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Adaptive kinematic particle filter classifier for
autonomous robots

Ayoola Idris-Animashaun
x20103689

Abstract

Autonomous robots are finding more industrial and home usage. One of the challenges
these robots face is how the robot can perceive its environment and move within the
environment. This becomes more necessary when the environment is new or it changes.
The robot uses unique landmarks within an environment to find itself. Particles, which
are belief states of where the robot could be in an environment are generated, evaluated,
resampled and when they converge, used to estimate the robot’s position. Sometimes,
there is no landmark and this causes the particles to diverge from the robot’s position.
Machine learning classifiers are used to detect the type of wheel on a robot, and depending
on the wheel type, some constraint can be applied to the particle inputs to enable the
particles continue on a set trajectory when the robot does not have any landmark to
guide it within the environment.

Keywords - Particle filter, Robots, Bayes Filter

1 Introduction

1.1 Motivation

Since the earliest robots were created in the early 1950s by George C. Devol, Roberts
(1999), robots continue to play major roles in helping humans accomplish tasks across
various aspects of our existence and continued survival. Robots find use in space, ware-
housing, security, agriculture, and educationMuir & Neuman (1987)

For a robot to navigate the real world, it is required that it has a perception of its
environment. Typically, a robot’s understanding of the real world is represented by a map
Roland & Illah (2004). With a map, the robot must localize where it currently exists on
that map, and plan its navigation within the environment.

1.2 Research Objective

To begin, the author uses the term ’virtual robot’ as any autonomous entity designed
to function as a robot or vehicle possessing the ability to move, sense and estimate its
location within a given environment. Landmarks are obstacles in that environment that
the virtual robot uses to map out the environment after sensing these landmarks. It
could be a door, or a wall or a pillar in the environment. Particle filters are known state
representations of the virtual robot generated to estimate the probability of a robot to
be in a particular location.
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Generated robot particlesKnown robot location Landmarks

Figure 1: Project environment

Figure 1 shows an overview of the research. Since the environment is simulated, the
virtual robot’s position (yellow) is known. This is the ground truth. This information is
not shared with the particles however, the particles receive motion input as instruction
to move. The objective is to have the particle and the robot exist in the same location.
This means the distance will be need to be close to zero as possible during evaluation.

In this project, the use of kinematics is proposed in developing a control mechanism
for robots to use in navigating an unknown environment. Some other researchers have
done something similar, Sabzevari & Scaramuzza (2016). Kinematics is the study of
geometry about motion. The approach is to use the knowledge of motion and motion
constraints to develop a predictive motion control software that limits itself based on the
kinematic constraints related to the robot (or autonomous vehicle).

To achieve this, the author leverages a single hypothesis position representation to
help the robot map its position within a region or use the multi-hypothesis representation.
Although it has its drawbacks, Roland & Illah (2004), multi-hypothesis when used with
probabilistic techniques have higher chances of helping the robot find its position from
various possible robot positions. By selecting the position with the highest positional
probability, the robot can maintain a set of beliefs that guides it. This is achieved by
sending a control input and sensor measurements (contains noise) and use of particle filters
to estimate the the robot location. More details on this in section 3. Some common issues
with robot localization include errors in odometry measurements as well as the issue of
dead reckoning. Dead reckoning is the issue where the particles diverge away from the
robot when there is no landmark in sight. The further the robot moves without sensing a
landmark, the more the particles disperse and the robots correct estimate of its location
reduces. This research proposes a method to fix this issue by constraining the motion of
the particles when there is no landmark by applying motion constraints that will force
the particles to move in a specified way. By this, the particle diversion is limited and the
robot’s estimate does not suffer very much.
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The objectives of the research are as follows;

1. How well can we predict the wheels on a robot based on the measured motion model
outputs?

2. How can our prediction help the issue of dead reckoning?

In this paper, the author proposes an adaptive estimator that predicts the wheel motion
on a robot based on the motion readings it gets over time. The objective is to come up
with a technique to enable a robot predict the kind of wheels it has and as a result know
the range of motions through which it can move thereby adjusting its localization efforts
towards the possible locations when using a particle filter. Section 2 shows a summary of
related works, section 3 gives the methodology we will employ while section 4 and section
5 give breakdown of the ethics and project plan for this work.

