~

-"‘f’“
\ National
College

Ireland

Adaptive kinematic particle filter classifier
for autonomous robots

MSc Research Project
Data Analytics

Ayoola Idris-Animashaun
Student ID: x20103689

School of Computing
National College of Ireland

Supervisor: ~ William Clifford

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ayoola Idris-Animashaun
Student ID: x20103689
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: William Clifford
Submission Due Date: 20/12/2018
Project Title: Adaptive kinematic particle filter classifier for autonomous ro-
bots
Word Count: 1780
Page Count: [15]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Adaptive kinematic particle filter classifier for
autonomous robots

Ayoola Idris-Animashaun
x20103689

1 Introduction

This configuration manual contains hardware and software requirements. The Readme.md
file contains the full details of this manual and can be consulted for easy running of this
config.

2 Hardware and Software Requirements

2.0.1 Hardware Description

This project was researched on a Lenovo T450s with the following specification Processor:
Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz 2.29 GHz RAM: 16GB Operating Systen:
64-bit, x640based processor, Windows 10 Home/20H2, Windows Feature Experience Pack
120.2212.3920.0

2.0.2 Software Description

The following softwares will need to be installed prior to running this project. Standard
distributions should work across operating systems. Please refer to these dependency
versions if needed. Python 3.9.9 Jupyter Notebook 6.4.0 Opencv-python 4.5.3.56 Pandas
1.2.4 Scikit 1.0.1 Scipy 1.7.0 Seaborn 0.11.1 Notepad++ Web browsers

Phase 1 - Initializing the robot

Step 1: Run 'robot driver auto before motion model’.py from the command line by
typing ” python3 'robot driver auto before motion model”.py -steps 100” into the command
line. You can enter 5, 10, 20, 50 or 100 only steps only. Please enter 100 to replicate this
project.

Step 2: A file titled, ”Before motion model (Number of steps you selected from Step
1) steps particle tracking auto.csv” will be available after Step 1 is done running.

Step 3: Run the ”particle tracker before motion model”.ipynb file in a Jupyter Envir-
onment

Step 4: A plot of the average distance between the robot and each particles will be
plotted. The aim of this research is to get an average number that is lesser than this
average.

Phase 2 - Generating the robot poses Step 1: From the Jupyter home of this directory.
Run the 'robot wheel generator”.ipynb file in Jupyter to synthesize robot poses. This file
will generate robot poses for 5, 10, 20, 50 and 100 steps each for a single fixed wheel, an
omni wheel and a two fixed wheels. This will be used later by the classifiers we will build.
The last cell in this notebook will generate test data that none of the classifiers will have
seen. This will be used to ensure there is no over-fitting during hyper-parameter tuning

Step 2: Still in the jupyter home, run the ’Classifier Analysis’.ipynb file to see how
the selected classifiers perform on the data generated in step 1 of Phase 2. The initial
execution will run for 100 robot steps. A table of comparison among the classifiers will
be presented along with the confusion matrix for each classifier. The following execution
will then run for 5, 10, 20, 50, 100 to improve the performance of each classifier based on
more input to the classifier. We see that the performance of the classifiers will improve
with more steps. We see that KNN has a high log loss and so we will exclude it from the
next stage where we tune the hyper-parameters on the models.

Step 3-5 is the same but for different classifiers

Step 3a: Run the "Hyperparameter Tuning Decision Tree’.ipynb file. It will tune
hyper-parameters for 100 robot steps initially. The output will contain the best para-
meters and plot of the test vs train error for accuracy and log loss. The second run will
use the tuned hyper-parameters values to see how the model performance improves with
more robot steps. A plot of accuracy and log loss will be displayed at the end of the run.

Step 3b. Run the "Test Overfitting Decision Tree’.ipynb file to be sure the model in
3a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 3A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIGHTS FROM STEP 3A FOR PREDICTION

Step 4a: Run the 'Hyperparameter Tuning Random Forest’.ipynb file. It will tune
hyper-parameters for 100 robot steps initially. The output will contain the best para-
meters and plot of the test vs train error for accuracy and log loss. The second run will
use the tuned hyper-parameters values to see how the model performance improves with
more robot steps. A plot of accuracy and log loss will be displayed at the end of the run.

