~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Rohit Jadhav
Student ID: 20205350

School of Computing
National College of Ireland

Supervisor:  Mr. Vladimir Milosavljevic




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Rohit Jadhav

Student ID: 20205350

Programme: Data Analytics

Year: 2021-2022

Module: MSc Research Project

Supervisor: Mr. Vladimir Milosavljevic

Submission Due Date: 15/08/2022

Project Title: Automatic Weapon Detection in CCTV systems Using Deep
Learning

Word Count: 1921

Page Count: [17]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Configuration Manual

Rohit Jadhav
20205350

1 Introduction

This configuration manual includes detailed instructions on how to meet the thesis’s
storage, setup, software, and hardware needs titled ” Automatic Weapon Detection in
CCTYV systems Using Deep Learning”. It also includes all the important snapshots which
can be used to give insights about thorough process of the research that is followed.

2 Hardware & Software Requirements

2.1 Hardware Setup

Table [I| shows local hardware configurations while implementing this research.

’ Component ‘ Specification ‘
Make Apple Macbook
Model MacBook Air (M1, 2020)
Memomry (RAM) 8 GB
GPU Apple M1 (7 cores)
Disk 251 GB SSD

Table 1: Local system configurations

For advanced object detection algorithm training, paid version of Google Colab Cloud
service is used. Google Colab Cloud also has free tier service for application having lesser
complexity. As we are dealing multi-class object detection high-end system configuration
is required for minimizing training time hence Pro version of Google Colab was used.
Table [2| depicts detailed specification of Google Colab Pro.

’ Component \ Specification ‘
GPU Make Tesla
GPU Model Tesla P100-PCIE
GPU Name Python 3 Google Compute Engine Backend (GPU)
Memomry (RAM) 16 GB
Disk 167 GB

Table 2: Google Cloud system configurations



2.2 Software Setup

Table [3| shows, list of all the softwares used during the implementation of the project.
This table also includes Operating System and Programming Language details. It also
contains all the web applications and packages employed during the course of this study.

’ Component ‘ Specification
’ Operating System ‘ macOS Monterey
’ Programming Language ‘ Python
Cloud IDE Google Colab Pro
Model supplementary Darknet, OpenCV, CUDA (used by
Darknet)

Model Visualizations, Implementation & | darknet, openCV, matplotlib
Evaluation

Python Packages drive, os, shutil, numpy, cv2, matplotlib,
google.colab

Object Annotation YOLO-Label

Achritecture Designs draw.io

Table 3: Google Cloud system configurations

3 Data Preprocessing

3.1 Data Downloading and Sorting

First of all, google drive is mounted to Google Colab Pro. This requires special permission
from the user. Once user grants the permission, gdrive is mounted with Google Colab.
Figure [1| shows process of mounting grive to Colab Pro along with necessary imports for
the project.

# mounting the gdrrive

import os;

import shutil;

import numpy as np;

from google.colab import drive
drive.mount('/content/gdrive')

Mounted at /content/gdrive

# creating general link t as model doesnt work with folders with spaces

!1n -s /content/gdrive/My\ Drive/ /mydrive

Figure 1: Google Drive Mount & Important Packages

Also the process doesn’t work well with the file names having spaces in them. As ’My
drive’ has space in it and it cannot be avoided, simple path link is created.

3.2 Data gathering

Open Images v6 has Over 9.6 million photos with annotations for segmentation, ob-
ject detection, and classification specifically for the use of object detection applications
Kuznetsova, Rom, Alldrin, Uijlings, Krasin, Pont-Tuset, Kamali, Popov, Malloci, Koles-
nikov, Duerig and Ferrari| (2020). From this dataset, four classes were downloaded namely

2



Handgun, Torch, Stapler and Remote control. Data from the Open Images was already
annotated but it had different format of annotation. To convert that format into the
format accepted by YOLO models ’convert_annotations.py’ is used from the Open Im-
ages repository.

Over 5500 images were present on the Kaggle dataset for the weapon detection
jubaerad (2020). This dataset was divided into two sections. One of the section con-
tained different angled images of Rifles, Bombs, Landmines, Handguns, etc. and the
other section had images taken from CCTYV footage available on YouTube. Only first
section of the images were already annotated amongst them. Second section also had
images having multiple objects like Rifles, SMG, Pistol, Rocket Launcher in form of
CCTYV footage. As study focuses only on Handguns (Revolver /Pistols), only images with
revolvers and pistols were taken into consideration. On top of it some images were down-
loaded from google as confusion objects were missing in this dataset. After addition of
confusion objects images the whole dataset was ready for the process of object annotation.

