~

""—-
\ National
College

Ireland

Emotion Analysis of Pages in a Book to Play
Background Music

MSc Research Project
Data Analytics

Joshma Joseph
Student ID: X20206968

School of Computing
National College of Ireland

Supervisor:  Hicham Rifai




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Joshma Joseph
Student ID: X20206968
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Hicham Rifai
Submission Due Date: 15/08/2022
Project Title: Emotion Analysis of Pages in a Book to Play Background Mu-
sic

Word Count: XXX
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 11th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Emotion Analysis of Pages in a Book to Play
Background Music

Joshma Joseph
X20206968

1 Hardware specification:

e The accompanying figure shows the machine’s specifications, which were utilised in
this study. The system is a windows 10 system with 8 GB installed RAM and 64-bit
Operating system. The processor of the machine is 11th Gen Intel(R) Core(TM)
i5-1135G7 @ 2.40GHz.

IdeaPad 5 Pro 14ITL6
Device name LAPTOP-I4NLQ6M)

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
2.42 GHz

Installed RAM 8.00 GB (7.79 GB usable)

Device ID FC263FD1-7965-4A1E-93FD-10244B9E2190

Product ID 00325-82217-99881-AACEM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Copy

Rename this PC

Windows specifications

Edition Windows 10 Home
Version 21H2

Figure 1: Hardware specification

2 Software Specification:

e For accessing the Jupyter environment in this research, an Anaconda software in-
stallation is done on the computer. D

'https://docs.anaconda.com/


https://docs.anaconda.com/

O Anacorda Navigoter

) ANACONDA NAVIGATOR [ o ]
L Applications on hne o
@ Envionmen 5

s

&% Commanity

ANACONDA ° e o o

=C
Jupyter
~
Jooytertab oteboo range

Figure 2: Software specification

e As shown in the below figure 3 the Python 3 option from new can be selected to
start a Jupyter notebook. Three distinct notebooks are made in this study for
dataset merging, Nave Bayes model, and RNN model.

— Jupyter

Salect iReems 10 perioem actions on hem

= e 4 )

Figure 3: Jupyter notebook

e For the RNN Model, Google Collaboratory Lab will be used along with TensorFlow
for better and faster performancef]

Wekioma To Colsboratory
[§ o e
0 e v e A °®

......

Tabsie of corkenty

Welcome to Colab!
1 yosire areacy Farduar wish Colat, chupc GUE T8 Y8505 52 learm a6l neoractrve tablen. e SuBrIRed 008 STy new, and tha

What is Colab?

Figure 4: Google Colab

Zhttps://colab.research.google.com/


https://colab.research.google.com/

3 Loading required packages:

e Here, the required libraries are loaded to carry out the data preparation for the
text analysis.

Load packages

In [1]: import pandas as pd
import numpy as np

Load data visualization packages

In [2]: import matplotlib.pyplot as plt
import seaborn as sns

Text cleaning packages

In [3]: #!pip install neattext
import neattext.functions as nfs

Figure 5: Basic Libraries loading

e Similarly, even for the specific models used for the analysis, the required libraries
and packages need to be loaded as shown in the below screenshots.

33]: from sklearn.naive_bayes import MultinomialNg
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.metrics import accuracy_score, confusion matrix, classificatien_report, plot_confusion matrix

Figure 6: Libraries for Naive Bayes

e We will use the Keras Library for the RNN model |

Keras

s

Getting started

Getting started

_ * Jou an enganeer ar data scieen

you ship reliable and perfarrmant spplicd maching lesming
1 ot introduttion 1o Keras fer enginesrs

g
,,,,, N —— e o a sk lrarmeg resnarcher -

" NP Cheiile ] introduction (o Kevas for ressarcherns

B yors s Begiearvar hosching fer both n Entroduction 1o muachines bening s an introduction 0o Kens

F iFlow? Veu'ne gaing 1o need mere Ehan 4 one-pager. And youre i werve ot just tha
Frequantly duied Questons ook fer you

