~

\"'ﬂ
\ National
College

Ireland

Sleep Apnea detection using Deep Learning
Methodologies - Configuration Manual

MSc Research Project
Data Analytics

Gunjit Jain
Student 1D: x20251432

School of Computing
National College of Ireland

Supervisor: Mr. Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Gunjit Jain
Student ID: x20251432
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Mr. Vladimir Milosavljevic
Submission Due Date: 19/09/2022
Project Title: Sleep Apnea detection using Deep Learning Methodologies -
Configuration Manual
Word Count: XXX
Page Count: [T]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Sleep Apnea detection using Deep Learning
Methodologies - Configuration Manual

Gunjit Jain
x20251432

1 Introduction

The environmental setup utilized during the course of this research project ”Sleep Apnea
detection using Deep Learning Methodologies” is fully described in this configuration
manual. This is followed by the walk-through of the implementation and the results.
Section 2 covers hardware and software configurations used for development, Section 3
covers the data sources in the description, and Section 4 covers the implementation of
the models.

2 System Specifications

2.1 Hardware specifications

Table [1] shows the details of the hardware used for the development of the model.

Table 1: Details of Hardware used

Features Versions
Operating System | Microsoft Windows 10 Home
Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
System Type 64- bit Operating System, x64-based PC
RAM 16 GB
Hard Disk 1TB

2.2 Software specifications

This research was done on the Google Colabarotory environment for the development
and execution of the models. The programming was done in the Python programming
language. The latest python version is used in the Google Colab platform. The important
libraries used for this research project are mentioned below.

e Matplotlib
e Numpy

e Tensorflow

e Keras
o widb

e sklearn

3 Data Sources

The Apnea-ECG database used for this research is publically available on the PhysioNet
website. This dataset contains overnight polysomnography (PSG) data for 70 people.
This data contains readings for heart rate in the form of single-lead ECG and respiratory
signals including SpO2 data. Each recording comes with a number of files. Digitized
ECGs (100 samples per second, 16 bits per sample) are stored in files with names of the
kind rnn, dat. The accompanying signal files’ names and formats are specified in the .hea
files, which are (text) header files. The .apn files are (binary) annotation files, and each
minute of each recording has an annotation for each minute indicating whether or not
there was an apnea at that moment.

4 Implementation

The ECG signals were divided into one-minute sections and associated with their relevant
annotation. The data for all the 70 persons available in the dataset were used in this
research. Figure |I] shows all the libraries used in this research.

Helper Imp
import os

import cv2

import math

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.cm as cm

import matplotlib

import matplotlib.image as img
Smatplotlib inline

import joblib

#rom tgdm.notebook import tqdm
import random

import collections

from collections import defaultdict
import shutil

from shutil import copy

from shutil import copytree, rmtree

Sklearn Inports
from skimage.io import imread, imshow

from skimage import img as_ubyte

from skimage.color import rgblgray

from skimage.exposure import histogram, cumulative distribution
from scipy.stats import cauchy, logistic

from sklearn import linear_madel

from sklearn.preprocessing import StandardScaler

#4# TEN v IMPORTS

import rflow as tf

from tensorflow import keras

import tensorflow.keras.backend as K

from tensorflow.keras.models import load_modsl

from tensorflow.keras.preprocessing import image as kimage

from tensorflow.keras import regularizers

from tensorflow.keras.applications.inception v3 import Inception¥3
from tensorflow.keras.models import Model

from tensorflou.keras.layers import Dense, Dropout

from tensorflow.keras.layers import GlobalAveragePooling2D

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.callbacks import ModelCheckpoint, CSWlogger

from tensorlow.keras.optimizers import SGD

from tensorflow.keras.regularizers import 12

from tensorflow.keras import models

from tensorflow.keras.applications.inception v3 import preprocess_input

Figure 1: Libraries used in this research

4.1 Data Preprocessing

The dataset was loaded into Google drive and the drive was mounted into Google Colab
to use the dataset. The signals present in the dataset are seven to ten hours long. The

first minute of each signal is annotated as Normal(N) so the first minute is not considered.
The one-minute signal sample is shown in Figure 2 for both annotations.

