
Configuration Manual

MSc Research Project

Data Analytics

Parag Suresh Joshi
Student ID: x19212071

School of Computing

National College of Ireland

Supervisor: Noel Cosgrave

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Parag Suresh Joshi

Student ID: x19212071

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Noel Cosgrave

Submission Due Date: 16/12/2021

Project Title: Configuration Manual

Word Count: 1790

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Parag Suresh Joshi
x19212071

1 Introduction

The configuration manual provides details for the research and its implementation on
the source machine. Next Section provides details of the hardware configuration of the
source machine. An equivalent or better hardware is expected for effective research
replication. Subsequent Section gives information on the Software requirements needed
prior to research code execution. The last section gives details about the relevant project
configurations needed in the source code for execution of research code.

2 Hardware Details

The research project code was executed on a standalone machine with the below hardware
configuration.

Table 1: Machine Configuration

Feature Config

Operating System Windows 10 Home (64-bit)
System Memory 24 GB
Processor Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
Graphics Card NVIDIA GeForce GTX 960M (2 GB Memory)
Disk Space 1 TB

The machine with above config was able to handle operations for a dataset of 400
videos. However, GPU Memory issues were observed for a dataset of size 5K videos and
hence, it is recommended to use a better GPU machine with higher GPU Memory.

It is also recommended to have a minimum of 100GB of storage free. The DFDC 5K
video dataset is a zip file of size 40 GB and would temporarily need double the storage
size for extraction of the videos from the zip file. Morever, the research dumps processed
data into a numpy file for quicker processing in next iteration(s) whose size varies from
200MB to 3GB.

3 Software Requirements

The source code for the research was implemented in python. Python can be downloaded
for the respective Operating Systems from its official website1. Python also provides an

1Python downloads: https://www.python.org/downloads/

1

https://www.python.org/downloads/

installation and configuration guide2.

Microsoft Visual Studio Code was the preferred IDE for the source code execution.
Visual Studio Code for the respective Operating system can be downloaded from its of-
ficial website3.

Python version 3.9.0 was used for compiling and executing the source code. Below
table gives details about the libraries that are required for the research code.

Table 2: Python Library Details

Library Version Installation command

cv2 4.5.3.56 pip install opencv-python
decord 0.6.0 pip install decord
keras 2.6.0 pip install keras
keras-tuner 1.1.0 pip install keras-tuner
keras-video-generators 1.0.14 pip install keras-video-generators
matplotlib 3.4.3 pip install matplotlib
numpy 1.19.5 pip install numpy
pandas 1.3.4 pip install pandas
tensorflow-gpu 2.6.0 pip install tensorflow4

tensorflow-Probability 0.14.1 pip install tensorflow-probability
sklearn 1.0 pip install scikit-learn

4 Project Configuration

This section describes the Project artefact information required for successful source
code execution. Below subsection gives information on the source of dataset used for
the research. Next subsection provide information on the directory structure required
for the project. The final subsection provides information on all the variables that are
configurable in the source code.

4.1 Dataset Details

Deepfake Detection Challenge (DFDC) Dataset was used for this research. The DFDC
Dataset has 2 versions, 5K Videos and 124K videos, which can be downloaded from offi-
cial site5. For development purposes, DFDC also provides a demo dataset of 400 videos
which can be downloaded from kaggle6.

For this research, both, the development version (400 Videos) and the official version
(5K videos) have been used. After downloading the dataset, extract the contents in any
folder. The folder can then be set appropriately in the code config variables.

2Python Setup and Usage: https://docs.python.org/3/using/index.html
3VS Code downloads: https://code.visualstudio.com/Download
5DFDC Dataset: https://ai.facebook.com/datasets/dfdc/
6DFDC Development Dataset: https://www.kaggle.com/c/deepfake-detection-challenge/

data

2

https://docs.python.org/3/using/index.html
https://code.visualstudio.com/Download
https://ai.facebook.com/datasets/dfdc/
https://www.kaggle.com/c/deepfake-detection-challenge/data
https://www.kaggle.com/c/deepfake-detection-challenge/data

4.2 Folder Config

Figure 1 shows the folder structure hierarchy for this research.

Figure 1: Directory Structure

• The Source code file ’BNN Code.py’ is located inside folder ’Code’.

• The folders ’test videos’ and ’train sample videos’ contain the DFDC dataset of 400
videos.

• DFDC dataset consisting of 5K videos has been extracted inside ’Data’ folder.

After extracting datasets in their respective folders, make changes in source code file.
The below code snippet provides information on the configuration variables for the same.

