
Categorization of Fashion Clothes from
WildImages using Object Detection

andSegmentation based Models

MSc Research Project
Data Analytics

Rohan Indrajeet Jadhav
Student ID: x20169043

School of Computing
National College of Ireland

Supervisor: Dr. Paul Stynes, Dr. Pramod Pathak

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Rohan Indrajeet Jadhav
Student ID: x20169043
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Paul Stynes, Dr. Pramod Pathak
Submission Due Date: 31/01/2022
Project Title: Categorization of Fashion Clothes from WildImages using Ob-

ject Detection andSegmentation based Models
Word Count: NA
Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Categorization of Fashion Clothes from WildImages
using Object Detection andSegmentation based

Models

Rohan Indrajeet Jadhav
x20169043

1 Introduction
The configuration manual shows all the requirements that are needed to replicate the
work in other environment similar fashion. Below sections mainly includes, the azure
cloud deployment, dataset configuration over cloud, and run the code.

2 System Specification

2.1 Hardware Requirement

Minimum hardware requirement for running the azure cloud environment.

• CPU with operating frequency of 1 GHz minimum

• 64-bit operating system

• RAM: 4 GB minimum

• Disk space: 10 GB minimum

Figure 1 shows the device configuration from which the azure cloud setup is accessed.

Figure 1: Device configuration used to access the Azure cloud

1

2.2 Software Requirement

For software it requires only internet browser from one can access the cloud environment.

• Microsoft Edge (recommended: Chromium-based Edge)

• Google Chrome

• Apple Safari

• Internet Explorer 11

Figure 2 and 3 shows the versions and details of browser which are used for accessing the
azure cloud setup.

Figure 2: Google Chrome information

Figure 3: Microsoft Edge information

3 Azure Cloud Environment Setup
Once we satisfied with all the system configuration to access the cloud setup need to
create the below services to train and run the models further.

2

3.1 Setting up the Resource group

For working on cloud user need to have an resource group under which all the other
services which are required can be created and access withing given network of resource
group.Here workspace created is RJ-workspace shown in figuree 4

Figure 4: Creating Resource group

3.2 Setting up the Blob storage

Blob storage setup is also required, there are two ways manually can create one service
under on resource group RJ-workspace or while uploading the dataset it will automatically
creates a file system on blob storage as shown in figure 5

Figure 5: File system on blob storage

3

3.3 Setting up Azure ML studio

The key part in all implementation is azure ML studio where actual studio in which
development is done. This includes code, dataset, required cluster spin which is given
below.

Figure 6 shows how to create the ML studio.

Figure 6: Creating ML studio

Once the ML studio is created the figure 7 shows how to launch the studio.

Figure 7: Launching ML studio

Figure 8 shows the view of the ML studio how the notebook is listed along with dataset
and other required functionalities such on left panel shows the deepfashion2 dataset which
I have uploaded, the ipnyb file of Faster RCNN model which is already trained. Till now
this guide helps in creating the studio where developer can develop the code but it requires
the high configured GPU which is explained in next section that is 3.4.

4

Figure 8: View of ML studio

3.4 Spin GPU based Compute node

As all the environment is created now its time to create the compute node which is the
most crucial part to run such high visualization tasks on GPU based cluster.

Figure 9 show how to create the GPU based cluster, basic requirement which is
required to complete these tasks are:

• 2 core GPU

• 20 GB RAM

• 200 GB of disk space

In this case I have got the least is 2 core GPU, 20 RAM, 256 GB of disk space. This
varies user to user.

4 Importing the deepfashion2 dataset
Deepfashion2 dataset is availed from authors of the dataset creator which they have given
the access to google drive and password to unzip the dataset. As thi model building part
is going to carry out on cloud need to upload the dataset to cloud environment. Figure
10 shows how to upload the folder of dataset to Azure ML studio. There is another to do
this is uploading the zip file to cloud and then unzip it there using unix command, this
will be a much easier way to upload.

The actual dataset deepfashion2 will get at location: https://github.com/switchablenorms/
DeepFashion2

5 Locating and parsing the dataset location
Data directories are crucial element when it deals with multiple file access while building
the model. In this case the key datasets are, annotation file and fashion images for each
dataset that is train, test and validation.