3.3 Data Annotation

For Data annotation, YOLO-Label open source application is used [[] As study focuses
on different versions of YOLO models, this works best in this usecase.

Figure 2: YOLO-Label user interface

Once YOLO-Label is launched, it asks for the location of the images. After selection
of location of the images, it asks for the .txt or .names file which contains all the classes
required for the object detection. Figure |3| depicts the process of object annotation in
YOLO-Label. On the right hand side corner all the object detection classes are present.

"https://github.com/developerOhye/Yolo_Label


https://github.com/developer0hye/Yolo_Label

@ =
[ ) YoloLabel

Contrast(%) 50
25432

Figure 3: YOLO-Label process

User can mark any number of objects in the images. For every object inside the
images associated row is added in .txt file with same name as image. Figure [4] depicts a
case of an image having three objects producing three different rows in .txt file.

® B 89e21185a58164bd.txt
3 0.2021875 0.43187466666666663 @,.32099999999999996 @.6173519999999999

3 0.5041796875 0.42544933333333335 0.25750000000000006 0.54505
3 0.7853125 0.4344003333333333 0.2981250000000001 0.5750839999999999

Figure 4: .txt file produces with YOLO-Label having multiple classes in one file

As there can be vast range of images, this process can be time consuming at times.

3.4 Data Uploading

Open Images dataset repository is cloned from github directly. Once repository cloning
is completed, main.py with downloader command can be used to download all the classes
required for the training. multiclasses flag is set to download all the images in one single
folder. Even if limit 100 is set it is not guaranteed that the each class will have 100 number
of images as some classes may have lesser number of total images for that particular class.
Figure [5| shows github url and the process for downloading multiple classes at once.



Figure 5: Open Images OID process

Kaggle dataset is uploaded with the help of google.colab library. figure [6] shows the
process of uploading the dataset into google drive. Images can be directly uploaded in
particular folder using drive.google.com. In both the cases, system works exactly the
same.

from google.colab import files

uploaded = files.upload()

Figure 6: Manual Upload process

4 Data Modelling

4.1 General Setup

Darknet is the key element of the process as all the models employed in this study use
darknet as their backbone. Therefore, first darknet is cloned from its github repository.
Modified Makefile with necessary changes to enable OpenCV and GPU to utilize full
potential of Google Colab Pro platform. After changing Makefile, it is built with 'make’
command.

Before Proceeding to further stage, CUDA version is checked in order to perform
seamless process ahead. Note: CUDA comes by default with Google Colab.



# granting the permission to
%cd darknet/
!chmod a+x ./darknet

/content/gdrive/My Drive/WeaponDetection/yolo4/darknet

! /usr/local/cuda/bin/nvcc --version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon Oct_12_ 20:09:46_PDT_ 2020

Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0

Figure 7: Darknet Setup

Darknet works in specific ways and all the configurations need to be exact in order
for it to work. Images are only uploaded in data/obj folder. If the images are kept in
different folder and multi-class object detection algorithm is running, sometimes 0.00%
accuracy is received for some of the classes. Frequently used paths are saved as constants

(see

yolo_path='/content/gdrive/MyDrive/WeaponDetection/yolod'
darknet path= yolo path + '/darknet'

image path= darknet path +'/data/obj/'
os.chdir(darknet path)
! pwd

Figure 8: Commonly used paths

Some helper function are written for visualization and create randomness in testing
phase. (see[9)



# define helper functio

def imShow(path):
import cv2
import matplotlib.pyplot as plt
gmatplotlib inline

image = cv2.imread(path)
height, width = image.shape[:2]
resized_image = cv2.resize(image, (3*width, 3*height), interpolation = cv2.INTER CUBIC)

fig = plt.gcf()

fig.set_size_inches(18, 10)

plt.axis("off")

plt.imshow(cv2.cvtColor(resized image, cv2.COLOR_BGR2RGB))
plt.show()

import random

def choose_random test_file(fname):
return random.choice(open(fname).readlines())

Figure 9: Helper functions

4.2 Data split for Train & Test
Uploaded data is splitted into training and testing set with 90:10 ratio.

# splitting the files for training and testing
path_list test=path_list[:int(len(path_list)*0.10)]

path_list=path_list[int(len(path_list)*0.10):]