1 #***

2 # Config

3 #***

4 CODE_PATH = os.path.dirname(__file__)

5

6 boolisPreviewData = True

7

8 if(boolisPreviewData):

9 #5K Videos Preview Dataset

10 TRAIN_DATA_PATH= os.path.join(CODE_PATH,"../Data/dfdc_preview_set/")

11 TEST_DATA_PATH= os.path.join(CODE_PATH,"../Data/dfdc_preview_set/")

12 TRAIN_INFO_PATH =

os.path.join(CODE_PATH,"../Data/dfdc_preview_set/dataset.json")↪→

13 TEST_INFO_PATH =

os.path.join(CODE_PATH,"../Data/dfdc_preview_set/dataset.json")↪→

14 MODEL_NAME = "Seq_Model_5000" # Model files would be created under

this folder name↪→

15

16 TRAIN_FEATURE_FILE = "arrFeatures_5000.npy"

17 TRAIN_MASK_FILE = "arrMask_5000.npy"

18 TRAIN_LABEL_FILE = "arrLabels_5000.npy"

19 TEST_FEATURE_FILE = "arrFeatures_Test_5000.npy"

20 TEST_MASK_FILE = "arrMask_Test_5000.npy"

21 TEST_LABEL_FILE = "arrLabels_Test_5000.npy"

22 else:

3

23 #400 Videos Demo Dataset

24 TRAIN_DATA_PATH= os.path.join(CODE_PATH,"../train_sample_videos/")

25 TEST_DATA_PATH= os.path.join(CODE_PATH,"../test_videos/")

26 TRAIN_INFO_PATH =

os.path.join(CODE_PATH,"../train_sample_videos/metadata.json")↪→

27 TEST_INFO_PATH =

os.path.join(CODE_PATH,"../test_videos/metadata.json")↪→

28 MODEL_NAME = "Seq_Model_400" # Model files would be created under

this folder name↪→

29

30 TRAIN_FEATURE_FILE = "arrFeatures_400.npy"

31 TRAIN_MASK_FILE = "arrMask_400.npy"

32 TRAIN_LABEL_FILE = "arrLabels_400.npy"

33 TEST_FEATURE_FILE = "arrFeatures_Test_400.npy"

34 TEST_MASK_FILE = "arrMask_Test_400.npy"

35 TEST_LABEL_FILE = "arrLabels_Test_400.npy"

The variable ’boolIsPreviewData’ controls the dataset to be used for each operation.
If True, Preview Data set with 5K variables will be used and if False, development dataset
with 400 videos would be used. Make any folder path changes as applicable inside the
appropriate variables. The variables have been described below.

• The variable ’CODE PATH’ is the absolute folder location of the source code file.
(No Changes required in this)

• ’TRAIN DATA PATH’ is the relative folder location of the Training Dataset

• ’TEST DATA PATH’ is the relative folder location of the Test Dataset

• ’TRAIN INFO PATH’ is the relative folder location of the metadata config file for
training

• ’TEST INFO PATH’ is the relative folder location of the metadata config file for
testing

4.3 Source Code Config

1. The source code execution is controlled by the booleans shown in the below code
snippet.

1 # Booleans to control flow of the code

2 boolPrintFileInfo = False #Toggle to enable/disable printing of

file resolution information↪→

3 boolPlotGraphs = False #Toggle to plot graphs for EDA

4 boolRebuildFrame = False #Toggle to rebuild training set frame

data↪→

5 boolReBuildModel = False #Toggle to rebuild model

6 boolRebuildTestFrames = False #Toggle to rebuild testing set

frame data.↪→

4

• ’boolPrintFileInfo’ is used to enable/disable resolution information stats for
video files. This flag is redundant for now and was only used to check file
metadata during development.

• ’boolPlotGraphs’ is used to enable/disable graph plots. False implies that
graphs will not be plotted. This flag can be False since plots are only needed
for EDA.

• ’boolRebuildFrame’ is used to enable/disable reprocessing of frames from videos
and feature extraction on the Training dataset. For value True, it will reprocess
the frames and perform feature extraction and then dump the feature extrac-
tion output to a numpy file and then send the output to the next function.
For value False, it will simply read the numpy file and pass the datastruc-
ture to the next function. The numpy file will be saved in the source code
folder as per the values specified in the variables ’TRAIN FEATURE FILE’,
’TRAIN MASK FILE’ and ’TRAIN LABEL FILE’ shown in Figure ??. Set
the boolean to True for first execution, and False then onwards, as long as no
frame related configs have been modified. The frame related configs have been
described in the subsequent image.

• ’boolReBuildModel’ is used to rebuild the model and test its performance after
any model specific changes have been done. The Value True indicates model
will be rebuilt and the config will then be stored in source code folder. The
value False indicates model will be read from the stored location.

• ’boolRebuildTestFrames’ is used to enable/disable reprocessing of frames and
feature extraction for Test dataset. The behavior is same as mentioned for
’boolRebuildFrame’.

