~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Savin Vishwas Karkada
Student I1D: x20184727

School of Computing
National College of Ireland

Supervisor: Dr. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Savin Vishwas Karkada
Student ID: x20184727
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Christian Horn
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: XXX
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Savin Vishwas Karkada
x20184727

1 Introduction

The following manual provides details on hardware and software configuration which
enables to reproduce the research work.

2 Hardware and Software Configuration

The following table provides an overview of the technologies, hardware settings and lib-
raries with their description used in the research project.

Table 1: Setup Details.

Setup Description

Computation GPU

IDE Jupyter Notebook, Google Colab

Programming Language | Python

Framework Pytorch

Libraries Sentence Transformer, Sklearn, Pandas, Numpy, Seaborn, ROUGE

The above tools and technologies were run on AMD Ryzen 4000 series with NVIDIA
Geforce GTX to train, test and evaluate the models.

3 Dataset Details

The dataset is present inside the 'Data’ folder which contains the data obtained from
Hugging Face repositoryf] CNN-Daily Mail. The subsets of data further used and created
in the process of the research 'train_ data’ and ’train5k’ is also present in the same folder.
The folder containing all the Jupyter notebooks also have the same set of CSV files placed
for convenience. The website attached with Hugging Face points to the original repository
where the entire dataset and the description of the dataset is mentioned. The dataset
used here is directly downloaded from the link provided by Hugging Face.

thttps:/ /huggingface.co/datasets/cnngailymail /viewer /3.0.0 /train

4 Data Pre-Processing

The data Pre-Processing is carried out on the CSV file obtained from Hugging Face
using Jupyter notebook. The iPYNB file 'Data Pre-Processing (EDA)’ provides all the
codes required to run EDA on the data. The Figure [I| shows the necessary libraries and
packages that needs to be installed in prior to run the code seamlessly.

In []: import pandas as pd # To import the data
for plotting
import matplotlib.pyplot as plt #(3.1.2)
import seaborn as sns #(0.9.8)
from nltk.corpus import stopwords # NLTK Toolkit to load stopwords package|

In []: !pip install nlp-utils

Figure 1: EDA Requirements

The following code snippet as represented in Figure [2| shows the method in which the
data is loaded into Jupyter notebook and to display the data. Here the dataset 'train.csv’
is used which contains the entire data from Hugging Face CNN-Daily Mail dataset.

Exploratory Data Analysis
In [1]: import pandas as pd # To import the data
In [2]: df = pd.read_csv('train.csv')

In [3]: ## for plotting
import matplotlib.pyplot as plt #(S.I.ZD
import seaborn as sns #(9.9.8)

In [4]: df.head() # Display data

out[4]: id article highlights
o 0001d1afc246a7964130f43ae940afBbcBcb7f01 By . Associated Press . PUBLISHED: . 14:11 EST._. Bishop John Folda, of North Dakota, is taking ...
1 0002095e55fcbd3a2f366d9bf92a95433dc305ef (CNN) -- Ralph Mata was an internal affairs li... Criminal complaint: Cop used his role to help
2 00027e965c8264c¢35¢cc1bc55556db388dad2b07f A drunk driver who killed a young woman inah... Craig Eccleston-Todd, 27, had drunk at least t...

3 0002c17436637c4fe1837c935c04de47adb18e9a (CNN) -- With a breezy sweep of his pen Presid... Nina dos Santos says Europe must be ready to a.
4 0003adBef0c37534f80b5504235108024b407f0b Fleetwood are the only team still to have a 10.. Fleetwood top of League One after 2-0 win at S...

In [5]: df.info() # Provides information on the data

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 287113 entries, @ to 287112
Data columns (total 3 columns):

Column Non-Null Count Dtype

e id 287113 non-null object
1 article 287113 non-null object
2 highlights 287113 non-null object

Figure 2: Data Load and Display

The Figure [3|shows the packages and tools derived from NLP toolkit to eliminate stop
words and contractions. This data is further used to train various models in the research.
The pre-processing such as analysing the sentence length, understanding the summary of
the dataset and reducing the size of the dataset to a subset to carry out further operations
are all done in this phase.Once the pre-processed data is ready the data is converted into
a seperate CSV file which is then used in training and summarizing different models in
different notebooks. Allt he required packages are provided in the file requirements.txt
present in the 'Models’ folder.