Figure 10: Train Test Split

train.txt and test.txt files are created with the help of splitted data. train and test
files only contain the names of the file with either relative or absolute path of the image.

t and train.txt files in data folder

#Create tr txt file with path list
with open('train.txt','w')as train

#Iterate th all the elements in the list

#Write th rrent path at the end of the file
train.write(i)
#Create te xt file with path_list
with open('test.txt','w')as test
#Iterate through all the elements in the list

for i in path_list_test:

#Write rrent path at the end of the file

test.write(

Figure 11: Creating Train Test Files

4.3 obj and config files

obj.names file contains all the classes required in the study. It is just simple file with
each class having separate row. coco.names file is file which contains all the 80 classes
employed during the training of Microsoft’s COCO dataset. coco.names is replaced with
obj.names to make sure there are no clashes between the class names in testing phase. It
was observed that if coco.names file is not replaced, wrong labels come on the predictions.



!cp {darknet_path}/OIDv4_ToolKit/classes.txt {darknet_path}/data/obj.names

!cp {darknet_path}/OIDv4_ToolKit/classes.txt {darknet_ path}/data/coco.names

Figure 12: obj.names file

obj.data file contains number of classes required for the model. It also contains loc-
ations of train and test files along with location of obj.names. It also contains vital
information of the location of the weight files. This location can also be used to start the
training process from the last checkpoint if it gets interrupted in between.

As obj.data file contains the backup location of weights trained, it is recommended to
give different backup location path to different versions of YOLO so that all the weights
are persisted properly without any conflict.

#Create obj.data

with open('obj.data','w') as data:
#Write s (¥ (
data.write('classes
#Write fully qualified
data.write('tra data/train.txt'+'\n')
#Write fully qu ath 2

at txt
= data/test.txt'+'\n')
ully qualified path of j

odel weights

mydrive/WeaponDetection/yolo4/training with 4 objects'|)

Figure 13: obj.data file

Though almost everything is similar, config files are different for each of the YOLO
models.

4.3.1 Config for YOLOv4

Height and width for YOLOv4 implementation are both set to 416. The number of
processed samples/iteration is indicated by the batch variable. The batch size for this
implementation is 64. The subdivisions variable indicates how many small batches are
handled simultaneously, it is set to 16. classes denotes number of classes present in the
object detection is this case it is set to 4. max_batches, and steps can vary depending
upon number of classes present. filters is set to 27 with filters = (classes + 5) % 3
formula. max_batches is set to 8000 as there are 4 unique classes present. steps are set as
6400,7200 that is 80% of 8000 and 90% of 8000 respectively. Config file was made using
yolo4-custom.cfg. modifications with respect to usecase of project were performed on the
same file and yolo4-weapon-4.cfg was created.



$=6400,7200
=.1,.1

tion=mish

Figure 14: YOLOv4 config file snippet 1

[convolutional]
atch_normalize=1

il =256
tivation=leaky

[convolutional]

5=27
tion=linear

[yolof
mask = 0,1,2
hc =12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401

greedynms
0.6
=5

Figure 15: YOLOv4 config file snippet 2

4.3.2 Config for Sacled-YOLOv4

config file for Scaled-YOLOv4 is almost same as YOLOv4. Only few minor changes
are there with respect to configurations like letter_box variable is set active in Scaled-
YOLOv4. config file was made using yolo4-csp.cfg. Modification with respect to usecase



of project were performed on the same file and yolo4-csp-weapon.cfg was created.

letter_box=1

ema_alpha=0.9998

Figure 16: Scaled-YOLOv4 config file snippet 1

[convolutional]
normal =1

mish

[convolutional]

[yolo]
= 0,1,2

2, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401

Figure 17: Scaled-YOLOv4 config file snippet 2

10



5 Implementation

train.txt, test.txt, obj.names, obj.data and config files are essential in order to work with
YOLO models. Once this files are created, training can be started. ’'darknet detector
train’ along with location of the config is used to train the YOLO models if training from
scratch. As for this study, pre-trained weights for both YOLOv4 and Scaled-YOLOv4
were used to get better and faster results location of respective pre-trained weights are
also passed with same command.

5.1 Training YOLOv4 model

For YOLOv4 implementation, yolo4-weapon-4.cfg config file was used. Also pre-trained
weight named yolov4.conv.137 was trained on Microsoft’s COCO dataset was used for
better performance.

