-—

\‘
National
Collegeof

Ireland

Improving the Click Prediction for Online
Advertisement with the Integration of
Recommended System using Neural
Network Architecture

MSc Research Project
Data Analytics

Jayalakshmi Jayachandran
X20213557

School of Computing
National College of Ireland

Supervisor: Abubakr Siddig

1. Introduction

In this case, the configuration manual serves as a concise summary of the device specification that
was employed along with a thorough description of the programming language that was used to
implement the concept. Additionally, it provides an explanation of the libraries and packages used in
the creation of our topic:

Improving the Click Prediction for Online Advertisement with the Integration of Recommended
System using Neural Network Architecture

This manual procedure will be showing how the data has been uploaded, cleaned, and pre-processed,
and then how it is implemented on the suitable models.

2. System Configuration
In this section the system configuration which has required for the implementation of the model.

2.1 Hardware specification

For the implementation of the whole idea of the project, system configuration which is required in the
respective processes is given in the figure 1:

System RAM 32 GB
Processor Intel I5
Speed 1.90 GHz
Software Jupyter Notebook
Programming Language Python 3
Python libraries Python libraries

2.2 Software Specification

A few programming tools with various packages are utilized to put the theory into practice. Python
has been utilized throughout the framework for coding, and Jupyter Notebook is the platform used to
carry out the concept.

2.3 Python
The current version which has been used in the idea is 3.6.9 for the development of algorithm
structure.

Libraries
1. Pandas- For handling structure data.
Numpy- For linear algebra and mathematics.
Keras- for development and evaluating deep learning models.
Tensorflow- is used for fast numerical computing.
Scikit Learn- For machine learning
Pmdarima- For ARIMA model.
Seaborn- For data visualization.
Matpotlib- For data plotting and visualization.
Compare Models- For metrics plotting followed by their comparison

WX NN R WD

3. Data Sources
3.1 Dataset

The advertisement click data has been accumulated from the Kaggle website i.e., the Avazu
click dataset (Click-Through Rate Prediction | Kaggle, 2022). This data contains four million
rows and twenty-five columns. These columns contain information such as time stamp,
banner position, site category, app category, click, etc. The data for the recommendation
system 1is also collected from the Kaggle which is an Amazon product review dataset
(Recommender System Using Amazon Reviews, 2022). This data contains seven million
rows and four columns. These columns are accountable for product id, user id, timestamp,
and ratings. All values in this data are in numerical format. The size of click datasets is about

6 GB and the Size of Amazon review dataset is 300 MB.

Dataset links:

Amazon review Dataset: Recommender System Using Amazon Reviews | Kaggle

Click-Through Rate Prediction: Click-Through Rate Prediction | Kaggle

https://pandas.pydata.org/

https://numpy.org/
https://keras.io

https://www.tensorflow.org/
https://scikit-learn.org/stable/
https://pypi.org/project/pmdarima/

https://seaborn.pydata.org/
https://matplotlib.org/
https://pycaret.org/compare-models/

4. Project Implementation

After the selection of dataset, the data set has been imported into the python environment on the

jupyter notebook.
In [8]: M data.head() # getting first five rows from the dataset
out[8]:
Unnamed: . . - - . ; . "

0 id click hour C1 banner_pos site_id site_domain site_category app_id app_domain app_category devi
0 0 10004765361151096125 1 14102100 1005 0 1fbed1fe 13845767 28905ebd ecad2386 7801e8d9 07d7df22 a9¢
1 1 10157267783354901009 0 14102100 1005 1 43d6df75 27e3c518 28905ebd ecad2386 7801e8d9 07d7df22 a9t
2 2 10204774106542702658 1 14102100 1005 1 77bfdd7b bfa24f16 3e814130 ecad2386 7801e8d9 07d7df22 a9
3 3 10351076848552612232 0 14102100 1005 1 5b4d2eda 16a36ef3 f028772b ecad2386 7801e8d9 07d7df22 a9¢
4 4 10408083230449973220 0 14102100 1005 0 1fbe01fe 13845767 28905ebd ecad2386 7801e8d9 07d7df22 a9t

Fig 1

13

https://www.kaggle.com/code/saurav9786/recommender-system-using-amazon-reviews/data
https://www.kaggle.com/competitions/avazu-ctr-prediction/data
https://pandas.pydata.org/
https://numpy.org/
https://keras.io/
https://www.tensorflow.org/
https://scikit-learn.org/stable/
https://pypi.org/project/pmdarima/
https://seaborn.pydata.org/
https://matplotlib.org/
https://pycaret.org/compare-models/