Installing NLP text cleaning requirements (stopwords & contractions)

In [7]: !pip install nlp-utils |

Requirement already satisfied: nlp-utils in d:\anacondal\lib\site-packages (©.6.2)

Requirement already satisfied: micro-toolkit in d:\anacondal\lib\site-packages (from nlp-utils) (0.9.0)

Requirement already satisfied: nltk in d:\anacondal\lib\site-packages (from nlp-utils) (3.7)

Requirement already satisfied: numpy in d:\anacondal\lib\site-packages (from nlp-utils) (1.21.5)

Requirement already satisfied: tqdm in d:\anacondal\lib\site-packages (from nltk->nlp-utils) (4.64.8)

Requirement already satisfied: click in d:\anacondal\lib\site-packages (from nltk->nlp-utils) (8.0.4)

Requirement already satisfied: regex»>=2021.8.3 in d:\anacondall\lib\site-packages (from nltk->nlp-utils) (2022.3.15)
Requirement already satisfied: joblib in d:\anacondai\lib\site-packages (from nltk->nlp-utils) (1.1.0)

Requirement already satisfied: colorama in d:\anacondail\lib\site-packages (from click->nltk->nlp-utils) (e.4.4)

In [8]: from nltk.corpus import stopwords # NLTK Toolkit to load stopwords package
stop = stopwords.words('english")

Figure 3: Pre-Processing

5 Model Implementation
5.1 Word2Vec

Word2Vec is the first embedder that is implemented using Jupyter notebook in the model
implementation phase. The requirements for installation and imports are shown in the
Figure [Here, the embedding process is done directly using the test data as there is

In []: dimport nltk
nltk.download('punkt') # one time execution
from nltk.tokenize import sent tokenize
import re # Importing RegEX
nltk.download(' stopwords') # one time execution
from nltk.corpus import stopwords
from gensim.models import Word2Vec
import numpy as np
from sklearn.cluster import KMeans
from scipy.spatial import distance
import rouge #(1.6.8)
from rouge import Rouge

In []: !pip install rouge
Ipip install rouge-score

Figure 4: Word2Vec Requirements

no training required for Word2Vec embedder. The Figure [5| shows the method to load
Word2Vec model from the Gensim library.

From the loaded Gensim library, the model Word2Vec is derived which then creates
embeddings when the test article is provided. The test article is given in the 'Data’ folder
in txt file called "Test Article’. The embeddings from Word2Vec is fed into the K-Means
clustering model to generate the summary. The method to implement K-Means cluster-
ing from SKlearn is shown in the Figure [6] The necessary installation to load the model
is provided in the requirements.txt folder provided in the 'Models’ folder.

Word2Vec Embedding Using Gensim

In []: from gensim.models impert Word2vec
all words = [i.split() for i in corpus]
model = Word2vec(all words, min_count=1,size= 360)

In []: sent_vector=[]
for i in corpus:

plus=0
for j in i.split():

plus+= medel.wv[j]
plus = plus/len(i.split())

sent_vector.append(plus)

Figure 5: Word2Vec Embedding

K-Means Clustering

In []: import numpy as np
from sklearn.cluster import KMeans
n_clusters = 5
kmeans = KMeans(n_clusters, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit predict(sent_vector)

In []: from scipy.spatial import distance
my_list=[]
for i in range(n_clusters):
my_dict={}
for j in range(len(y_kmeans)):
if y_kmeans[j]==1i:
my_dict[j] = distance.euclidean(kmeans.cluster_centers_[i],sent_vector[]j])

min_distance = min(my_dict.values())
my_list.append(min(my_dict, key=my _dict.get))

for 1 in sorted(my_list):
print(sentence[i])

Two of them are in serious condition, the company said.

Authorities evacuated about 368 people from the Abkatun Permanente platform after the fire started, Pemex said.

At least 10 boats worked to battle the blaze for hours.

The state oil company hasn't said what caused the fire on the platform, which is located in the Gulf of Mexico's Campeche Soun
d.

CHNN's Mayra Cuevas contributed to this report.

Figure 6: K-Means Clustering

Finally, the evaluation of the model is done using ROUGE scores and the ROUGE
requirements are shown in the Figure [d and provided in requirements.txt.