Part of the ECG signal with annotation A

30

25

20

15

ECG/mV

10
05

i i

=05 . T r T T T
o 2 4 6 8 10
timefsecond

Figure 2: Sample for a part of the ECG signal

4.2 Data Transformation

The one-minute signals have a sampling frequency of 100 Hz was converted into specto-
gram using Fast Fourier transfer. These spectograms were then used to feed the neural
network. The code used to create the spectogram is shown in Figure 3| along with the
sample spectogram shown in Figure [4

def createSpectogran{allRecords):
spe 1

#Taking 5 images from each person’s readings due to Less camputing resource:
a dom plot...
ig = plt.figure()
fig.add_subplot(111)
NFFT = int(169+9.5)
Noverlap = int(180+0.25)
#pouerSpectrum, freqenciesFound, imagedrt. Lt. specgram(record. record[8] (1+6088) : ((1+1)+5000)] . flatten(), Fs=188)

, t, Sxx = signal.spectrogram(reco

peolormesh(t, f, Swx, shading="
is('off')

plt.tight_layout()

p 10 (%60
ord[@1[(i*6008): ((i+1)*6000)].flatten(), 10@)
d)

specdetails.append(allSpectogram(record.name, plot_img np , record.annotation.symbol[il))
return specdetails

with tf.device(tf.DeviceSpec(device_type="GPU", device_index='0')):
&llDetails = createSpectogram(allRecords)

Figure 3: Code for spectogram

100 4
150 1
200 4

250 4

0 50 100 150 200 250 300 350 400

Figure 4: Spectogram for a part of signal

5 Model Implementation

5.1 Model 1 Baseline Convolution Neural Network

These components are used to visualize the better representation of each class. For
data visualization, different techniques are used like principle component analysis. The
spectrograms are converted into the Eigenvalues shown in Figure [6] which are further
reshaped into the matrix.

In [5]: from sklearn.decomposition import PCA
from math import ceil

def eigenimages(full_mat, title, n_comp = 8.7, size = (64, B4)):
fit PCA to describe n_comp * variability in the class
pca = PCA(n_components = n_comp, whiten = True)
pca.fit(full_mat)
print("Mumber of PC: *, pca.n_components_)
return pca

def plot_pca(pca, size = (64, 64)):
plot e\'gem'.m{ﬁges in a grid
n = pca.n_components_
fig = plt.figure(figsize=(3, 8))
r = int(n**.5)
¢ = ceil(n/ r)
fig.patch.set_facecolor('white’)
for i in range(n):
ax = fig.add subplot(r, c, i + 1, xticks = [], yticks = [])
ax.imshow(pca. components_[i].reshape(size),
cmap="Greys r')
plt.axis('off")
plt.show()

making n X m matrix
def to_numpy_image(path, list_of_ filename, size = (64, 64)):
iterating through each file
for fn in list_of_filename:
fp = path + fn
current_image = kimage.load_img(fp, target_size = size,
color_mode = 'grayscale’)
covert image to @ matrix
img_ts = kimage.img_to_array(current_image)
turn that into o vector / 1D array
img_ts = [img_ts.ravel()]
try:
concatenate different images
full_mat = np.concatenate((full_mat, img_ts))
except UnboundLocalError:
if not assigned yet, assign one
full_mat = img_ts
return full_mat

List of files

nophar_images = os.listdir(base dir + "train/™ + classes[1])
phar_images = os.listdir(base dir + "train/" + classes[@])

Figure 5: Code to form PCA using Eigen

Number of PC: 11

Figure 6: Eigen Images for principle component

These principle components formed using Eigenvalues are shown in Figure [§ shows
the average Eigen images for both Apnea and non-apnea type along with the difference
between normal and apnea patient’s averages.