In [25]: M data2.head() # getting first five rows of data

Out[25]:
userld productld Rating timestamp

0 AKM1MPEPOOYPR 0132793040 5.0 1365811200

1 A2CX7LUOHB2NDG 0321732944 5.0 1341100800

2 AZ2NWSAGRHCP8N5 0439886341 1.0 1367193600

3 A2WNBOD3WNDNKT 0439886341 3.0 1374451200

4 A1GI0U4ZRJABWN 0439886341 1.0 1334707200

Fig2

Above figl shows the head data of Avazu click data and fig2 shows head data recommendation
system.
5. Data Pre-Processing

After accessing the data from the authenticate source next step performed is the pre-
processing of the data. Since both datasets contain a large number of rows therefore random
samples of 100 thousand rows are taken from both datasets. In this step processes like data
cleaning, removal of null values, changing of data types of columns, and data normalization
are executed. Click data contains categorical columns, which are converted into the required
numerical format by deploying a label encoder.

In [9]: M data.shape # checking number of rows and columns of data
out[9]: (1eeese, 25)
In [12]: M data.isnull().sum() # checking data for null values
out[1e]: Unnamed: ® 2]
id]
click (]
hour 2]
c1 Q
banner_pos 2]
site_id 2]
site_domain]
site_category]
app_id e
app_domain]
app_category 2]
device_id]
device_ip 2]
device_model e
device_type 2]
device_conn_type 2]
ci14 Q
cis] .
Fig3
In [28]: M data2.isnull().sum() # checking for null values in dataset

Out[28]: userId e

productId e

Rating e

timestamp e

dtype: inté4

Figd
Now, in fig3 and figd we can see that all the NA values has been dropped. Also, NAN values has been
eliminated, that’s why we have added data cleaning step for the implementation of the processes.

4

I. Feature Extraction

The stages of feature extraction and feature selection are crucial for this research since they help to overcome
the problem data dimensionality and shorten training times.

In [43]: M data=data.drop(['date’,'id",'site_id"','app_id", 'device_id", 'device_ip", 'site_domain','app_domain’, 'device_conn_type'],ax
new_data=data
data.head()

oLl click C1 banner_pos site_category app_category device_model device_type C14 C15 C16 C17 C18 C19 C20 C21 hour_of_day pro
0 1 1005 0 28905ebd 07d7df22 7fdd04d2 1 15701 320 50 1722 0 35 -1 79 0 B0O0(C

1 0 1005 1 28905ebd 07d7df22 3bd9e8e? 1 15701 320 50 1722 0 35 -1 79 0 B0OOC

2 1 1005 1 3e814130 07d7df22 900981af 1 20596 320 50 2161 0 35 100034 157 0 B000

3 0 1005 1 f028772b 07d7df22 d787e91b 1 19950 320 50 1800 3 167 100075 23 0 B000B

4 0 1005 0 28905ebd 07d7df22 c6263d8a 1 15701 320 50 1722 0 35 -1 79 0 B0OC

»

Figh

Above image fig5, shows unnecessary columns such as date, and id are dropped first and new
columns are added to the existing data which contains cumulative values of other columns. Data is
scaled using a standard scalar for the standardization of data. This step results in a reduction in the
size of the feature vector from 26 to 19. Click feature is allocated as the target variable while the
remaining variables are assigned as feature variables.

II. Modelling and Evaluation

In this step we have applied three deep learning models which are capable in click prediction based on
a recommendation system using the advertisement and product review dataset.

1. LSTM model

LSTM Model- Hyperparameter tuning using keras tuner

[1: M def build_model(hp):
model = Sequential()
model.add(LSTM(hp.Int(input_unit',min_value=32,max_value=512,step=32),return_sequences=True, input_shape=(x_train_.
for i in range(hp.Int('n_layers®', 1, 4))

model.add(LSTM(hp.Int(f'1lstm_{i} units',min_value=32,max_value=512,step=32),return_sequences=True))

model.add(LSTM(hp.Int(layer_2_neurons',min_value=32,max_value=512,step=32)))
model.add(Dropout(hp.Float('Dropout_rate',min_value=8,max_value=0.5,step=8.1)))
model.add(Dense(hp.Int('layer_3_neurcns',min_value=32,max_value=512,step=32), activation=hp.Choice('dense_activation
model.add(Dropout(hp.Float('Dropout_rate',min_value=8,max_value=0.5,step=8.1)))
model.add(Dense(1, activation=hp.Choice('dense_activation',values=['sigmoid'])))
model.compile(loss="binary_crossentropy', optimizer = "adam", metrics=['accuracy'])
return model

[1: M tuner= RandomSearch(
build_model,
objective="val_accuracy’,
max_trials=2,
executions_per_trial=1

)
Fig6

After implementation of the LSTM model, we got the below confusion matrix.