5

https://github.com/switchablenorms/DeepFashion2
https://github.com/switchablenorms/DeepFashion2

Figure 9: Creating GPU based compute node

Figure 10: Uploading the deepfashion2

6

Figure 11: Directory structure on ML studio for dataset

The directory structure which I have followed is /root/deepfashion2 under will get
the /train, /test and /validation dataset. For validation and train will get the /annos
folder for annotation files in JSON format and /images for actual fashion images. Figure
11 shows the all paths which is captured from compute node terminal.

6 Run the code
Lastly one can run the code by uploading the ipnyb file to ML studio.Here I have ran
in two different azure environment both of the models which Faster RCNN and Mask
RCNN. All of the process will be same but only paths of dataset has to be changed.

Below paths represents the annotation and image file paths for train dataset

json_name = '/mnt/batch/tasks/shared/LS_root/mounts/clusters/
x201690431/code/Users/x20169043/deepfashion2/train/annos/'

image_name = '/mnt/batch/tasks/shared/LS_root/mounts/clusters
/x201690431/code/Users/x20169043/deepfashion2/train/image '

consolidated_json = '/mnt/batch/tasks/shared/LS_root/mounts/
clusters/x201690431/code/Users/x2016904/deepfashion2/train
/train.json '

In the same way the validation dataset would have file and data location such as:

json_name = '/mnt/batch/tasks/shared/LS_root/mounts/clusters/
x201690431/code/Users/x20169043/deepfashion2/validation/
annos/'

image_name = '/mnt/batch/tasks/shared/LS_root/mounts/clusters
/x201690431/code/Users/x20169043/deepfashion2/validation/
image/

consolidated_json_name = '/mnt/batch/tasks/shared/LS_root/
mounts/clusters/x201690431/code/Users/x20169043/

7

deepfashion2/validation/validation.json '

The locations for test would be a bit different as it will not require annotation for all
the fashion images of test data. This will be used for testing and evaluating the results.
Below dataset registration needed to change when one trying to replicate the work.

import os
import numpy as np
import json

from detectron2.data.datasets import register_coco_instances
register_coco_instances("deep_fashion_train", {},

"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/train/train.json",
↪→

↪→

"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/train/image/")↪→

register_coco_instances("deep_fashion_valid", {},
"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/validation/validation.json",
↪→

↪→

"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/validation/image/")↪→

register_coco_instances("deep_fashion_test", {},
"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/d ⌋

eepfashion2/test/json_for_test/retrieval_test_consumer_information.json",
"/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/test/image/")

↪→

↪→

↪→

↪→

↪→

Below code can help to install the required libraries such as torch, deetctron2, cython
and so on.

Installing the torch and torch vision
!pip3 install -U torch==1.5 torchvision==0.6 -f

https://download.pytorch.org/whl/cu101/torch_stable.html↪→

Installling cython
!pip3 install cython pyyaml==5.1
#Installing coco related libraries
!pip3 install -U 'git+https://github.com/cocodataset/cocoapi.git#subd ⌋

irectory=PythonAPI'↪→

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
!gcc --version
Installing Google colab library
!pip install google.colab
#Installing the detevtron2 API
!pip3 install detectron2==0.1.3 -f

https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html↪→

8

7 Actual Code
This section shows the actual python code of both models how the development is carried
out so far.

7.1 Faster RCNN

Below code shows the consolidated JSON file creation for train dataset same way the
validation dataset is also used just paths are changed as explained in section 6.

The same code is running for validation dataaset as well as:
from PIL import Image
import numpy as np
import json

dataset = {
"info": {},
"licenses": [],
"images": [],
"annotations": [],
"categories": []

}

lst_name = ['short_sleeved_shirt', 'long_sleeved_shirt',
'short_sleeved_outwear', 'long_sleeved_outwear',↪→

'vest', 'sling', 'shorts', 'trousers', 'skirt',
'short_sleeved_dress',↪→

'long_sleeved_dress', 'vest_dress', 'sling_dress']

for idx, e in enumerate(lst_name):
dataset['categories'].append({

'id': idx + 1,
'name': e,
'supercategory': "clothes",
'keypoints': ['%i' % (i) for i in range(1, 295)],
'skeleton': []

