Tennessee': "TN',
'Texas': "TX',

‘Utah': "UT",
‘Vermont': 'VT',
'Virginia': 'VA',
‘Washington': "WA',
‘West Virginia': "WV',
'Wisconsin': "WI',

'Wyoming': "WY',

'Northern Mariana Islands':'MP',
'Palau’: "PW',

'Puerto Rico': 'PR',

'Virgin Islands': 'WI',
'‘District of Columbia': 'DC’

Figure 17: ..contd Labels to states assigned

e Before running the models, feature variables were converted into categories. Figure
18 shows the converted categories.

13

In [38]: from sklearn.preprocessing impert LabelEncoder
categorical variables = {}

#Creating categories denoted by integers from column value
for col in df.columns:
cat var_name = "cat "+ col
cat_var_name = LabelEncoder()
cat_var_name.fit(df[col])
df[col] = cat_wvar name.transform(df[col])
categorical_variables[col] = cat_var_name

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 356168 entries, @ to 374353
Data columns (total 1@ columns):

Column Mon-Null Count Dtype
B case_status 356168 non-null int64d
1 class of admission 356168 non-null int32
2 country_of_citizenship 356168 non-null int32
3 employer_city 356168 non-null int32
4 employer_name 356168 non-null int32
5 employer_state 356168 non-null int32
6 pw_soc_code 356168 non-null int64
7 pw_source_name_9889 356168 non-null int32
8 year 356168 non-null int32
9 remuneration 356168 non-null int32

dtypes: int32(8), inte4(2)
memory usage: 29.8 MB

Figure 18: Converted feature variables into categories

7 Applying Machine Learning Models

e Random Forest model was applied which gave an accuracy of 93%. It was a best
performing model. Figure 19 shows code for Random Forest Model.

14

In [41]: start = time.time()
clf = RandomForestClassifier(min_samples leaf=24)
clf.fit(X, y)
end = time.time()
print ("Random Forest", end - start, clf.score(X,y))
proba = clf.predict proba(X)

Random Forest 56.856778860809216 0.9399147346196177

In [42]: from sklearn import metrics

In [43]: print("Accuracy:",clf.score(X,y))

Accuracy: @.9390147346196177

Figure 19: Random Forest Model

e AdaBoost with Logistic Regression model was applied which gave an accuracy of
79%. Figure 20 shows the code for AdaBoost model.

In [45]: # evaluate adaboost algorithm with logistic regression weak Learner for classification
from numpy import mean
from numpy import std
from sklearn.datasets import make classification
from sklearn.model selection import cross_val score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.ensemble import AdaBoostClassifier
from sklearn.linear_model import LogisticRegressiocn
define dataset
X, y = make _classification(n_samples=1888, n_features=20, n_informative=15, n_redundant=5, random_state=6)
define the model
model = AdaBoostClassifier(base_estimator=LogisticRegression())
evaluate the model
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1, error_score='raise')
report performance
print('Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

Accuracy: ©8.794 (0.832)

Figure 20: AdaBoost with Logistic Regression

e Figure 21 shows the code to calculate MAE value for the model as part of evaluation.

15

In [46]:

evaluate adaboost ensemble for regression

from numpy import mean

from numpy import std

from sklearn.datasets impert make_regression

from sklearn.model_selection impert cross_val score

from sklearn.model_selection import RepeatedKFold

from sklearn.ensemble impert AdaBoostRegressor

define dataset

X, y = make_regression(n_samples=1008, n_features=20, n_informative=15, noise=@.1, random_state=6)
define the model

model = AdaBoostRegressor()

evaluate the model

cv = RepeatedKFold(n_splits=16, n_repeats=3, random_state=1)

n_scores = cross_val_score(model, X, y, scoring='neg_mean_absolute error', cv=cv, n_jobs=-1, error_score='raise')
report performance

print('MAE: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

MAE: -73.077 (4.120)

Figure 21: Calculating MAE for AdaBoost with Logistic Regression

e Multinomial Logistic Regression model was applied which gave an accuracy of 68%.
Figure 22 shows the code for Multinomial Logistic Regression model.

In [47]:

evaluate multinomial logistic regression model

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.linear_model import LogisticRegression

define dataset

X, y = make_classification(n_samples=108@, n_features=1@, n_informative=5, n_redundant=5, n_classes=3, random_state=1)
define the multinomial legistic regression model

model = LogisticRegression(multi_class='multinomial', solver='lbfgs')

define the model evaluation procedure

cv = RepeatedStratifiedKFold(n_splits=18, n_repeats=3, random_state=1)

evaluate the model and collect the scores

n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
report the model performance

print('Mean Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

Mean Accuracy: 8.681 (8.042)

Figure 22: Multinomial Logistic Regressiom

e Radius Neighbors classifier model was applied which gave an accuracy of 87%.
Figure 23 shows the code for Radius Neighbors classifier model.