AVERAGE IMAGES

def find mean img(full mat, title, size = (64, &64)):
calculate the average
mean_img = np.mean(full mat, axis = @)
reshape it back to a matrix
mean_img = mean_img.reshape(size)
plt.imshow(mzan_img, wvmin=@, wmax=255, cmap="Greys r')
plt.title(f "Average {title}’)
plt.axis('off")
plt.show()
return mean_img

find the mean image of the pharyn images

phar_mean_img = find_mean_img({phar_images, classes[@])

find the mean image of the no-pharyn images
nophar_mean_img = find mean_img(nophar images, classes[1])

Figure 7: Code to generate the average of Eigen images

Average NO-APNEA Difference Between Normal & Apnea patient Average

Average APNEA

Figure 8: Average of Eigen images and their differences

In the base convolution neural network model there is a total of 32 filters and channels.
In the model, the output layer has one neuron and the sigmoid activation function because
it is a binary classification problem. In the results, the output of the binary classification
is one class versus the other class. Batch normalization is used in each layer for fast
learning and enhanced generalization. Figure [0 below code is for the model building of
baseline convolution neural network.

Figure 9: Model building of Baseline convolution neural network

In Figure [0, while model compiling the Adams optimizer is used and the loss function

is binary cross-entropy.

In 173

, restore_best_weights-True)

Figure 10: Code for Model training

In Figure the model is trained for the 1000 epoch for train generator data and
among them, the best model is saved. After the model training, the accuracy of the

model is increasing over time and it reaches 89%. The accuracy of the validation data is
between 72-83%. The training loss continuously decreases.

In [18]:
#getting train and validotion accuracies
train_acc_CNN = histery.history['accuracy']
val_acc_CHN = history.history["val_accuracy']

#getting train and vatidation Losses
train_loss_CNN = history.history['loss']

val_loss_CNN = history.histery['vsl loss']
epochs = range(1, len(train loss_CH) + 1)

#plotting the troining and vatication accurracies
plt.figure()
plt.plot{epochs, train_acc_CNN, 'b', label=
plt.plot{epochs, val_acc_CHN, label='Validation a
plt.title('Training and validation accuracy for CW')
plt.legend()

cct)

#plotting the train and validaiton Losses

plt.figure()

plt.plot{epochs, train_loss_CWN, "b', label-'Training loss')
plt.plot{epochs, val_loss_CHN, 'r*, label="Validation loss')
plt.title('Training and validation loss for CNN')
plt.legend()

plt.shou()

Figure 11: Code of Results of baseline CNN

Training and validation accuracy for CNN Training and vall loss for CNN

075 — Taining loss
—— Validation loss

070

065

060

055

050
= Taining acc
@45 = Validation acc 050
0 2 & s @ 00 120 v 2 & 6 © 10 120

Figure 12: Accuracy and Loss graph of baseline CNN Model

Training and validation loss for CNN Training and validation accuracy for CNN
076
= Taining loss 070
074 —— Validation loss
a7z o&s
oo 060
(3]
055
0&6
oso0
064
o0& 045 — Taining acc
= Validation acc
o o a0 @0 &0 100 120 o 2 % o w0 100 120

Figure 13: Accuracy and Loss graph of baseline CNN Model with augmented data

5.2 Model 2 DenseNet121 with CNN

In the hybrid CNN model, a convolution neural network is designed on top of the
DenseNet121 network as shown in Figure For better results and accuracy the pre-
trained DenseNet121 model is designed with CNN. In the CNN model, the two convolu-
tions 2D layers are used and concatenated in the next layer.

create a hypothetical non-Linear model to illustrate fFunctional APT

cregte an input Loyer/stensor
input= layers.Input(shape=(224, 224, 3), dtype=

oat32", name="input_image")

#creote two convolutional Layers with di
convl=layers.Conv2D{128, (5, 5), padding:
conv2=layers.Conv2D({128, {3, 3), paddin,

erent Filter sires taking the same input tensor
"same” ,activation="relu’', name="con. i
"same" ,activation="relu’, name="con.