Step 4b. Run the "Test Overfitting Random Forest’.ipynb file to be sure the model
in 4a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 4A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIG=HTS FROM STEP 4A FOR PREDICTION

Step 3a: Run the 'Hyperparameter Tuning Logistic Regression’.ipynb file. It will
tune hyper-parameters for 100 robot steps initially. The output will contain the best
parameters and plot of the test vs train error for accuracy and log loss. The second run
will use the tuned hyper-parameters values to see how the model performance improves
with more robot steps. A plot of accuracy and log loss will be displayed at the end of the
run.

Step 3b. Run the "Test Overfitting Logistic Regression’.ipynb file to be sure the model
in 3a has not been overfitted and can be generalised. PLEASE NOTE THAT STEP 3A
MUST BE CARRIED OUT BEFORE THIS STEP CAN BE CARRIED OUT DUE TO
THIS STEP USING THE WEIGHTS FROM STEP 3A FOR PREDICTION

Phase 3 Step 1: Run the "Tuned Random Forest’.ipynb file to generate model weights
for 5, 10, 20, 50, 100 robot steps.

Step 2: Run 'robot_driver_auto’.py from the command line by typing ”python3 ’ro-
bot_driver_auto’.py -steps 100” into the command line. You can enter 5, 10, 20, 50 or
100 only for steps. This will determine the number of steps before a robot processes

a prediction of the wheel type it has and apply the necessary motion constraint to its
particles. Please enter 100 to replicate this project.

Step 3: A file titled, ” After motion model (Number of steps you selected from Step
1) steps particle tracking auto.csv” will be available after Step 2 is done running.

Step 4: Run the ”particle tracker after motion model”.ipynb file in a Jupyter Envir-
onment

Step 5: Two plots of the average distance between the robot and each particle for
before the motion model was added and for after the motion model was added will be
plotted. The average distance will be shown after each plot. We will see that the distance
for the after the motion model was added is lesser than the distance before the motion
model was added. This shows that the particles were constrained and moved in close
proximity with the robot within the space, especially for moments when a landmark was
not visible.

Step 6: Run the "robot_driver’.py file from the command line to interact with the
live robot environment and see the particles converge around the robot as you navigate
it through the environment. Use keys ’a’, 'd” to rotate the robot clockwise and anti-
clockwise, and the keys 'w’,’s” to move the robot forward and backwards. It does not
require a number of steps to run. You can remove the set seed on line 60 to generate a
new environment on every run.

Please see screenshots below

2.1 Datasets
2.1.1 Phase 1 - Initializing the robot

e Step 1: Run 'robot driver auto before motion model’.py from the command line by
typing ”python3 ’robot driver auto before motion model’.py -steps 100”
into the command line. You can enter 5, 10, 20, 50 or 100 only as input steps only.
Please enter 100 to replicate this project.

e Step 2: A file titled, "Before motion model (NUMBER OF STEPS YOU SELEC-
TED FROM STEP 1) steps particle tracking auto.csv” will be available after Step
1 is done running.

e Step 3: Run the 7"particle tracker before motion model”.ipynb file in a Jupyter
Environment

e Step 4: A plot of the average distance between the robot and each particles will be
plotted. The aim of this research is to get an average number that is lesser than
this average.

3 Data Pre-processing.

The data generated by the robot wheel generator program is read in from comma sep-
arated values into pandas dataframes. We check the balance of the classes and see if we
have missing values.

= O X

mne@e® C s 888 68|@ 8 8|8 FxE |62+ -]
e 0 @ localhost:8891/notebooks/Robot%20Wheel%20.. @ | & A M a» B "3‘ =
:Jupyter Robot Wheel Generator (autosaves) [Logout
File Edit Wiew Insart Cel Keamns Help Trusted |Fy'tr‘:|'13 (8]]
2+ s 2R ¥ pren B C W cone vl = 1
:
In [1]: M 1 import numpy as np

2 import csv
2 import cv2 as cv]

In [2]: MW 1 np.random.seed(16)