2 Related Works

2.1 Literature review

Robots are fast becoming a choice of research in the scientific community. The possibility
of replacing humans for tedious and dangerous tasks make way for their acceptance in
industries like emergency rescue, exploration, guides, transportation and even construc-
tion. An autonomous robot is one that is able to choose from a set of actions to carry out
a specified task, Rubio et al. (2019). It uses a control system to guide, make decisions
and guide its execution. We will discuss locomotion and perception in this research.

Locomotion covers how robots move. A robot can find itself in a controlled environ-
ment like a museum, retail store etc or an uncontrolled environment like a new planet.
Different types of motion are available for the robot to move and factors like the surface
the robot is moving on (land) or in (water), whether the robot is a wheeled or legged
robot, the speed the robot can move, the weight of the robot and others contribute to
considerations taken by the robot when it is moving. We focus on land based robots
in this research. The wheeled land based mobile robot is popular and has the benefits
of having a simple mechanism, balanced, can reach high speeds and efficiently move on
man-made environments while the legged robots have a benefit of movement on terrains
that are not flat. In fact, some researchers have proposed hybrid robots which have legs
and wheels to address any terrain the robot finds itself. Adachi et al. (1999). A look
at Figure 2 shows ANYmal, an autonomous robots that integrates four legs with four
wheels for a smoother and efficient motion.

We focus on wheeled mobile robots in this research and study the kinematics involved
for stable motion and control of the robot. Kinematics refers to how material bodies move
without consideration of their mass or inertia and any force that produces the motion.

There are commonly six wheel types used in roboticsRoland & Illah (2004). Figure
3 shows various wheel types. We concentrate on training a model to tell the range of
motions possible between a fixed wheel that can only move forward/backwards and an
omni-wheel that can move in any direction.

A wheeled motor robot usually has to find its position in the world. Various techniques
have been used to guide robots. One of such method is using odometry to calculate the
velocity and hence find the displacement of the robot. The individual velocity of the
wheels attached to the robot is calculated taking the constraint on each of the wheels
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Figure 2: Anymal- Hybrid robot with legs and wheels

Figure 3: Robot Wheel types

into account. A global reference ξG usually has the position of the robot relative to a 2D
plane x and y and is usually transformed into a robot reference ξR, see Figure 4. The

4



formulae below captures this transformation, R(θ) is the orthogonal rotation matrix that
describes the orientation of the robot on a flat 2D plane.

ξR = R(θ)ξG

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1



Figure 4: Robot represented on 2D plane

Perception covers measurement taken by the robot’s sensors to ascertain state vari-
ables like position within the environment, proximity to obstacles within the environment,
tracking its goals and mapping out its environment. Klančar et al. (2017). Sensor types
like sonar, laser and vision are embedded together within robots to capture the envir-
onment and analyse it with techniques to uncover and map the environment.Types of
sensors measurement relates to how the sensing mechanism works. One simple sensor
that could be found on a robot is a wheel odometry. It works by counting the number
of revolutions of a wheel with the ground.Aqel et al. (2016) This is translated into the
linear displacement to estimate position. A wheel odometer with an Encoder can meas-
ure the wheel rotation. Another robot sensor is the global positioning system(GPS). It
is a satellite-based system for navigation that enables any user determine its location
anywhere on the surface of a planet body. As a result, GPS could be ineffective in indoor
situations. Sonar sensors use sound or acoustic energy to find obstacles and calculate
distance to those obstacles. A laser sensor uses a remote sensing technology to measure
distance. It does this by analyzing the reflected light from the laser.

Odometry deals with an estimation of a robots location based on some speed measure-
ments. It can be likened to riding a bicycle blind-folded, you can estimate how far you’ve
ridden but you would be far off. This concept is sometimes referred to as ’dead reckoning’
and robots which use odometry are susceptible to this issue. The wheel odometer can be
used to estimate the position of a robot. It suffers from position drift and inaccuracy due
to wheel slippages. It however shows a good short term accuracy Adachi et al. (1999)

This project will use particle filters to estimate the likelihood of a set of positions
where the robot thinks it might be. The robot can draw conclusions based on how
far or near a particle is from a given landmark and use this information to calculate a
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likelihood of its own position, Figure 5. This works well when there is a landmark,
but what happens when there is no landmark in sight. The particles can be anywhere
and there is less certainty about the robots location. In this research, we constrain the
particle movements according to the wheels on the robot such that the particles motion
will be limited to a smaller set of directions and orientations, based on the kinematic
constraints. This will reduce the uncertainty in the robots estimate of its position until
it finds another landmark.