#concatenate the output of the two convolution Loyers
concat=layers.concatenate{[convl,conv2], axis=-1 }

#create the dense Layer that takes the concatenated output
output_dense=layers.Dense{18, activation=last_activation)(concat)}

#creote a model that takes the input tensor as input and gives the output of the dense Layver as output
hypothetical_model = Model(input, output_dense)

#plot the model
tf.keras.utils.plot_model{hypothetical_model}

Figure 14: Model building of hybrid CNN model

In [301: |#create a Learning rate schedule

1r_schedule = keras.optimi

rs.schedules. ExponentialDecay
-3,

decay_steps=s58,
decay_rate=2.9)

#configuring and compiling the model
opt = tf.keras.optimizers.Adsm(learning rate=1r_schedule)
model.compile(loss=1oss_m, metrics=['accuracy'], optimizer-opt)

model save paths
bestmodel_patn B
trainedmodel_path

history_path = '.

classes)+'class.hs’
ansfer_‘rstr(n_classes)+ class.ns’
+str(n_classes)s".log

odels/

#coliback for early stoppin:
callback = tf.keras.callbacks.EarlyStopping(monitor="val loss’, patience=18@, min_delta=le-3, restore_best_weights=True)

Checkpoints and Logs
checkpoint = ModelCheckpoint(filepath-bestmodel_path, verbose=1, save_best_only=True)
csv_logger = CsWiogger{history_path

#start the training
num_epochs = 1208
history = model.fit(train_generator,
ps_per_epoch = nb_train_samples // BATCH_SIZE ,
validation_data-validation_generator,
validation_steps=nb_validation_samples // BATCH_SIZE,
epochs=num_spochs,

callbacks=[callback,csv_logger, checkpointl)

Figure 15: Code for Model training of hybrid CNN model

In [18]:
#getting train and validation accuracies
train_acc_CNH = history.history[‘accuracy’]
val_acc_CNN = history.history[val_sccuracy']
#getting train and validation Losses
train_loss_CNN = history.history['loss']
wal_loss_CNN = history.history['val_loss']
epochs = range(1, len(train_loss_CWi) + 1)
#plotting the training and vatidation accurracies
plt.figure()
plt.plot{epochs, train_acc_CMN, 'b’, label="Training acc')
plt.plot{epochs, val_acc_CHN, 'r’', labe:
plt.title('Training and validation accuracy for CNN')
plt.legend()
#plotting the train and validaiton Losses
plt.figure(}
plt.plot{epochs, train_loss_CMN, 'b’, label='"Training loss')
plt.plot(epochs, val _loss_CHM, 'r', label='Validation loss')
plt.title('Training and val: on loss for CHN')
plt.legend(}
plt.show()
Training and validation accuracy for CNN Training and validation loss for CNN
085
W 0625 —— Taining loss
—— Validation loss
080 0600
0575
075 ‘ ' 0550
06525
070
0500
065 0475
= Taining acc 0450
060 — Validation acc
T T v v T T v T
U] r-3 0 s 00 125 150 175 o 25 50 75 100 125 150 175

Figure 17: Code for Model training of hybrid CNN model

In the results of the model shown in Figure [I7], the overfitting problem has been
addressed to a great extent. After that, the fine-tuning of the model by freezing and
unfreezing some of the layers, the accuracy on the train data came to a little less than
1.00 while the test accuracy came out to be 80%.

6 Evaluation

Accuracy is the ability of a classification model to accurately classify the data. In medical
situations, it is crucial that an individual who is unwell be accurately classified; but, if
some individuals who are not ill are also recorded as positive, there may be a problem.
Therefore, it may be claimed that accuracy is more significant in medical instances. As
many researchers in the past have used accuracy to show the effectiveness of various
models

6.1 Baseline Convolution Neural Network

In the baseline convolution, neural network model the accuracy of the overall research is
73%, Fl-score was 0.75. The Evaluation matrix and confusion matrix are shown in the

Figure [I9

Figure 18: Code to Generate the Classification Report of Model 1

precision recall fi-score support

8.8 @.68 8.7l 8.59 24

1.8 B.77 g.74 B.75 31

accuracy 8.73 55
macroe avg e.72 g8.73 e.72 LG
weighted avg 8.73 8.73 8.73 g5

Figure 19: Classification Report of the Baseline Convolution Neural Network Model.