3 steps = [5, 18, 28, 5@, 18]
4 | #steps = [5@a, 1gg8]
#no_of_robot_steps = 5

TP

for no_of_robot_steps in steps:

all_fixed_wheel_sequences = { 'xs' : np.ones(nc_of_robot_steps), 1
g 'vs' & np.ones(no_of_robot_steps),
18 "theta’ : np.ones{noc_of_robot_steps)
1 ¥

13 for 1 in range(a,1eee}:

14 ¥_initial = np.random.rand{) * 758

15 random_slope = np.random.rand{) # m

16 random_intersection = np.random.rand{} * 358 # c wolue

1 #print{"x_initial: ", x_initial, “random_slope: ", rondom_slope, "random_intersection:

20 ¥_vals_updates = x_initial + np.cumsum{{np.random.rand{nc_of_rcbot_steps) * 5) - (np.r
21 y_vals_updates = {random_slope * x_vals_updates) + random_intersection [}
22 theta_updates = np.ones{no_of_robot_steps) * np.arctan{random_slope} ;
23 #print{"x_vals: ", x vals_updates, "y wals: ", y vals updates, "theta updates “, thetg

25 all_fixed_wheel_sequences['xs'] = np.wstack{(all_fixed_wheel_sequences['xs"'], x_vals L
26 all_fixed wheel_sequences['ys'] = np.vstack{(all_fixed_wheel_sequences['ys"'], y_vals_u 1
2 all_fixed wheel sequences['theta’] = np.vstack(({all_fixed_wheel_ sequences['thetz'], tF

29 #print{"fw xs" L_fixed wheel_sequences[‘xs']J}
38 #print (“fw ys© eel_sequences['ys'
31 #orint (“fw the wheel_sequences|

34 np.savetxt(str{no_of_robot_steps) + "_steps_fiwed_thetas.csv", all fixed wheel_sequences['

35 np.savetxt(str{nc_of_robot_steps) + "_steps_fiwed_xs.csv", all_fixed_wheel_sequences['xs']

36 np.savetxt(str{no_of_rcbot_steps) + "_steps_fiwed_ys.csv", all_fixed wheel_sequences[’ys'

18 A A RO WO LS A A P A R R .

Figure 1: Data generation 1

4 Data Mining

4.1 Classifier Analysis

We compare four classifiers. We consider Logistics Regression, KNN, Decision Trees and
Random Forest.

4.2 Hyper-parameter tuning

The following models had their hyper-parameters tuned to find the best prediction scen-
ario. Log loss was compared with accuracy and visual observation of confusion matrix to
select the winning model.

4.3 Run robot auto sequence

References

H T

C

0 @ localhost:8891/notebooks/Robot%20Wheal%20... @ | & A

- - - -

8 e o 1 -

MR P

" Jupyter Robot Wheel Generator (sutassves) P oo
Fikz Edit Wisw Inzart Cell Kermnsa Help Tn | Python 2 QO
B+ ||| B s $|[rRun B C| M | Code v =
1821 1881 1eal
1881 1881 1eal
In [4]: M 1 np.random. seed(&4)

3

4 | & fixed wheel

5

& steps = [5, 18, 28, 58, 188]

7 | #steps = [58a, 188a]

g #no_of_robot_steps = 5

g

12 for no_of_robot_steps im steps:

11 all_fixed wheel_seguences = { "xs' : np.ones{no_of_robot_steps),

2 ‘yv3' @ np.ones{no_cf_robot_steps),

13 "theta' : np.ones{no_of_rcbot_steps)

14

15

16 for 1 in range(@,l@ea}:

17 ¥_initial = np.randem.rand() * 758

18 random_slope = np.random.rand{} & m

19 random_intersection = np.random.rand{} * 358 # ¢ value

28 #print{"x_initigl: ", x initial, “random_slope: “, rondom slope, “random_intersection:
21

23 ¥ _wals_updates = x initial + np.cumsum(({np.random.rand{nc_of_rcbot_steps) * 5) - (np.r
24 y¥_wals_updates = (random_slope * x_wals_updates) + random_intersecticn

25 theta_updates = np.ones{nc_of_robot_steps) * np.arctan{random_slope}

26 #orint("x_vals: ", x_vals_updotes, "v_wals: ", y_vals _updates, "theta_updates ", theto
27