})

num_images = 5000 #32153
sub_index = 0 # the index of ground truth instance
for num in range(1, num_images + 1):

json_name =
'/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/validation/annos/' +
str(num).zfill(6) + '.json'

↪→

↪→

↪→

image_name =
'/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/validation/image/' +
str(num).zfill(6) + '.jpg'

↪→

↪→

↪→

9

if (num >= 0):
print(image_name)
imag = Image.open(image_name)
width, height = imag.size
with open(json_name, 'r') as f:

temp = json.loads(f.read())
pair_id = temp['pair_id']

dataset['images'].append({
'coco_url': '',
'date_captured': '',
'file_name': str(num).zfill(6) + '.jpg',
'flickr_url': '',
'id': num,
'license': 0,
'width': width,
'height': height

})
for i in temp:

if i == 'source' or i == 'pair_id':
continue

else:
points = np.zeros(294 * 3)
sub_index = sub_index + 1
box = temp[i]['bounding_box']
w = box[2] - box[0]
h = box[3] - box[1]
x_1 = box[0]
y_1 = box[1]
bbox = [x_1, y_1, w, h]
cat = temp[i]['category_id']
style = temp[i]['style']
seg = temp[i]['segmentation']
landmarks = temp[i]['landmarks']

points_x = landmarks[0::3]
points_y = landmarks[1::3]
points_v = landmarks[2::3]
points_x = np.array(points_x)
points_y = np.array(points_y)
points_v = np.array(points_v)
case = [0, 25, 58, 89, 128, 143, 158, 168, 182, 190,

219, 256, 275, 294]↪→

idx_i, idx_j = case[cat - 1], case[cat]

for n in range(idx_i, idx_j):
points[3 * n] = points_x[n - idx_i]

10

points[3 * n + 1] = points_y[n - idx_i]
points[3 * n + 2] = points_v[n - idx_i]

num_points = len(np.where(points_v > 0)[0])

dataset['annotations'].append({
'area': w * h,
'bbox': bbox,
'category_id': cat,
'id': sub_index,
'pair_id': pair_id,
'image_id': num,
'iscrowd': 0,
'style': style,
'num_keypoints': num_points,
'keypoints': points.tolist(),
'segmentation': seg,

})
Writing the consolidated JSON file
json_name =

'/mnt/batch/tasks/shared/LS_root/mounts/clusters/x201690431/cod ⌋

e/Users/x20169043/deepfashion2/validation/validation.json'
↪→

↪→

with open(json_name, 'w') as f:
json.dump(dataset, f)

Below code in snippet 12 shows the configurations which is used for Faster RCNN to
train the 10k fashion images using the consolidated JSON file:

Figure 12: Faster RCNN model configuration

11

7.2 Mask RCNN

For consolidated JSON creation is the same code which is explained in above section but
the configuration which is used is bit different which is shown in below code snippet 13

Figure 13: Mask RCNN model configuration

Below code shows how the interferences are created on validation dataset. In the same
way it has implemented in Faster RCNN.

from detectron2.data import DatasetCatalog, MetadataCatalog,
build_detection_test_loader↪→

from detectron2.evaluation import COCOEvaluator, inference_on_dataset

cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.75
predictor = DefaultPredictor(cfg)
evaluator = COCOEvaluator("deep_fashion_valid", cfg, False,

output_dir="./output/")↪→

val_loader = build_detection_test_loader(cfg, "deep_fashion_valid")
inference_on_dataset(trainer.model, val_loader, evaluator)

As part of evaluation used the COCO evaluator below code snippet shows how the
summary has been collected.

running evaluation
cocoEval = COCOeval(cocoGt,cocoDt,annType)
cocoEval.params.imgIds = imgIds
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()

12

	Introduction
	System Specification
	Hardware Requirement
	Software Requirement

	Azure Cloud Environment Setup
	Setting up the Resource group
	Setting up the Blob storage
	Setting up Azure ML studio
	Spin GPU based Compute node

	Importing the deepfashion2 dataset
	Locating and parsing the dataset location
	Run the code
	Actual Code
	Faster RCNN
	Mask RCNN

