
Adaptive kinematic particle filter classifier
for autonomous robots

MSc Research Project

Data Analytics

Ayoola Idris-Animashaun
Student ID: x20103689

School of Computing

National College of Ireland

Supervisor: William Clifford

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ayoola Idris-Animashaun

Student ID: x20103689

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: William Clifford

Submission Due Date: 20/12/2018

Project Title: Adaptive kinematic particle filter classifier for autonomous ro-
bots

Word Count: 1780

Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Adaptive kinematic particle filter classifier for
autonomous robots

Ayoola Idris-Animashaun
x20103689

1 Introduction

This configuration manual contains hardware and software requirements. The Readme.md
file contains the full details of this manual and can be consulted for easy running of this
config.

2 Hardware and Software Requirements

2.0.1 Hardware Description

This project was researched on a Lenovo T450s with the following specification Processor:
Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz 2.29 GHz RAM: 16GB Operating Systen:
64-bit, x640based processor, Windows 10 Home/20H2, Windows Feature Experience Pack
120.2212.3920.0

2.0.2 Software Description

The following softwares will need to be installed prior to running this project. Standard
distributions should work across operating systems. Please refer to these dependency
versions if needed. Python 3.9.9 Jupyter Notebook 6.4.0 Opencv-python 4.5.3.56 Pandas
1.2.4 Scikit 1.0.1 Scipy 1.7.0 Seaborn 0.11.1 Notepad++ Web browsers ———————
——————————————————

Phase 1 - Initializing the robot
Step 1: Run ’robot driver auto before motion model’.py from the command line by

typing ”python3 ’robot driver auto before motion model’.py -steps 100” into the command
line. You can enter 5, 10, 20, 50 or 100 only steps only. Please enter 100 to replicate this
project.

Step 2: A file titled, ”Before motion model (Number of steps you selected from Step
1) steps particle tracking auto.csv” will be available after Step 1 is done running.

Step 3: Run the ”particle tracker before motion model”.ipynb file in a Jupyter Envir-
onment

Step 4: A plot of the average distance between the robot and each particles will be
plotted. The aim of this research is to get an average number that is lesser than this
average.

1



Phase 2 - Generating the robot poses Step 1: From the Jupyter home of this directory.
Run the ’robot wheel generator”.ipynb file in Jupyter to synthesize robot poses. This file
will generate robot poses for 5, 10, 20, 50 and 100 steps each for a single fixed wheel, an
omni wheel and a two fixed wheels. This will be used later by the classifiers we will build.
The last cell in this notebook will generate test data that none of the classifiers will have
seen. This will be used to ensure there is no over-fitting during hyper-parameter tuning

Step 2: Still in the jupyter home, run the ’Classifier Analysis’.ipynb file to see how
the selected classifiers perform on the data generated in step 1 of Phase 2. The initial
execution will run for 100 robot steps. A table of comparison among the classifiers will
be presented along with the confusion matrix for each classifier. The following execution
will then run for 5, 10, 20, 50, 100 to improve the performance of each classifier based on
more input to the classifier. We see that the performance of the classifiers will improve
with more steps. We see that KNN has a high log loss and so we will exclude it from the
next stage where we tune the hyper-parameters on the models.

Step 3-5 is the same but for different classifiers
Step 3a: Run the ’Hyperparameter Tuning Decision Tree’.ipynb file. It will tune

hyper-parameters for 100 robot steps initially. The output will contain the best para-
meters and plot of the test vs train error for accuracy and log loss. The second run will
use the tuned hyper-parameters values to see how the model performance improves with
more robot steps. A plot of accuracy and log loss will be displayed at the end of the run.

Step 3b. Run the ’Test Overfitting Decision Tree’.ipynb file to be sure the model in
3a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 3A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIGHTS FROM STEP 3A FOR PREDICTION

Step 4a: Run the ’Hyperparameter Tuning Random Forest’.ipynb file. It will tune
hyper-parameters for 100 robot steps initially. The output will contain the best para-
meters and plot of the test vs train error for accuracy and log loss. The second run will
use the tuned hyper-parameters values to see how the model performance improves with
more robot steps. A plot of accuracy and log loss will be displayed at the end of the run.