Further starter resources

Figure 7: Keras Documentation

e The below snippet shows the required packages for RNN model

3https://keras.io/


https://keras.io/

t re

t nltk

T humpy as np
t pandas as pd

nltk,.stem import PorterStemmer
om Sklearn.préeprocessing import LabelEncoder
rom sklearn.model_selection import train_test_split

ort tensorflow as tf

t keras.backend as K

tensorflow import keras

tensorflow. keras.preprocessing. text import text_to_word_sequence
om tensorflow.keras.utils import to_categorical
n tensorflow. keras.preprocessing. text import one_hot
of Kéras.préprocessing. text isport Tokénizer

from keras.preprocessing.sequence import pad_sequences

from keras import Sequential

from keras.layers isport Dense, SimpleRNN, Embedding, Flatten, Dropout

Figure 8: Libraries for RNN model

4 Data Preparation:

e Initially, the data needs to be cleaned and unwanted columns need to be removed
as shown in the snippet below.

In [30]: frndsemol8 = frndsemol8.drop(frndsemols.columns[[0]], axis=1)

18 = fr 18.drop(fr 18.columns[[0]], axis=1)
fr 18 = fr 18.drop(fr 18.columns[[2]], axis=1)
frndsemol8.rename(columns = {'utterance’:'Text', 'emotion': 'Emotion'}, inplace = True)

frndsemo18. tail()

Figure 9: Dropping unwanted columns

e Since we are using a combination of two data-sets we need to merge the data. For
this purpose, we created a database in MongoDB as seen in the figure below.

]: from pymongo isport MongoClient as mc

[35]: client = me()

print(client)

MongeClient (nosta| *localhost 127007 ], document_classegict, t2_swaresFalse, connectsTrus)
[36]: client = mc(”localhost, 27617)
[37]: do = client.frdata

(4b)
Database(MonpoClient (hosts[ ' localhost:27017° ], document_classedict, tz_awaresFalse, comnectsTrue), 'frdata’)

[38]: friendsly = db.friendsly

Figure 10: MongoDB for data storing

e The next step is the pre-processing of data which falls under Natural language
processing, in this step we need to tokenize the data and remove stop-words and
punctuations. Along with this process, we will perform stemming and lemmatiza-
tion.



In [15]: df[ Clean_text'] = df[ Text'].apply(nfx.remove_stopwords)
In [16]: df[ Clean_text'] = df[ Clean_text'].apply(nfx.remove_userhandles)
In [17]: df['Clean_text'] = df[ Clean_text'].apply(nfx.remove_punctuations)

In [18]: df[[‘Text', ‘Clean_text']]

Figure 11: NLP pre-processing

e In the next phase we will extract the most common keywords identified for each
emotion.

« Extract most common words per class of emotion

In [19]: from collections import Counter

In [20]: def extract_keywords(text, num=5@):
tokens = [tok for tok in text.split()]
most_common_tokens = Counter(tokens).most_common(num)
return dict(most_common_tokens)

Figure 12: Keyword Extraction

e For the next phase, we will perform the Transformation of the data. In this step, we
will perform the transformation of data based on the model being used. For Naive
Bayes, we will use countvectorizer and for the RNN model we will use one-hot
encoding along with padding.

In [37]: #ectorizer
ev = CountVectorizer()
X= cv.fit_transform{xfeatures)

7 [38]: #Get features by name

cv.get_feature_names_out()

Figure 13: Data transformation for Naive Bayes

corpus.append(text)
# one-hot encode each sentence; converts each sentence to a vector
one_hot_word = [one_hot{input_text=sentence, n=vocab_size) for sentence in corpus])
# makes all vectors the same length

pad = pad_sequences(sequences=one_hot_word,maxlen=max_len,padding="pre")

return pad

Figure 14: Data transformation for RNN

5 Model Building:

e Once the pre-processing and data transformation is completed we move on to the
model-building process. We will need to split the data into train and test data to
train and evaluate our models.



In [39]: #splir dotaser

X_traln, X_test, y_traln, ¥ _test = tradn_test_split(x, ylabels, test_size =8.3, random_state = 42)

Figure 15: Train and test data split

e Now that we have data to train, we will first train the Multinomial Naive Bayes
model.