6.2 Baseline Convolution Neural Network after Data Augment-
ation

In this instance, the data was enhanced using a data augmentation technique before being
fed to the CNN model. However, due to data augmentation’s slight addition of noise to
the signals data, accuracy fell to 69%. So, for the purpose of the final evaluation, the
aforesaid model was used. The code for the generation of the confusion matrix is shown
in Figure 20l The confusion matrix is shown in Figure [21]

In [45]: import numpy as np
import mstplotlib.pyplot as plt
import numpy as np
import itertools

def plot_confusion_matrix{cm,
‘target_names,
title="Confusion Matrix',
cmap-None,
normalize=True):

accuracy = mp.trace(em) / np.sum(cm).astype('float')
misclass = 1 - accuracy

if cmap is None
emap = plt.get_cmap('Blues’)

plt. figure(figsize=(10, 5))

plt.imshow(cm, interpolation="nearest’, cmap=cmap)
plt.title(title)

plt.colorbar()

if target_names is not Nene:
tick_marks = np.arangs(len{target_names))
plt.xticks(tick_marks, target_names, rotation=25)
plt.yticks(tick_marks, target_names)

if normalize:
em ~ cm.astype(' float’) / cm.sum(axis=1)[:, np.newaxis]

thresh = cm.max() / 1.5 if normalize else cm.max() / 2
for i, j in itertools.product(range(cm.shape[@]), range(cm.shape[1])):
if normalize:

horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black”)

plt. tight_layout(}

plt.ylabel('True Label’)

plt.xlabel('Predicted Label\naccuracy={:8.4f}; misclass-{:0.4f}".format(accuracy, misclass))
pIt.show()

target_names = classes

of = confusion_matrix(actuals, predicted)
plot_confusion_matrix(cf, target_names)

Figure 20: Code to Generate the Classification Report of Model 1 with Augmentation

Confusion Matrix

2

AONER

16

Tue Label

1

2
HO-APNEA a4561

1

& i

&
Predicted Lael
accuracy=0.1213, misclasswt. 2127

Figure 21: Confusion Matrix of Model 1

6.3 DenseNetl121 + CNN

The Hybrid Convolutional Neural Network with DenseNet1214+CNN that was created
for this research had a training accuracy of about 85% as shown in Figure but after

10

some fine-tuning, it performed remarkably well. So, the refined model was taken into
consideration for the initial assessment.

precision recall fil-score support

g.8 8.86 8.73 a.79 26

1.8 a8.73 2.98 @. 84 29
gocuracy 8.82 G5
macro avg 8.83 8.81 8.32 G5
weighted avg 8.82 8.82 8.832 G5

Figure 22: Confusion Matrix of Model 2

6.4 DenseNetl1214+ CNN after fine-tuning

By briefly freezing and unfreezing some layers, the Hybrid CNN was adjusted. The final
results were superior to the initial ones. Here, the validation accuracy was about 77%,
and the training accuracy was over 99%. After adjustments, this model’s total accuracy
was 81.82% and its F1 score was 0.84. Figure the additional evaluation metrics are
displayed. According to the confusion matrix in Figure 22, 73.08% of people are actually
classified as having apnea, and 89.66% of people are actually classed as not having apnea.

Confusion Matrix

5

APMEA

Tue Label

NO-APNEA

& e

Predicted Label
accuracy=0.8182: misclass=0.1818

Figure 23: Confusion Matrix of Model 2

11

	Introduction
	System Specifications
	Hardware specifications
	Software specifications

	Data Sources
	Implementation
	Data Preprocessing
	Data Transformation

	Model Implementation
	Model 1 Baseline Convolution Neural Network
	Model 2 DenseNet121 with CNN

	Evaluation
	Baseline Convolution Neural Network
	Baseline Convolution Neural Network after Data Augmentation
	DenseNet121 + CNN
	DenseNet121+ CNN after fine-tuning