2. Parameters shown in the below code snippet are used to tweak and improve model
performance.

1 SIZE = 299

2 INPUT_SIZE = (SIZE,SIZE)

3 CHANNELS = 3

4 INPUT_SHAPE = (SIZE,SIZE,CHANNELS)

5 SEQUENCE_SIZE = 80

6 NUM_FEATURES = 2048

7 EPOCH_COUNT = 150

8 REGULARIZER = 0.001

9

10 BNN_ITERATIONS = 15

• ’SIZE’ indicates the Size * Size resolution into which the videos will be resized
before feature extraction activity.

• ’SEQUENCE SIZE’ indicates the frame count that will be processed for each
video

• ’EPOCH COUNT’ indicates the maximum number of epochs that will be ex-
ecuted during model fit activity

• ’REGULARIZER’ indicates the alpha value for regularization

5

• ’BNN ITERATIONS’ indicates the count of networks what will be used for
BNN simulation

3. The below code snippet in the source code file toggles the CPU/GPU version for
tensorflow

os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

For scenarios where GPU runs out of memory, the above code can be commented
out to execute the tensorflow processing in CPU mode instead of GPU mode.

4. The Below code snippet in the source code configures the Feature extraction model.
Changes can be applied wherever applicable.

1 objFeatureExtractor = tf.keras.applications.InceptionV3(

2 include_top=False, #Top layer is not the last layer

3 weights="imagenet", #pretrained weights

4 input_tensor=None, #Inputs not shared with other ANNs

5 input_shape=INPUT_SHAPE,

6 pooling="max", #global max pooling will be used

7 #classes=1000, #Optional, will be read only if

'include_top' is true↪→

8 #classifier_activation="softmax", #Optional, will be

read only if 'include_top' is true↪→

9)

5. The Below code snippet in the source code configures the Sequence Processor model.
Changes can be applied wherever applicable.

1 #Uncomment below 2 lines to enable code execution using CuDNNGRU

libraries for faster GPU code execution↪→

2 #objGRU = tf.compat.v1.keras.layers.CuDNNGRU(1024,

return_sequences=True ,

kernel_regularizer=l1(REGULARIZER),

recurrent_regularizer=l1(REGULARIZER),

bias_regularizer=l1(REGULARIZER))(

objFrameFeaturesInput)

↪→

↪→

↪→

↪→

↪→

3 #objGRU = tf.compat.v1.keras.layers.CuDNNGRU(1024)(objGRU)

4

5

6 objGRU = keras.layers.GRU(512, return_sequences=True ,

kernel_regularizer=l1(REGULARIZER),

recurrent_regularizer=l1(REGULARIZER),

bias_regularizer=l1(REGULARIZER))(

objFrameFeaturesInput, mask=objInputMask)

↪→

↪→

↪→

↪→

7 objGRU = keras.layers.GRU(512)(objGRU)

8

9 objGRU = keras.layers.Dropout(0.3)(objGRU) #Dropout layer to

handle overfitting.↪→

6

10

11

12 #objGRU = keras.layers.Dense(256,

activation="relu")(objGRU)↪→

13 objGRU = tfp.layers.DenseFlipout(256, activation="relu"

)(objGRU) #256↪→

14

15 #objOutput = keras.layers.Dense(len(ObjVocab),

activation="softmax")(objGRU)↪→

16 objOutput = tfp.layers.DenseFlipout(len(ObjVocab),

activation="softmax")(objGRU)↪→

17

18 self.objSequenceModel = keras.Model([objFrameFeaturesInput,

objInputMask], objOutput)↪→

19

20 objOptimizer = keras.optimizers.Adam(learning_rate=0.00001)

#Manually Set starting value for learning rate↪→

5 Artefact Details

Figure 2 shows the artefacts required for the research. The Zip files for both the datasets
are of considerable sizes (500MB and 3GB) and hence, these files would be excluded
from the list of artefacts. Only the single source file would be eligible for submission.

Figure 2: Artefact Details

The artefacts of the zip file however can be generated through code.
Figure 3 shows the contents of the zip file for DFDC demo dataset model. The

contents of the zip file for DFDC preview dataset is exact same.

Figure 3: Zip file Details

7

• Setting the boolean ’boolRebuildFrame’ as true in the source code will generate the
arrFeatures, arrMask and arrLabels numpy files for the respective models.

• Similarly, setting the boolean ’boolRebuildTestFrames’ as true in the source code
will generate the arrFeatures Test, arrMask Test and arrLabels Test numpy files.

• Setting the boolean ’boolReBuildModel’ as true in the source code will re-train and
store the created model at the specified config location.

8

	Introduction
	Hardware Details
	Software Requirements
	Project Configuration
	Dataset Details
	Folder Config
	Source Code Config

	Artefact Details