Build Model

In [42]: nv_model = MultinomialNB()
nv_model.fit(X_train, y_train)

Out[48]: MultinomialNB()

Figure 16: Naive Bayes Model

e Next is the RNN model, as shown in the snippet there are different layers in this
model the embedded layer, the RNN layer, the dense layer with sigmoid activation
and the dense layer with softmax activation which will provide us with the output
in one of the classes of the emotion. Lastly, the model is compiled with Adam
optimizer.

def build model():
model = Sequential()
model . add(Embedding(input_dim=vocab_size, input_length=max_len, ocutput_dim=150)}
model . add({Dropout{@.2))
model . add(SinpleRNN(128))
model. add{Dropout(@.2))
model . add({Dense(64, activation="sigmoid" })
model. add({Dropout(@.2))
model.add(Dense(8, activations"softmax™))

model.compile{optimizer="Adam', loss=tf.keras.losses.CategoricalCrossentropy(), metrics=[ accuracy’,
tf.keras.metrics.Precision(),
tf.keras.metrics.Recall()])

return model

Figure 17: RNN Model

6 Evaluation:

e To Evaluate the model, we will use the metrics such as recall, precision, fl-score
and accuracy.

In [49]: #Classification
print(classification_report(y_test, y_pred_for_nv))

precision recall fl-score  support

Figure 18: Evaluation metrics



7 Model Deployment:

e For the analysis, we will use a sample book, separate it according to pages-

In [5@]: import PyPDF2

In [B85]): file = open("C:/Users/rajes/Desktop/College submissions/Research/When-Siggy-FKB.pdf=, “rb")
reader = PyPOF2.PdfFilefeader(file, strict=False)
a = int{reader.numPages)

Figure 19: Reading the PDF documents

e and pre-process it according to the input requirements of the models. Once the
model has been applied to the pages the accurate emotion will be identified.

In [47]: def predict_emotion(sample_text, model):
myvect = cv.transform{sample_text).toarray()
prediction = model.predict(myvect)
pred_proba = model.predict_proba(mywvect)
pred_percent_for_all = dict(zip(model.classes_,pred_proba[@]))
print{"Prediction: {}, Prediction Score: {}”.format{prediction[e], np.max(pred_proba)))
return [pred_percent_for_all, prediction[@]]

Figure 20: Naive Bayes processing of book

for 1 in range(2l,48):
page = reader.getPage(i)
txt = page.extractText()
#print(TxT)
txt = text_to_word_sequence(txt)
stemmer = PorterStemmer()
txt = [stemmer.stem{word) for word in txt if word not in stopwords)
txt = ° “.join(txt)
corpus = []
COrpus. append(txt)
one_hot_word = [one_hot(input_textssentence, nswocab_size) for sentence in corpus]
pad_sample = pad_sequences(sequences=one_hot_word,maxlen=max_len,padding="pre")
predictions = model.predict{pad_sample)
emotions = {1:"anger', 2:'sadness’, 3:'surprise’, 4:'joy", 5i'fear", &:'neutral’, 7:'disgust®, 8:'shame"}
print{emotions|np. arpmax(predictions[a])+1])
print{predictions)

Figure 21: RNN preprocessing of book
e Once the emotions have been identified the accurate emotion of the music from the

list of manually curated music libraries will be played. For playing the music the
playsound library will be utilized.



from playsound import playsound
import os

if p[1] == 'joy':
playsound( ' Joy/@@1.mp3")
print(p[1])

elif p[1] == 'fear':
playsound('Fear/@9l.mp3")
print(p[1])

elif p[1] == "anger':
playsound( ‘Anger/121.mp3")
print(p[1])

elif p[1] == 'disgust':
playsound("Disgust/331.mp3")
print(p[1])

elif p[1] == 'shame':
playsound( ' Shame/@31.mp3")
print(p[1])

elif p[1] == 'sadness':
playsound( 'Sadness/@31.mp3")
print(p[1])

elif p[1] == ‘'surprise’:
playsound("Surprise/151.mp3")
print(p[1])

elif p[1] == 'neutral’:
playsound( 'Neutral/e46.mp3"')
print(p[1])

else:
print("Unknown emotion")

Figure 22: Playing Background Music



	Hardware specification:
	Software Specification: 
	Loading required packages: 
	Data Preparation: 
	Model Building: 
	Evaluation: 
	Model Deployment: 