23 all_fixed_wheel sequences['xs'] = np.vstack{(all_fixed_wheel_sequences['xs"], x_vals_L
29 all_fixed_wheel sequences['ys'] = np.vstack{(all_fixed wheel_sequences['ys"], y_vals_L
38 all_fixed_wheel sequences['theta’] = np.vstack({all_fixed_wheel_seguences["theta'], tF
31

32 #print ("fw xs", all_fixed wheel sequences['xs'])

33 #print(“fw ys", all_fixed wheel sequences['ys'])

34 #print(“fw theta™, oll_fixed wheel sequences| 'theta'])

35

36

37 np.savetxt(str{nc_of_rcobot_steps) + "_steps_fixed_thetas_test.csv”, all_fixed_wheel_sequer
33 np.savetxt(str{nc_of_rcbot_steps) + "_steps_ X5 ", all_fixed_wheel sequences[
39 np.savetxt(str{nc_of_robot_steps) + "_steps_fixed_ys_test.csv™, all_fixed_wheel sequences[
48

41 f#omni Wheel

Figure 2: Data generation Test for over-fitting dataset

C 0 @ localhost8891/notebooks/C-%20EDA%20-%20.. Q | T A M * B %

':' Jupyter C-EDA- Logistics Regression (unsaved changes) A Lagaut
File Edit Wiew Insen Cell Kemel Help Trusted | Pythen 3 Q
B *|| % | B &| »Fun B C W coe W=

:
!

P ghmedy M 0w ww

i)

"

000 AXs 450 07

In [9]: M| 1 omni_p hist{column=["step x 1°, 'step y 1", 'step theta 1°])

OuL[2]: array([[cAxesSubplot:title={ center':"step x 17},
chxesSubplot: title={ center':"step y 1°}5],
[ehxessubplot: title={ canter’ :"step theta 1'}>, <AxesSubplet:s]],
diypesobject)

step x 1 step y 1

=TT

In [18]: M 1 two_fixed p.hist{column=['step x 17, "step y 1', "step theta 1'])

out[18]: array([[<AxesSubplot:title={'center' :"steg x 1"},
chxesSubplot: title={'center' :"step y 1'}5],
[chxesSubplot: title={ center' :"step theta 1'}>, <AxesSubplot:s]],
dtype=cbject)

stepx 1 step y 1

0

- 8
e & §

] ;ﬁ-‘[: thefdy ™0] 50 500 L=

150

i)

e

Figure 3: Exploratory Data Analysis

B (| (= e e e ey | Em e s e 1 -

C 0 @ localhost8391/notebooks/Robot%20Whee%20.. @ | @ A M % @ %@ =
: Jupyter Robot Wheel Generator (sutossves) A Logaut
Fikz Edit Wisw Inzart Cell Kermnsa Help Tn | Python 2 QO

B+ ||| B s $|[rRun B C| M | Code v =

1221 1821 1@l
1221 1821 188l

In [4]: M np.random. seed (64)

4 | & fixed wheel

5

& steps = [5, 18, 28, 58, 188]
7 | #steps = [58a, 188a]

g #no_of_robot_steps = 5

g

12 for no_of_robot_steps im steps:

11 all_fixed wheel_seguences = { "xs' : np.ones{no_of_robot_steps),
2 ‘yv3' @ np.ones{no_cf_robot_steps),
13 "theta' : np.ones{no_of_rcbot_steps)
14

15

16 for 1 in range(@,l@ea}:

17 ¥_initial = np.randem.rand() * 758

18 random_slope = np.random.rand{} & m

19 random_intersection = np.random.rand{} * 358 # ¢ value

#print{"x_initigl: ", x initial, “random_slope: “, rondom slope, “random_intersection:

[SRE.

i}

¥ _wals_updates = x initial + np.cumsum(({np.random.rand{nc_of_rcbot_steps) * 5) - (np.r
y¥_wals_updates = (random_slope * x_wals_updates) + random_intersecticn
theta_updates = np.ones{nc_of_robot_steps) * np.arctan{random_slope}