Figure 5 shows the predict/update cycle for robot localization. In the first frame, we
see the robot takes a step and makes a request for sensor measurement. Its sensors tell
it that it is close to a column, but there are three columns in the environment and the
robot can not tell which column it is near. The robot assigns equal prediction probability
to the positions near the column as seen by the ’mole-hill’ before each column. It takes
another step, and uses the sensors measurement again to predict where it is. This time,
the sensors can tell that the robot is between two pillars. The robot thus assigns more
probability to the two columns. It multiples its former belief state with the current belief
state to increase the likely belief state of where it is. The farthest column from the robot
does not get enough possibility and will die out subsequently. By multiplying the belief
updates, there is a stronger likelihood as seen in the giant ’mole-hill’ in the last frame.
This is how the robot is able to estimate its location within an environment.

It is possible to represent these beliefs as a set of particles where the likelihood of
the particle belonging to the set of Xt is proportional to the bel(xt). Each particle
represents a hypothesis of that state and is denoted as (Xt(i), Wt(i)), where Xt is the
sample hypothesis and Wt is the sample weight. By this, regions with higher probability
like mentioned in the previous paragraph will contain more particles. Recall, that regions
with low probability will eventually die out. As a result, there is need to generate more
particles so we have M set of particles at all times. Particle filtering uses importance
sampling, a situation where we can only take samples from a proposal distribution to
regenerate the particles. The Monte Carol Localisation algorithm with resampling can
be adapted with a sample motion model and a measurement model.

2.2 Research on probability robot navigation with machine learn-
ing

In carrying out this research, the author takes a look at research using kinematics, particle
filters, and classification predictor models to achieve robot localization.

Something to note about the use of odometry is that the error in each sequential
measurement starts to compound. As a result, the robot experiences motion drift, where
it eventually loses track of where it is. Its predicted location gradually becomes farther
apart from its actual position. There are different factors that can lead to this like uneven
ground, obstacles, wheel slippage. In Botta et al. (2021), the authors come up with an
estimator for the kinematic behavior of a wheel mobile robot that is subject to a large
lateral slip. Their research mentions that wheel slippage is quite hard to be measured
directly and has to be estimated in most cases. Due to the shortcomings in odometry,
the authors in Jung & Chung (2011) propose an approximation error of the conventional
calibration equations by using the robots final orientation error of a test track. In this
research however, the author employs the simple use of odometry inputs to propagate
the robot and constrain the particle filters used in determining the robots position. By
constraining, the probable space that the particles can move into is limited based on the
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Figure 5: Process of robot updating its belief of its position

kinematic constraints.
In Wang et al. (2018), the authors strategise with a model predictive control (MPC) al-

gorithm, to build a trajectory tracker for an omni-directional wheeled motor robot(WMR)
with three mecanum wheels. To develop the MPC, they establish the kinematic models of
the wheels and use a target-tracking motion controller with input state and output state
constraints. In comparison, we will employ a particle filter with low variance resampling
to estimate the likelihood of the motion of the robot to predict where the robot might be
and how it can move within the space.

In Hidalgo Carrió & Cordes (2012), the authors show how the kinematic model of a
robot can be calculated to accommodate forward movement, position tracking and wheel
slippage. A combination of both wheel and active systems gives the hybrid wheeled-leg
solution. In Muir & Neuman (1987), a study of kinematic equations for different wheeled
motor robot, we get an understanding into how to formulate motion models. The study
formulates kinematic modelling for 6 wheel types as well as makes comparison between
manipulator robots and wheeled robots.

In Fox (2001), the authors present a statistic approach to adapt the samples created
for particle filtering, as near real time as possible. By adapting the size of the sample
size, this research work is able to outperform particle filters with fixed size of sample
sizes. In Burgard et al. (1998), when estimating the position of a robot, two methods
are conceptually in use. One method deals with keeping track of the robot position
itself while the other method covers global position estimation of the robot. Burgard
et al. (1998) combines the advantage of both methods to create the Dynamic Markov
Localization method. In contrast, our approach will use already trained model weights
for selected number of steps. The appropriate weight will be used by the robots when it
reaches the required number of steps to make informed prediction of its wheel motion.

Thrun et al. (2001) extends the traditional Monte Carlo Localization (MCL) by use of
a learned KD-tree that allows for fast sampling. There is a globalization problem called
the ’kidnapped robot problem’ Muir & Neuman (1987), which is when a robot that has
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properly localized itself is taken to a a new location. The MCL extension is called a Mix-
ture MCL, a particle filter adaptation that combines a sampler with its dual. In contrast,
Zhang et al. (2020) uses a differential resampling process called Gradient Propagation
Particle Filter Network. The process is used to train the motion and measurement model
and the likelihood degree of the output is analysed. In this research, the low variance
sampling method used, combined with a wheel predictor will help a robot recover from
the ’kidnapped robot problem’.