# training from COCO set

! ./darknet detector train data/obj.data cfg/yolové4-weapon-4.cfg yolové4.conv.137 -dont_show -map

Figure 18: training YOLOv4

Sometimes, Even with paid subscription of Google Colab Pro it was observed that
after few hours of training if the system is idle or if there is no movement from user,
GPU used to get deallocated. Also quite often, it can be a scenario where due to some
other issue GPU is disconnected. For instances like this, to start retraining from last
saved checkpoint the same ’darknet detector train’ command can be run with location
last trained weights.

train data/obj.data cfg/yolovd-weapon-4.cfg /mydrive/WeaponDetection/yolod/training with 4_objects merged/yolové4-weapon-4_last.weights

Figure 19: restarting training YOLOv4

5.2 Training Scaled-YOLOv4 model

For Scaled-YOLOv4 implementation, yolo4-csp.cfg config file was used. Also pre-trained
weight named yolov4-csp.conv.142 was trained on Microsoft’s COCO dataset was used
for better performance.

# training scaled yolo with COCO pre-trained model

%cd (darknet_path}l
!./darknet detector train data/obj.data cfg/yolov4-csp-weapon.cfg yolov4-csp.conv.142 -dont_show -map

Figure 20: training Scaled-YOLOv4

In case of interruptions, same process like YOLOv4 can be followed.

raining scaled-yolo from last checkpoint

1. /darknet detector train data/obj.data cfg/yolové-csp-weapon.cfg {yolo_path}/training_with_4_objects_scaled_yolo/yolov4-csp-weapon_last.weights

-dont_show -map

Figure 21: restarting training Scaled-YOLOv4

11



Note : Every time model is trained charts are drawn while training is in progress.
Naming convention followed by this chart file is according to config file used for the train-
ing. General chart.png gives insights about latest model being trained at the moment. In
case of any interruptions and restarting the training from last checkpoint, both of these
chart files get overwritten losing the progress up until that point. Therefore, it is advised
to download chart files before restarting the training process.

6 Evaluation

For every 1000 iteration new file is stored in backup folder. Every weight file has different
mAP@Q.50. There are two ways to observe mAP of the model. First one is to check the
mAP with command ’darknet detector map’ with individual weight files. Second option
is to get insights from chart produces by model during the training.

6.1 Evalution of YOLOv4

weight_path = ts_merged/
for £ in os.li

weight_file = weight_path + £;
print(£'Running file {weight_file}')
1 ./darknet detector map data/obj.data cfg/yolov4-weapon-4.cfg {weight file} -points 0

159 conv 1024 3x3/1 13 x 13 x 512 —> 13 x 13 x1024 1.595 BF

160 conv 27 1x1/1 13 x 13 x1024 -> 13 x 13 x 27 0.009 BF

161 yolo

[yolo] params: iou loss: ciou (4), iou norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta norm: 1.00, scale x y: 1.05
nms_kind: greedynms (1), beta = 0.600000

Total BFLOPS 59.585

avg_outputs = 490173

Allocate additional workspace_size = 52.43 MB

Loading weights from /mydrive/WeaponDetection/yolod/training_with_4_objects_merged/yolov4-weapon-4_last.weights...
seen 64, trained: 320 K-images (5 Kilo-batches_64)

Done! Loaded 162 layers from weights-file

calculation mAP (mean average precision)...

Detection layer: 139 - type = 28

Detection layer: 150 - type = 28

Detection layer: 161 - type = 28

60

detections_count = 110, unique_truth_count = 42

class_id = 0, name = Handgun, ap = 68.90% =20, FP = 7)
7 1, name = Torch, ap = 65.00% = =

class_id = 2,

class_id = 3,

name = Stapler, ap = 66.67% =2, FP = 1)
name = Remote control, ap = 90.00% (TP = 5, FP = 1)

for conf_thresh = 0.25, precision = 0.76, recall = 0.69, Fl-score = 0.73
for conf_thresh = 0.25, TP = 29, FP = 9, FN = 13, average IoU = 61.94 %

IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.726410, or 72.64 %
Total Detection Time: 2 Seconds

Figure 22: mAP YOLOv4

(a) Chart 1 (b) Chart 2 (c) Chart 3

Figure 23: YOLOvV4 charts

12



For implementation of YOLOv4 model GPU was disconnected twice. Therefore, there
were three different charts. (see[23)).

Model training for YOLOv4 was stopped once there was no significance change in
mAP and average loss was less than 0.2.