[T R R R X
n

(3 #orint("x_vals: ", x_vals_updotes, "v_wals: ", y_vals _updates, "theta_updates ", theto
7

g all_fixed_wheel sequences['xs'] = np.vstack{(all_fixed_wheel_sequences['xs"], x_vals_L
9 all_fixed_wheel sequences['ys'] = np.vstack{(all_fixed wheel_sequences['ys"], y_vals_L
] all_fixed_wheel sequences['theta’] = np.vstack({all_fixed_wheel_seguences["theta'], tF
31

32 #print ("fw xs", all_fixed wheel sequences['xs'])

33 #print(“fw ys", all_fixed wheel sequences['ys'])

34 #print(“fw theta™, oll_fixed wheel sequences| 'theta'])

35

36

37 np.savetxt(str{nc_of_rcobot_steps) + "_steps_fixed_thetas_test.csv”, all_fixed_wheel_sequer
33 np.savetxt(str{nc_of_robot_steps) + "_steps_fixed_xs_test.csv™, all_fixed_wheel sequences[
39 np.savetxt(str{nc_of_robot_steps) + "_steps_fixed_ys_test.csv™, all_fixed_wheel sequences[
48

41 i : sOmni Wheel

Figure 4: Check for data imbalance

:‘ Ju py‘ter Classifier Analysis (unsaved changes) # Logout
Fie Edit View Insert Cell Kemel Help Trusted | # |F*W‘:Jn 20

B[+ 2| B B | 4|4 >Fun | B|C| M| Code v || =2

2 def get_step results{no_of robot_steps):

3 fixed wheel x = np.loadtxt(str(no_of_robot steps) + "_steps fixed xs.csv", delimiter=",'}

4 fixed wheel_y = np.loadtxt(str(no_of_robot_steps) + "_steps_fiwed_ys.csv", delimiter=",'}

5 fixed wheel theta = np.loadtxt(str{nc_of robot steps) + "_steps_fiwed_thetas.csv™, delimit
omni_wheel x = np.loadtxt(str{nc_of_robot steps) + "_steps_omni_xs.csv™, delimiter=",')
omni_wheel_y = np.loaditxt({str{nc_of_robot_steps) + “_steps_omni_ys.csv", delimiter=",')

omni_wheel_theta = np.loadixt(str({no_of_robot_steps) + "_steps_omni_thetas.csv", delimiter

MY
M @ w0

two_wheel_x = np.lecadixt(str{nc_of_rcbot_steps) + "_steps_two_fixed_xs.csv", delimiter=',"
two_wheel v = np.loadtxt({str{no_of robot_steps) s+ "_steps two_fixed vys.csv", delimiter=',°
two_wheel_theta = np.loadbxt{str{no_of_robot_steps) + "_steps two fixed thetas.csv", delim

len_of steps = len({fixed wheel x[a]}

total_len_of_columns = len of steps * 3

total pose_s = len(fixed_wheel x.flatten(}) + len(fixed wheel_ y.flatten(}) + len{fixed
total pose_siz int(total_pose sizeftotal len of columns)

print({"Number of robot steps: ", len_of steps, "\nLenght of columns for steps (x,y,theta):

F

np.column_stack({fixed wheel x.flatten(),fixed_wheel_vy.flatten(}),fixec
np.reshape(fixed wheel poses,{total pose size,total_len_of_columns))

fixed_wheel_poses
fixed wheel poses

1 m

omni_wheel poses
omni_wheel poses

np. column_stack((omni_wheel_x.flatten(),omni_wheel_y.flatten(),omni_uhe
np.reshape({oceni_wheel_poses, (total_pose_size,total_len_of_columns))

WOl B3 M3 B R BRI ORI P R

3 WD A

two_fixed_wheel_poses = np.column_stack({two_wheel_x.flatten(),two_wheel y.flatten(),two_w
two_fixed_wheel poses = np.reshape(two_fixed_wheel poses,(total pose_size,total len of col

¥ _headings = ["step x " + str(is#1) for i in range(int(total len_of columns,/3))]
y_headings = ["step v " + str(is+1) for i in range(int(total len_of columns,/2))]
theta_headings = ["step theta " + str{i+l) for i in range(int(total_len_ of columns/3}}]

headings = []
for 1 in range(@,len(x_headings}}:
headings. append (x_headings[i])