In Hao et al. (2015), an adaptive particle filter method that uses two different res-
ampling operations to enable fast and reliable computation is proposed. Particle filters
have the drawback of high computational costs. By using two resampling techniques,
the method is able to duplicate large weighted particles while reserving the remaining
particles and decrease the number of particles through a particle merge. da Silva et al.
(2018) explore the use of SVM, MLP and Bayes Model classifiers in robot navigation and
localization. The approach uses a reject option for attributes generated from a struc-
tural occurence matrix via omni-directional images. For this research, the use of low
variance sampling allows for lower computational costs. Random Forest, Decision Tree
and Logistics Regression are used in this research.

Neural networks are used in Eder et al. (2021) to classify whether a robot is well loc-
alized or delocalized. Delocalization happens when a robot no longer knows its location
within the environment. The research classifies patterns and features from a particle
set using recurrent and non-recurrent neural networks. A convolutional neural net-
work(CNN) model is integrated with a topological map in Foroughi et al. (2021) to
enable a robot localize and navigate autonomously. The CNN is used to detect possible
obstacles through vision-based localization which uses images captured from a camera
available to the robot.

PF-net is a recurrent neural network proposed by Karkus et al. (2018). The research
takes advantage of neural networks being able to represent complex models in large
spaces to create a system model that can be optimized for an algorithm, the particle
filter algorithm in this case.

Youssef et al. (2021) propose a low cost alternative for encoders attached to wheels in
order to acquire the on-track speed of the wheels. Accelerometer-based Wheel Odometer
for Kinematics determination(AWOK), the system developed in the research uses a single
axis accelerometer mounted at the center of the wheel, in a radial manner to provide
distance as well as velocity.

In looking at evaluation metrics of state of the art simultaneous localization and
mapping (SLAM) methods, a review of Servières et al. (2021) is done where several SLAM
methods are compared and tested on dataset benchmarks to evaluate their performance.
The authors review existing SLAM methods and state that comparing them is not an
easy task due to the each method targeting different objectives. SLAM methods can
be seen as basic SLAM and visual SLAM (vSLAM). This research classifies vSLAM
algorithms based on differences like being a filter or optimization based method, or what
kind of features the model has. Evaluation metrics used for the SLAM methods includes
Relative Positioning Error (RPE) and the Absolute Positioning Error (APE). The APE
is said to be the calculated euclidean distance between the estimated position of the robot
and the true position, while RPE is the calculated euclidean distance between consecutive
position estimates.
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2.3 Conclusion

The review of the mentioned works tells us that the use of kinematic modelling can
achieve high success during robot position prediction. Knowing how motion drift can
occur through odometry limitations, we can choose to utilize other methods to reduce
the estimate space of a robots position.

3 Methodology

3.1 Research Architecture

This research is carried out in two phases as captured in Figure 6. Phase 1 begins with
initializing a robot that has a sensor and N number of particle filters. Some odometry
is added to the robot to move it in a forward, backward and rotational motion. It can
be observed how the particles converge on the robots position when the robot senses
a landmark and how the particles disperse when there is no sensed landmark. Figure
7 is a top down rendering of a virtual robot moving on a flat surface. Image (a) in
Figure 7 shows the robot environment or virtual world, the robot (red circle and light
blue lines) perceives its position using particles (purple circle and blue lines) and the
landmarks (white circles) in the environment. The virtual robot has wheels, a sensor,
and some control system to move it, stop it, turn it and analyse sensor readings. The
control system manages the particles used in estimating its position as well. The sensor
measurements predict the pose (or position) of the robot relative to landmarks. The
environment is hosted on a Windows 10 machine and makes use of the following tools,
Python 3, Numpy, Pandas, Matplotlib, OpenCV and CSV. Image (b) in Figure 7 shows
the particle moving towards the robot, and in image c, convergence of the particles on
the robot can be seen. Note a landmark (with a red circle within) has been sensed by
the robot and the likelihood of the particle states has been updated. In Image (d) of
Figure 7, it can be seen that the particles diverge away from the robot, note that there
is no sensed landmark. The virtual robot is made to take 100 steps and its position
recorded as well as calculating the average of the difference between the robot and each
particle. The number of steps and average difference is plotted vs the number of visible
landmarks. The output shows how the particles converge around the robot space. This
step is carried out to compare the average distance between the robot and its particles
before wheel constraints are applied on the particles. The average distance is expected
to reduce when a wheeled constraint is applied on the particles

