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1 Initial Environment Setting

The table below provides a description of the setup’s software requirements:

Figure 1: Software Requirement Description

1.1 Google Colab Environment Set-up

The steps listed below can be used to configure code execution in the Google Colab
environment:

1. Use gmail to login to access your account.

2. Upload the whole dataset folder by opening the Google Drive tab. Given the scale
of the dataset, this could take some time to complete.

3. To run the code, open the Google Colab’s notebook and select the GPU environ-
ment.

4. Use the code mentioned in below image to mount the drive in the google colab
environment:

5. Open the first python (.ipynb) notebook from the artefacts once the dataset has
been uploaded and mounted, and then begin the cell execution one at a time. To
prevent mistakes, run the notebooks in order.
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Figure 2: Configuring Google Colab’s GPU-enabled environment

2 Data Pre-processing & EDA

2.1 Data Preparation

2.1.1 Initial Set-up

1. Download DeepFashion dataset files from the official website Dataset Link(figure
3).

Figure 3: DeepFashion Dataset
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2. Simply upload the data to Google Drive for pre-processing, then proceed as directed
in Section 1.1. Save the data files in a folder with the name data for the model
training and subsequent procedures..

2.2 Data Pre-processing

Follow the steps listed below for pre-processing:

• Import necessary python libraries to download and unzip the dataset files.

• For data preparation, import necessary libraries.

• After importing data files and required libraries. It is necessary to remove the
irrelevant data from our files. Below code is used to remove the duplicate values in
our dataset.
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• After filtering out duplicate values, two functions are used to parse DeepFashion
category and attributes to python dictionaries as shown in below figure.

• Remapping category and texture lables of the images for that below code can be
used.
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• After data pre-processing is done, important libraries will be imported for further
steps.

• Dataset was divided into train and test data using below code.

• To understand the data better, few visualizations were done. In the below code, we
analysed categories label and plotted top 10 category labels.

• Using below code, texture labels were analyzed and top 10 texture lables were
plotted.
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3 Training the Image-Based Recommender System

The image based recommender system was trained next using a pre-trained CNN Mobi-
leNetV2. The steps followed have been described below:

• The layers in the model were initialized first using Python classes and objects. The
two variables category and textures were also initialized (as shown in the picture
below) to be used later.

Figure 4

• The pre-trained model MobileNetV2 was then initialized with a classifier layer.
The features, categories and textures were passed into the final classifier layer to
correctly categorize a test image. The functions to save and load the model were
also defined within this class. For saving the model, torch.save() function was used
from the pytorch library

Figure 5

• After the the pytorch pre-trained model was trained and iterated over the data.
The model was also trained on the adversarial examples (that were created in the
later stages of the project)[figure 6]. The loss and accuracy values were saved into
the logically named variables (figure 7).
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Figure 6: Training the MobileNetV2

Figure 7: Saving the loss and accuracy values for the training dataset

• In this next step , we define the test epoch function to repeat the same procedure
as in previous step for the test images.

Figure 8: Testing the MobileNetV2

• In this last step, we train and test our model again after executing the adversarial
attacks. We train the models in an iterative manner and increase the strength
of the attacks in steps. We then reset the model to best weights and print the
best category accuracy. As an additional step, we also write the epoch metrics to
tensorboard to create a dashboard of our results.
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Figure 9: Training the model after executing attacks

Figure 10: Writing the results to create a tensorboard dashboard

4 Executing The Adversarial Attacks

In this research, we execute three different types of gradient attack methods namely
Fast-Gradient Sign Method(FGSM), Projected Gradient Descent (PGD) and Carlini and
Wagner Method (C&W method). We execute the attacks in two stages. In the first stage,
we clone the adversarial images and execute simulated attacks (FGSM, PGD and CW).
The details for all of these attacks are provided below:

[Note: We use some of the helper functions for calculating the cosine distance between
the images and for projecting the images to and from the feature space These helper
functions were defined in the helpers.py file inside the src folder.]

Figure 11: Using helper functions

1. Fast Gradient Sign Method: We assess the effectiveness of this method in
minimizing the cosine distances between the image embeddings produced by Mo-
bileNetV2 feature extractor. We execute the attack for different value of k and
epsilon.
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Figure 12

Figure 13

2. Projected Gradient Descent Method: For the PGD attack, we use a step size
of α = ϵ

k
, where k denotes the no. of iterations. We use different values of k to

optimize our adversarial objective.

Figure 14
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Figure 15

3. Carlini and Wagner Method: In the last step, we executed the strongest attack
of them all, the CW attack. For this attack, we don’t maximize the misclassification,
but instead we use an Adam Optimizer with a learning rate of 0.005 and 1000 steps
for achieving our adversary objective.

Figure 16

5 Defenses

In the last stage of this research, we train our feature extractor through two different
defense mechanisms - Adversarial training and Curriculum Adversarial training. We
start by generating a mixed batch of texture and category labels (figure 17)
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Figure 17: Batch Mixing before performing adversarial training

1. Adversarial Training: Our goal during the adversarial training is to increase
the probability of mis-classification of the texture and category of the items. We
performed AT for 24 epochs. It is then tested on adversarial and clean examples and
the evaluation metrics (loss, accuracy and success rates) were stored in appropriate
pytorch objects.

Figure 18: Adversarial Training

2. Curriculum Adversarial Training: The curriculum adversarial training (CAT)
is another defense mechanism that we used. We implemented this defense method
by training the model using projected gradient descent attacks with k=8 and ϵ =
0.03. We train the model until overfitting for a given attack strength.
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Figure 19: Curriculum Adversarial Training

6 Evaluation

The gradient based attack models were evaluated using success rate metric for different
values of ranks and the results were appended into a pandas dataframe. The classifier
was also evaluated on the basis of loss and accuracy metrics.

Figure 20: Evaluating Adversarial Attacks

Figure 21: Evaluating CNN classifier using loss and accuracy
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