41 headings.append(y_headings[i])
42 headings. append (theta_headings[1])
43 #heodings = x_headings + y_headings + theta headings

#headings

fixed p = pd.DpataFrame{fixed wheel poses, columns = headings)
omni_p = pd.DataFrame(omni_wheel poses, columns = headings)
two_fixed p = pd.DataFrame(two_fixed_wheel poses, columns = headings)

#Add closs Labels

Figure 5: Importing data for classifier analysis

~ Jupyter Classifier Analysis (unsaved changes)

ﬂ Logout

File Edit Wiew Inz=rt Cell Kernel Help Truste # |F"§.|'|.I":.n3 8]
J)|# |3 ||| 4| & pRun | B|C| W |[coke v || =
55 X = wheel_poses.drop({cclumns="Model type")
L] ¥ = wheel_poses['Model type']
78
71 ¥_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 8.3, random_state=1¢
72 print{X_train.shape, X_test.shape, y_train.shape, y_test.shape)
73
74
75 classifiers = [
76 LogisticRegression{multi_class ="owr"),
77 KNeighborsclassifier(3},|
78 DpecisionTreeClassifier(},
79 RandomForestClassifier(),
88
81
82]
23
4 # Logging for Visugl Comparison
B85 log_cols=["Classifier”, "Accuracy", "Log Loss", "Kappa Score", e"]
26 log = pd.DataFrame{columns=1og_cals})
28
89
98 for clf in classifiers:
a1 clf.fit(¥_train, y_train)
92 name = clf._ class_ ._ name__
a3
a4 #printy“="*38)
95 primt{name}
95 print{"Processing_ ")
97 #print('**33gesyl toesxs’)
98 train_predictions = clf.predict(x_test)
99 acc = accuracy_score(y_test, train_predictions)
188 #orint{ "Accuracy: {:.4%}". format{acc))
181
182 train_predictions = clf.predict proba(X test}
183 11 = log loss(y_test, train_predictions}
184 #orint{"Log Loss: {}".format{LL})
185
186 train_predictions = clf.predict(X_test)
187 kp = cohen_kappa_score(y_test, train_predictions}
183 #orint{ “Kappa score: {}".format{kp)}
189
118 train_predictions = clf.predict(X test)
111 f1 = f1_score(y_test, train_predictions, average
112 #orint{"F1 Score: {}1".format{#1})
113
114 #troin predictions = clf.predict{x test)
115 #p5 = precision score(y_test, troin predictions, ‘weightad')
116 #orint{"Precision Score: {}".format(ps))

Figure 6: Classifier analysis

C

A O localhost:3891/notebooks/Classifier3%20Analy... & @ A

~ Jupyter Classifier Analysis (unsaved changes)

File

B ||+

Edit

&

View Insert Cell Kemel

2]

Help

B % PRun B C»

RandomForestClassifier
Processing,
Processing done

Classifier
LogisticRegressicn
KMeighborsClassifier
DecisionTreeClassifier
rRandomForestClassifier

mommm

Tue label

L L
Predicted label

Fue label

L L
Predicted label

2
)

Code

Accuracy(®) Log

L)

45,33
53.22
S5.82
98.67

540

Loss
1.1
£.18
1.38
B.25

Kappa Score(®)
19.73
39.38
83.99
oE.88

Fl-score(E)
4C,E9
68,68
95.08
98.67

Figure 7: Result of Classifier analysis

10

LI

e 0 @ localhost:3891/notebooks/Hyper-parameter... @, | @ A M a0 a =

: Ju pyter Hyper-parameter Tuning Decision Tree (sutossved) P Logout
File Edit Wiew Inzart Call Kemel Help Trusted | Python 3 O
B |+ % 3 B 4 | pRun B C W Code W=
4 3

<Flgure size 722x1e88 with @ Axes»