Step 4b. Run the ’Test Overfitting Random Forest’.ipynb file to be sure the model
in 4a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 4A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIG=HTS FROM STEP 4A FOR PREDICTION

Step 3a: Run the ’Hyperparameter Tuning Logistic Regression’.ipynb file. It will
tune hyper-parameters for 100 robot steps initially. The output will contain the best
parameters and plot of the test vs train error for accuracy and log loss. The second run
will use the tuned hyper-parameters values to see how the model performance improves
with more robot steps. A plot of accuracy and log loss will be displayed at the end of the
run.

Step 3b. Run the ’Test Overfitting Logistic Regression’.ipynb file to be sure the model
in 3a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 3A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIGHTS FROM STEP 3A FOR PREDICTION

Phase 3 Step 1: Run the ’Tuned Random Forest’.ipynb file to generate model weights
for 5, 10, 20, 50, 100 robot steps.

Step 2: Run ’robot driver auto’.py from the command line by typing ”python3 ’ro-
bot driver auto’.py -steps 100” into the command line. You can enter 5, 10, 20, 50 or
100 only for steps. This will determine the number of steps before a robot processes

2



a prediction of the wheel type it has and apply the necessary motion constraint to its
particles. Please enter 100 to replicate this project.

Step 3: A file titled, ”After motion model (Number of steps you selected from Step
1) steps particle tracking auto.csv” will be available after Step 2 is done running.

Step 4: Run the ”particle tracker after motion model”.ipynb file in a Jupyter Envir-
onment

Step 5: Two plots of the average distance between the robot and each particle for
before the motion model was added and for after the motion model was added will be
plotted. The average distance will be shown after each plot. We will see that the distance
for the after the motion model was added is lesser than the distance before the motion
model was added. This shows that the particles were constrained and moved in close
proximity with the robot within the space, especially for moments when a landmark was
not visible.

Step 6: Run the ”robot driver’.py file from the command line to interact with the
live robot environment and see the particles converge around the robot as you navigate
it through the environment. Use keys ’a’, ’d’ to rotate the robot clockwise and anti-
clockwise, and the keys ’w’,’s’ to move the robot forward and backwards. It does not
require a number of steps to run. You can remove the set seed on line 60 to generate a
new environment on every run.

Please see screenshots below ————————————————————————
–

2.1 Datasets

2.1.1 Phase 1 - Initializing the robot

• Step 1: Run ’robot driver auto before motion model’.py from the command line by
typing ”python3 ’robot driver auto before motion model’.py -steps 100”
into the command line. You can enter 5, 10, 20, 50 or 100 only as input steps only.
Please enter 100 to replicate this project.

• Step 2: A file titled, ”Before motion model (NUMBER OF STEPS YOU SELEC-
TED FROM STEP 1) steps particle tracking auto.csv” will be available after Step
1 is done running.

• Step 3: Run the ”particle tracker before motion model”.ipynb file in a Jupyter
Environment

• Step 4: A plot of the average distance between the robot and each particles will be
plotted. The aim of this research is to get an average number that is lesser than
this average.

3 Data Pre-processing.

The data generated by the robot wheel generator program is read in from comma sep-
arated values into pandas dataframes. We check the balance of the classes and see if we
have missing values.

3



Figure 1: Data generation 1

4 Data Mining

4.1 Classifier Analysis

We compare four classifiers. We consider Logistics Regression, KNN, Decision Trees and
Random Forest.

4.2 Hyper-parameter tuning

The following models had their hyper-parameters tuned to find the best prediction scen-
ario. Log loss was compared with accuracy and visual observation of confusion matrix to
select the winning model.

4.3 Run robot auto sequence

References

4



Figure 2: Data generation Test for over-fitting dataset

5



Figure 3: Exploratory Data Analysis

6



Figure 4: Check for data imbalance

7



Figure 5: Importing data for classifier analysis

8



Figure 6: Classifier analysis

9



Figure 7: Result of Classifier analysis

10



Figure 8: DecisionTree tuned result

11



Figure 9: RandomForest tuned result

12



Figure 10: Generating 100 robot steps

13



Figure 11: Comparing average length from before and after

14



Figure 12: Robot world

15


	Introduction
	 Hardware and Software Requirements
	Hardware Description
	Software Description

	Datasets
	Phase 1 - Initializing the robot


	Data Pre-processing.
	Data Mining
	Classifier Analysis
	Hyper-parameter tuning
	Run robot auto sequence