6.2 Evalution of Scaled-YOLOv4

weight_path = '/my y onDe io rai vith 4 saled yolo/'
for £ in os.listdir(weight_path):
weight file = weight_path + f;
print(f'Running file {weight_file}')
! ./darknet detector map data/obj.data cfg/yolové4-csp-weapon.cfg {weight_ file} -points 0
173 conv 27 1x 1/ 1 13 X 13 X1024 -> 13 X 13 X 27 U.U0Y BF
174 yolo
[yolo] params: iou loss: ciou (4), iou_norm: 0.05, obj_norm: 0.40, cls_norm: 0.50, delta norm: 1.00, scale_x y: 2.00
nms_kind: diounms (2), beta = 0.600000
Total BFLOPS 50.281
avg_outputs = 357837
Allocate additional workspace_size = 52.43 MB
Loading weights from /mydrive/WeaponDetection/yolo4/training with_4_ objects_scaled yolo/yolov4-csp-weapon_last.weights...
seen 64, trained: 422 K-images (6 Kilo-batches_64)
Done! Loaded 175 layers from weights-file

calculation mAP (mean average precision)...

Detection laye: 144 - type 28

Detection laye: 159 - type 28

Detection layer: 174 - type = 28

60

detections_count 604, unique_truth_count = 42

class_id name andgun, ap = 57.07% (TP = 16, FP
class_id name = Torch, ap = 68.75% (TP = 2, FP =
class_id name tapler, ap = 83.33% (TP 2, FP
class_id name emote control, ap = 100.00% (TP

for conf_thresh = 0.25, precision = 0.69, recall = 0.60, Fl-score =
for conf_thresh = 0.25, TP = 25, FP = 11, FN = 17, average IoU = 52.

IoU threshold = 50 %, used Area-Under-Curve for each unique Recall
mean average precision (mAP@0.50) = 0.772888, or 77.29 %

Figure 24: mAP Scaled-YOLOv4

While training for Scaled-YOLOv4 there were no interruptions. Hence we have single
chart for the whole process (see [25).

13



MmMAPZ|

83.9%
C:0.0%

Loss

8.0

6.0

4.0

2.0

0.0
0

800 1600 2400 3200 4000 4800 5600 6400 7200 80
current avg loss = 5.2449 iteration = 8000 approx. time left = 0.09 hours
Press 's' to save : chart.png - Saved Iteration number in cfg max_batches=8000

Figure 25: Scaled-YOLOv4 chart

mAP is computed after every 4 Epochs with valid dataset described in obj.data
1 Epoch = pictures — in — training/batch). Charts gives understandings about the loss
function and average loss along with transition of mAP over the course of training.

7 Testing

Models with highest mAP are used for testing. After performing tests for images results
are stored in 'predictions.jpg’ file. helper function imShow’ is used to show the prediction
file.

When models are used for testing video files, it only shows the calculations performed
during the testing and results are stored in new file with added bounding boxes as pre-
dictions.

14



7.1 Testing YOLOv4

fname = choose_random_test_file(

fname = fname.repl
print (f'Runnin
imShow('p

13 x
13 x
13 x
13 x
13 x
13
13 x

154 conv.

iou (4), iou norm:
beta = 0.600000

[yolo) params: iou loss:
nms_kind: greedynms (1),
Total BFLOPS 59.585
avg_outpuf 490173
Allocate additional workspace size
Loading weights from /content/gdris
n 64, trained: 307 K-images (4 Kilo-batc
Done! Loaded 162 layers from weights-file
Detection laye: e = 28
Detection laye:
Detection laye:
/content/gdrive/MyDrive/WeaponDetection/
Handgun: 100%
Unable to init server: Could not

(predictions:4409) : Gk-WARNING **: 12:48:26

./darknet detector demo data/obj.da

{yolo_path}/test videos/qun-video.mpd -i 0 —ou

AVG_FPS:43.2

Handgun: 60%

FPS:40.7 AVG_FPS:43.2

cvWriteFrame
Object:
Handgun
FPS:40 AVG_FPS:43.2

cvWriteFrame

AVG_FPS:43.2

cviriteFrame
Objects:
Handgun: 57%

AVG_FPS:43.2

52.43 W
MyDrive/WeaponDet«

{£name) -dont ¢

13 x1024
13 x 512
13 x1024
13 x 512
13 x1024
13 x 512
13 x1024

0.07, obj_norm: 1.00, , delta norm: 1.00, scale,

B

tion/yolod/training ._merged/yolovi-weapon-4_best.weights

/darknet /data/ob3/MomentmexicancouboystoppedarmedrobberyBBCNews49. pg: Predicted in 20.268000 milli-seconds.