Number of steps vs Decision Tree Model accuracy

e —
—

2
i

0 an B0 1] 100

ber of steps vs ision Tree Model Log Loss

In [7]: MW 1 step dic

out[7]: {5: [{"ACC": B1.11}, {'Zero One Loss': @.19}],
12: [{'ACC": 87.67}, {'Ieroc Ome Loss': 8.12}],
2@ [{'ACC": 91.22}, {"Zerc Ome LOSs': 8.99}],
52 [{'ACC": 94.78}, {'Iero One Loss': 8.85}],
l2@: [{'acc': 95,78}, {'Zerc One Loss': 2.84}]}

In[]: M 1

Figure 8: DecisionTree tuned result

11

e

s 0 @ localhost:8891/notebooks/Hyperparameter%... @, WM s %9 =
/ /Hyperp ¥ -

: Jupyter H}rperparameterTuning Random Forest (sutossved) P Logout
Fia Edit \iew Insert Cell Keme Help Trusted & | Python 3 O
B +| 2| B | »Run B C| W Cod v || =

<Figure size 728x1888 with @ Axes»

Mean Test vs Mean Train Decision Tree - neg_log_loss

NGNS

st
— rain
0 3 4 6 B
L
In [2]: M 1 | #Mgke predictionwith un-tuned model

2 confusion_matrix = metrics.plet_confusion matrix(reg_randomforest, X_test, y_test)
3 print("Accuracy: ", metrics.accuracy_score{y_test, y_pred)}
4 print{confusion_matrix)

C:\sershayoid\AppData\Local\Packages \Pythonsoftwarercundation. Python.2.9_gbzSn2kfraspa\Lecalcach
e\ local-packageshPython3a\site-packages\sklearn\utilshdeprecation.py:87: FutureWarning: Function
plot_confusion_matrix is deprecated; Function ~“plot_confusion_matrix” is deprecated in 1.8 and wi
11 be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from predictions or Co
nfusicnMatrixDisplay.from_estimator.

warnings.warn{msg, category=FutureWarning)

Accuracy: @.28855685856056564
<sklearn.metrics._plot.confusion_matrix.ConfusiorMatrixDisplay cbject at Gx9880928C99234CA8>

140
fw 144
120
100
]
2 153 B0
&
- 0
40
" i)
]

alhost:8891//treetoken=2298c201939%12e... "

o
rted label

Figure 9: RandomForest tuned result

12

—
=

pt model bb4 prediction: ow

is 115

2nd visible landmarks
ceived pf model in mm is:

nodel ow in use

hosen rb model b4 prediction: fw

hosen pt model bb4 prediction: ow

fw is 115

of 2nd visible landmarks

ived pf model in mm is:

nodel ow in use

1~ T
[

=

0

—+ =
]

M M

M m
=l |

Il

M m m

I

hosen rb model b4 prediction: fw
hosen pf model bb4 prediction: ow
y fw is 119

n of 2nd visible landmarks is
eived pf model in mm is: ow
nodel ow in use

hosen rb model b4 prediction: fw
hosen pf model bb4 prediction: ow
fw is 115

of 2nd visible landmarks is
ived pf model in mm is: ow
nodel ow in use

hosen rb model b4 prediction: fw
hosen pf model bb4 prediction: ow
fw is 115

of 2nd visible landmarks

ived pf model in mm is:

1 ow in use

e

ITi

o~
—I

M M

T

e

D M

—1
CL M

M f

Figure 10: Generating 100 robot steps

13

Owstance Rabot trackang wxng partice hiters

WM i

&l n

Engle Robat trackmg wung partcle filtsrs

£ snetvana

o
) e

:..' U4
i b A
Tim T
ian - ma g
§ ¥
o wi
e a8

F-3 - - L nae
e
B E

aFlgure iz THOx1888 with @ Ames»

Distance Robat tracking swing partice filters

*-*M d”"‘f".

e

s X _ _

WhEe ek
oo oo e
2 38k 2 3B

=

e

Wi sndmerks
B bk S A8

B o= o= o=k

e

5895
Baa

Figure 11: Comparing average length from before and after

14

Figure 12: Robot world

15

	Introduction
	 Hardware and Software Requirements
	Hardware Description
	Software Description

	Datasets
	Phase 1 - Initializing the robot

	Data Pre-processing.
	Data Mining
	Classifier Analysis
	Hyper-parameter tuning
	Run robot auto sequence