In [73]: M # plotting confusion mtrix

cm = confusion_matrix(y_test, y_predl)

class_label = ["No-click", "Click"]

df_cm = pd.DataFrame(cm, index = class_label, columns = class_label)
sns.heatmap(df_cm, annot = True, fmt = "d", cmap='Blues')

plt.title('Confusion matrix for LSTM ', fontsize = 28); # title with fontsize 26

w N

[V, I -9

o

Confusion matrix for LSTM
16000
14000

el - 12000

No-click

- 10000

- 8000

- 6000
- 3245 152 - 4000

Click

-2000

| 1
No-click Click

ii. ~ CNN model
CNN can also be implemented on text data by using different embedding layers provided by Keras.

CNN Model
[+ M model2=Sequential()
Conv Block 1
model2.add(ConvlD(25@, kernel_size=3,input_shape=(x_train_.shape[1],1),activation="'1linear"')) # adding conv Layer with !
model2.add(MaxPoolinglD(pool_size=3,padding = 'same')) # adding max pooling Layer with same padding
model2.add(BatchNormalization()) # adding batch normalization Layer

W NP

I B

Conv Block 2

model2.add(ConvlD(8@, kernel_size=2,padding='same’,activation='linear'))
model2.add(MaxPoolinglD(pool_size=2,padding = 'same'))
model2.add(BatchNormalization())

0

[
)N P ®

Flattening
13 model2.add(Flatten()) # adding flatten Layer

Dense Layer 1
model2.add(Dense(10,activation="1linear'))
17 model2.add(Dropout(®.2))

TS

0 0

19 #output Layer

20 model2.add(Dense(l,activation="sigmoid')) # adding dense output Layer

21 # Compiling Model

22 model2.compile(loss='binary_crossentropy', optimizer = "adam", metrics=[‘'accuracy'])

4 # Training Model
5 history = model2.fit(x_train_,y_train,epochs=10, validation_data=(x_test_,y_test), batch_size=64, shuffle=True)
6 model2.summary()

Fig7
Similarly the fig7 is representing the CNN convolution neural network model and their evaluation
parameter.

iii. RNN

M # Initialising the RNN (with two Layers)
model3 = Sequential()
function = "relu"

Adding the first RNN Layer and some Dropout regularization
model3.add(SimpleRNN(units = 188, activation=function, return_sequences=True,input_shape = (x_train_.shape[1], 1)))
model3.add(Dropout(8.2))

Adding a second RNN Layer and some Dropout regularization

model3.add(SimpleRNN(units = 80))

model3.add(Dropout(©.2))

model3.add(Dense(units = 1,activation="sigmoid')) # adding dense output Layer withn 1 neuron

Compiling the RNN
model3.compile(loss="binary_crossentropy', optimizer = "adam", metrics=['accuracy'])

Fitting the RNN to the Training set
history=model3.fit(x_train_, y_train, epochs = 10, batch_size = 64, validation_data=(x_test_,y_test),shuffle=True)
model3. summary()

Epoch 1/1@

1250/1250 [] - 24s 18ms/step - loss: ©.4423 - accuracy: ©.8294 - val_loss: ©.4309 - val_acc
uracy: ©.8296

Epoch 2/18

1250/1250 [] - 21s 17ms/step - loss: ©.4336 - accuracy: ©.8307 - val_loss: ©.4309 - val_acc
uracy: ©.8301

Epoch 3/18

1259/1250 [1 - 21s 17ms/step - loss: ©.43@7 - accuracv: ©.8305 - val loss: ©.4314 - val acc

Fig 8
Where in fig 8 the RNN model is representing and the evaluation parameters which will shows the
performance of the model.

III. Performance comparison of machine learning models.

The model which achieves the highest value of MCC score, accuracy, fl-score, precision and
recall will be selected as the finest model for heading prediction basis. Bar plots are plotted to
visualize the comparison among the implemented models.

Accuracy

0.8 0.8313

0.7 0.8312

0.6

0.8311

0.5

Accuracy

0.4

0.2

0.1

LSTM CNN RNN
Algo
Fig 9

0.84 0.8318 0.8306 0.8301

0.82
0.8
0.7856 0.784 0.7866
078
0.767
0.739
0.76
0.74 I
LSTM

0.7602

0.72
CNN-1D RMMN

W Precision W Recall mFl-score
Fig 10

0.12 MCC_score

0.1
0.11

0.08
8 .
o
o
|
o 0.06
[v]
= .

0.04

0.02

0 LSTM CNN RNN
Algo
Figll

Now, in the fig 9, 10 and 11 we can compare and see that which machine learning models has better
performance in terms of predicting the clicks on the online advertisements.

	1. Introduction
	2. System Configuration
	2.1 Hardware specification
	3. Data Sources
	4. Project Implementation
	5. Data Pre-Processing
	I. Feature Extraction
	II. Modelling and Evaluation
	III. Performance comparison of machine learning models.