5.2 ELMo Embedding

ELMo contextual embedder is implemented using Google Colahf| as the version of ELMo
- ELMo2 does not support the Tensorflow 2 version. Inorder to stepdown the TF version
Google Colab would be an ideal IDE as it can be easily changed without altering the
environment settings. Hence using the code shown in Figure [7] can lower the version
to effectively load and use ELMo model. The figure also points out all the necessary
package imports that are essential to load and run all the packages to seamlessly run the
embedding and summarization process. The evaluation packages used are provided in
the requirements.txt file which can be also used in a Google Colab environment. In this
implementation, we do not train the ELMo model and hence no data is imported and
only test article is defined to feed the embedder.

Zhttps://colab.research.google.com/?utm ource = scs — index

In []: %tensorflow version 1.x
Ipython --version

In []: dimport tensorflow hub as hub
import tensorflow as tf
import re
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
import pandas as pd
import time
import string
from spacy.lang.en import English # updated
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin_min
import rouge #(1.0.0)
from rouge import Rougd

In [|: !pip install rouge
Ipip install rouge-score

Figure 7: ELMo Requirements

ELMo Embedding Phase

In []: def create_embedding(x): # Load ELMo model
#tf hub module
elmo = hub.Module(" https://tfhub.dev/google/elmo/2", trainable=True)
embeddings = elmo(x, signature="default”, as_dict=True)["elmo"]

In []: def create_embedding(x):
#tf hub module
elmo = hub.Module(" https://tfhub.dev/google/elmo/2", trainable=True)
embeddings = elmo(x, signature="default”, as_dict=True)["elmo"]

embeddings. shape
with tf.Session() as sess:
sess.run(tf.global variables_initializer())
sess.run(tf.tables_initializer())
return average of ELMo features
return sess.run(tf.reduce_mean(embeddings,1))

def lemmatization(texts):
output = []
for i in nlp(texts):
output.append(i.lemma_)
output = " ".join(i for i in output)
return output

Figure 8: ELMo Embedding

The ELMo 2 is fetched from the ELMo repositoryﬁ The implementation of EL.Mo
to create embeddings is as shown in the Figure[8, The clustering and evaluation process
is similar to the previous embedders used and the required installation packages are
provided in requirements.txt.

5.3 BERT Embedding

BERT embeddings are obtained by loading a pre-trained BERT model from SBERT]]
repository. The initial requirements to load the BERT model and import packages are
as shown in Figure [9]

As the pre-trained model here will be trained on the dataset to fine tune the model the
data that is pre-processed is loaded. The data is by the name 'train5k’. The initialized

3https://tfhub.dev/google/elmo/2
“https://www.sbert.net /

In []: dimport nltk # Importing NLTK for basic pre-processing
nltk.download(punkt')
from sentence_transformers impert SentenceTransformer, LoggingHandler
from sentence_transformers import models, util, datasets, evaluation, losses
from torch.utils.data impert DatalLoader
import re
import pandas as pd
from nltk.cluster import KMeansClusterer
import numpy as np
from sentence transformers impert SentenceTransformer
from scipy.spatial import distance matrix

In []: lpip install -U sentence-transformers # Install Sentence Transformer
Ipip install rouge
Ipip install rouge-score

Figure 9: BERT Requirements

BERT model to train is called "bert-base-uncased’. The fine tuning is unsupervised and
is achieved by the use of TSADE model that is provided by SBERT for the fine tuning
purposes. The details to load the model and train is as shown in Figure

BERT Training Phase (Fine-tuning)

In [2]: from sentence_transformers import SentenceTransformer, LoggingHandler
from sentence_transformers import models, util, datasets, evaluation, losses
from torch.utils.data import DatalLoader

In [3]: batch_size = 128
The following approaches only require sentences from your target domain.

Define your sentence transformer model using CLS pooling
model_name = 'bert-base-uncased'

In [4]: word_embedding model = models.Transformer(model name)
pooling model = models.Pooling(word_embedding model.get word_embedding_dimension(), 'cls"')
model_S = SentenceTransformer(modules=[word_embedding_model, pooling_model])

some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.decoder.
weight', 'cls.predictions.transform.dense.bias’, 'cls.seq_relationship.weight', 'cls.predictions.bias’, 'cls.predictions.transf
orm.LayerNorm.bias', 'cls.seq_relationship.bias’, 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.dens
e.weight']

- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another arc
hitecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).

- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical
(initializing a BertForSequenceClassification model from a BertForsequenceClassification model).