16

In [51]: # evaluate an radius neighbors classifier model on the dataset
from numpy import mean
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import RadiusNeighborsClassifier
define dataset
x, ¥ = make_classification(n_samples=1080, n_features=20, n_informative=15, n_redundant=5, random_state=1)
define model
model = RadiusNeighborsClassifier()
create pipeline
pipeline = Pipeline(steps=[('norm', MinMaxScaler()), ('model’,model)])
define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=1@, n_repeats=3, random_state=1)
evaluate model
scores = cross_val score(pipeline, x, y, scoring='accuracy', cwv=cv, n_jobs=-1)
summarize result
print('Mean Accuracy: %.3f (%.3f)' % (mean(scores), std(scores)))

Mean Accuracy: ©.754 (8.042)

Figure 23: Radius Neighbors classifier model

e Figure 24 shows the code for Grid search radius for Radius Neighbors classifier
model.

In [53]: # grid search radius for radius neighbers classifier
from numpy impert arange
from sklearn.datasets impert make_classification
from sklearn.model_selection import GridSearchCV
from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import RadiusNeighborsClassifier
define dataset
X, y = make_classification({n_samples=106@, n_features=20, n_informative=15, n_redundant=5, random_state=1)
define model
model = RadiusMNeighborsClassifier()
create pipeline
pipeline = Pipeline(steps=[('norm', MinMaxScaler()), ('model’,model}])
define model evaluation method
cv = RepeatedStratifiedKFold(n_splits=18, n_repeats=3, random_statez1)
define grid
grid = dict()
grid['model__radius'] = arange(©.8, 1.5, ©.01)
define search
search = GridSearchCV(pipeline, grid, scoring='accuracy', cv=cv, n_jobs=-1)
perform the search
results = search.fit(X, vy)
summarize
print('Mean Accuracy: %.3f' % results.best score)
print('Config: %s' % results.best_params_)

Mean Accuracy: ©.872
Config: {'model_ radius': @.8}

Figure 24: Grid Search radius for RN classifier

e XG Boost model was applied which gave an accuracy of 92%. Figure 25 shows the
code for XG Boost model.

17

In [54]:

evaluate xgboost algorithm for classification

from numpy import mean

from numpy import std

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from xgboost import XGBClassifier

define dataset

X, y = make_classification(n_samples=186@, n_features=2@, n_informative=15, n_redundant=5, random_state=7)
define the model

model = XGBClassifier()

evaluate the model

cv = RepeatedStratifiedKFold(n_splits=1@, n_repeats=3, random_state=1)
n_scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
report performance

print{'Accuracy: %.3f (%.3f)' % (mean(n_scores), std(n_scores)))

Accuracy: ©.925 (0.028)

Figure 25: XG Boost Model

e Figure 26 shows the code to calculate MAE value for the XG Boost model as part
of evaluation.

In [56]:

evaluate xgboost ensemble for regression

from numpy import mean

from numpy import std

from sklearn.datasets import make_regression

from sklearn.model selection impert cross_val score

from sklearn.model_selection import RepeatedKFold

from xgboost import XGBRegressor

define dataset

X, y = make_regression{n_samples=1888, n_features=28, n_informative=15, noise=8.1, random_state=7)
define the model

model = XGBRegressor()

evaluate the model

cv = RepeatedKFold(n_splits=16, n_repeats=3, random_state=1)

n_scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error', cvzcv, n_jobs=-1, error_score="raise')
report performance

print('MAE: %.3f (%.3f)' % (mean{n_scores), std(n_scores)))

MAE: -76.447 (3.859)

Figure 26: Calculating MAE for XG Boost Model

References

Anaconda (2021). Installing anaconda.
URL: https://docs.anaconda.com/anaconda/install /windows/

learning Lounge, C. (2021). Download, setup install python on windows[2021].

URL: https://medium.com/co-learning-lounge/how-to-download-install-python-on-

windows-2021-44a707994013

18

	Introduction
	Prerequisites
	Hardware Requirements
	Software Requirements

	Environment Setup
	Data Preprocessing and Data Cleaning
	Exploratory Data Analysis
	Feature Selection
	Applying Machine Learning Models