onnection refused

53-04901

2018 11. 07 06 AW

BNEACebook:/ Carnes Cares
N

4

cfg/yolovi-weapon-4.cfg {yolo_path}/training with_4_obj
_ filename {yolo_path}/result videos/gun-video-result.mpd

Figure 27: Testing YOLOv4 model on Videos

15

cts_merged/yolov4-weapon-4_best.weights -dont_show



7.2 Testing Scaled-YOLOv4

= choose_random_test_fi

Click to show 36 definitions.

str: fname fname} ')
sapon.cfg {yolo_path}/training with_4_objects_scaled_yolo/yolovd-csp-weapon_best.weights {fname} -dont_show

"'data/obj/e6508678cae@be52. jpg’
107 conv s1z > x o/ 1 13 x 13 x 512 13 13 x 512 0.797

168 conv 512 1x1/1 13 x 13 x 512 13 13 x 512 0.089
169 conv 512 3x3/1 x 13 x 512 13 13 x 512 0.797

170 route 169 164 13 13 x1024

171 conv 512 x1/ 1 13 x1024 13 13 x 512 0.177

172 conv 1024 x3/1 x 13 x 512 13 13 x1024 1.595

173 conv 27 x1/1 13 x1024 E! 13 x 27 0.009

174 yolo

[yolo] params: iou loss: ciou (4), iou norm: 0.05, obj 0.40, cls_norm: 0.50, delta norm: 1.00, scale x_y: 2.00
nms_kind: diounms (2), beta = 0.600000

Total BFLOPS 50.281

avg_outputs = 357837

Allocate additional workspace size = 52.43 MB

Loading weights from /content/gdrive/MyDrive/WeaponDetection/yolod/training with 4_objects_scaled_yolo/yolovd-csp-weapon best.weights...
seen 64, trained: 198 K-images (3 Kilo-batches_64)

Done! Loaded 175 layers from weights-file

Detection layer: 144 - type = 28

Detection layer: 159 - type = 28

Detection layer: 174 - type = 28

data/obj/e6508678cae0be52. jpg: Predicted in 18.387000 milli-seconds.

Torch: 79%

Unable to init server: Could not connect: Connection refused

(predictions:4461): Gtk-WARNING **: 12:51:43.551: cannot open display:

./darknet detector demo data/obj.data cfg/yolov4-csp-weapon.cfg {yolo_path}/training with_4_objects_scaled yolo/yolov4-csp-weapon_best.weights
-dont_show {yolo_path}/test videos/qun-video-1.mp4 -i 0 -out filename {yolo_path}/result videos/qun-video-l-scaled-result.mpd

cvWriteFrame
Objects:

Handgun:
Handgun:

FPS:45.8 AVG_FPS:40.8

cviiriteFrame
Objects:

cvWriteFrame
Objects:

Handgun: 70%
Handgun: 32%

FPS:46.1

cviriteFrame
Objects:

Handgun: 69%

Figure 29: Testing Scaled-YOLOv4 model on Videos

Figure shows snapshot taken from the video file on which YOLO models were per-
formed. Snapshot was taken when video was paused in fullscreen.

16



Figure 30: Snapshot of video result file

References

jubaerad (2020). Weapons in Images.
URL: hitps://www.kaggle.com/datasets /jubaerad/weapons-in-images-segmented-
videos

Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S.,
Popov, S., Malloci, M., Kolesnikov, A., Duerig, T. and Ferrari, V. (2020). The open im-
ages dataset v4: Unified image classification, object detection, and visual relationship
detection at scale, IJCV .

17



	Introduction
	Hardware & Software Requirements
	Hardware Setup
	Software Setup

	Data Preprocessing
	Data Downloading and Sorting
	Data gathering
	Data Annotation
	Data Uploading

	Data Modelling
	General Setup
	Data split for Train & Test
	obj and config files
	Config for YOLOv4
	Config for Sacled-YOLOv4


	Implementation
	Training YOLOv4 model
	Training Scaled-YOLOv4 model

	Evaluation
	Evalution of YOLOv4
	Evalution of Scaled-YOLOv4

	Testing
	Testing YOLOv4
	Testing Scaled-YOLOv4