Data Loading and Cleanup
In [5]: dimport pandas as pd

In [6]: df = pd.read_csv(trainsk')
Figure 10: BERT Initializing

The Figure shows the training of BERT model after which the model generates
BERT embeddings which is further fed into K-Means clustering algorithm in a similar
fashion as shown in the previous models. Here the K-Means clustering model is obtained
from the SKlearn repository. The parameters for the clustering algorithm remains the
same as that of the previous models. The required packages are provided in require-
ments.txt file. The model that is trained and clustered provides summary of size 5 which
then is evaluated using ROUGE scores in a similar manner as executed in the previous
embedders.

Training TSDAE BERT Model

In [19]: model s.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=108,
weight_decay=0.01,
scheduler="constantlr’',
optimizer_params={'lr': 3e-5},
show_progress_bar=True

)

model_S.save('output/tsdae-model")

Epoch: @%| | @/100 [@0:00<?, ?it/s]

Tteration: @%] | @/1 [ee:00<?, ?it/s]
Tteration: @%] 0/1 [e8:0@<?, ?it/s]
Tteration: @%] 0/1 [e8:0@<?, ?it/s]
Iteration: @%| 0/1 [ee:0e<?, ?it/s]
Iteration: @%| 0/1 [ee:0e<?, ?it/s]
Iteration: @%| 0/1 [ee:0e<?, ?it/s]
Iteration: @%| 0/1 [ee:0e<?, ?it/s]
Iteration: @%] 0/1 [ee8:0e<?, ?it/s]

Iteration: o%] 8/1 [ee:00<?, ?it/s]

Iteration: o%] 8/1 [ee:00<?, ?it/s]

Figure 11: BERT Training

5.4 RoBERTa Embedding

The process of initializing, training and embedding of RoBERTa is same as that of
BERT which is achieved from the SBERT repository. The requirements to load and
run RoBERTa from SBERT is as shown in the Figure [12|

In []: dimport nltk # Importing NLTK for basic pre-processing
nltk.download(punkt")
from sentence_transformers impert SentenceTransformer, LoggingHandler
from sentence transformers impeort models, util, datasets, evaluation, losses
from torch.utils.data import Dataloader
import re
import pandas as pd
from nltk.cluster import KMeansClusterer
import numpy as np
from sentence_transformers impert SentenceTransformer
from scipy.spatial import distance matrix

In []: lpip install -U sentence-transtformers # Install Sentence Transformer
Ipip install rouge
Ipip install rouge-score

Figure 12: RoBERTa Requirements

The model used to train RoBERTa is a pre-trained by the name 'roberta-base’ from
the TSADE repository. The training details and parameters are as shown below in the
Figure[13] The training set used is the trainbk’” data CSV obtained from the same folder.
Finally the model is trained on the given dataset.

The model after training is fed with the test article which undergoes RoBERTa em-
bedding. These embeddings are further fed into K-Means clusters to generate summary
as done in the previous embeddings. The results are similarly evaluated using ROUGE
scores and the requirements are given in the requirements.txt file.

In [6]:

In [7]:

RoBERTa Training Phase (Fine-tuning)

from sentence_transformers import SentenceTransformer, LoggingHandler
from sentence_transformers import models, util, datasets, evaluation, losses
from torch.utils.data import Dataloader

batch_size = 128
The following approaches only require sentences from your target domain.

Define your sentence transformer model using CLS pooling
model_name = 'roberta-base’

word_embedding_model = models.Transformer(model name)
pooling model = models.Pooling(word_embedding_model.get word embedding_dimension(), 'cls’)
model_S = SentenceTransformer(modules=[word_embedding_model, pooling_model])

Some weights of the model checkpoint at roberta-base were not used when initializing RobertaModel: ['lm_head.bias', 'lm_head.de
nse.bias’, *lm_head.layer_norm.bias’, ‘1lm head.decoder.weight®, 'lm_head.dense.weight’, *lm head.layer norm.weight']

- This IS expected if you are initializing RobertaModel from the checkpoint of a model trained on another task or with another
architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).

- This IS NOT expected if you are initializing RobertaModel from the checkpoint of a model that you expect to be exactly identi
cal (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).

Data Loading and Cleanup
import pandas as pd

df = pd.read_csv('trainsk')

Figure 13: RoBERTa Initializing

	Introduction
	Hardware and Software Configuration
	Dataset Details
	Data Pre-Processing
	Model Implementation
	Word2Vec
	ELMo Embedding
	BERT Embedding
	RoBERTa Embedding