Phase 2 begins with synthesizing robot poses for three wheel scenarios. A single
fixed wheel, a single omni-wheel and a two-fixed wheel. The synthesized robot poses for
the wheel types are combined in a dataframe and three machine learning classifiers are
applied, (logistics regression, decision tree and random forest) to determine a winning
model. The winning model is applied to the robot, used to predict the wheel on it and
the robot applies the necessary motion constraint for the wheel type to the particles.

A collection of a few successive poses (or steps) predicts the types of wheels on the
robot. The prediction is used to constrain the particles such that the robot has an
estimate of its position as it moves past landmarks in the environment. Another use of
the prediction in managing the particles is to eliminate the particles in positions that do
not fit the possible range based on the wheel type. A robot that has a fixed wheel can
only move forwards or backwards. Therefore particle orientations are eliminated by not
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Figure 6: Research overview

considering them in the first place. Initially, particle updates were given by selecting from
a normally distributed set of motion updates in all directions. These motion updates are
limited such that the forward and backwards directions have higher weighting than the
left-to-right directions while considering the single fixed wheel configuration. A similar
approach is used for the two fixed wheels. However omni-directional wheel can move in
any direction, so this keeps using the uniform distribution over all motion updates. For
this research, focus is on using the prediction to constrain the particles. Further works
could include particle resampling based on possible positions from the wheel type.

3.2 Data Mining Methodology

The knowledge discovery in databases (KDD) methodology is used in this research work.
The methodology guides extraction of useful and non-trivial information from large data-
bases. The methodology has eight stages. Problem specification, Data selection, Data
cleansing, Data pre-processing, Data mining, Result evaluation, Interpretation of results,
Exploitation of results. A slight modification to the generic KDD methodology is done
by introducing data generation stage to replace the data selection stage. There is oppor-
tunity to expand the work with real world sensors but for now the research is interested
in discussing the probability problem rather than setting it up in the real world.
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Figure 7: Robot world

3.3 Data Selection/Generation

In this research, the motion measurements that is used as input data is generated. The
generated measurements include velocity, angles, wheel radius and x,y co-ordinates. From
this, pre-processing and correlation confirmation between distance and velocity as well
as feature extraction is carried out.

3.4 Data Preparation and Pre-processing

3.4.1 Data visualization

The author visualizes the class balance in Figure 9 which shows the same amount of
samples for each class. Since there are equal number of samples in each class, the F1-score
evaluation will not be as important during evaluation of models. Log loss and accuracy
are selected as the evaluation metrics. The labels in the figure stands as follows, fw -
fixed wheel, ow - omni wheel, tf - two fixed wheels.

The environment is hosted on a Windows 10 machine and makes use of the following
tools, Python 3, Numpy, Pandas, Matplotlib

3.5 Implementation

In a real world scenario, the robot will receive control inputs that tell it what distance to
move, and in what direction to move. This data is synthesized with some noise to mirror
the real world scenario. The noise is a normally distributed set of values that are added
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Figure 8: Modified KDD methodology

Figure 9: Wheel type class balance

to the motion update such that correct motion update becomes the mean position and
the variance for the normal distribution is of some specified set size. The data is then
used to generate a continuous representation that is used to gather samples from the
environment. This data is collected and fed to the predictor model at a chosen interval
or number of steps for which we want to derive trained weights for. In this research, the
robot can request predictions after taking 5, 10, 20, 50, 100 steps. A new set of data is
generated with a different random seed after the hyper-parameters are tuned to ensure
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the model has not been over-fitted.
The input data to the chosen model is a list containing the x-coordinate, y-coordinate

and theta value of a robot in an environment represented on a 2D map as shown in
Figure 11. Depending on the wheel type, the robot can either move forward/backward
in a straight line, or forward/backward/sideways in a straight line. The research generates
(x,y,θ) values for steps up to 5, 10, 20, 50, 100. The generated data is stored in comma-
separated-value files with the number of steps and type of wheel as filenames. The
following wheel types are synthesized.

Figure 10: Wheel motion directions

Figure 11: Fixed wheel showing motion constraint

Fixed wheel: Since this wheel can only move forward or backward, as seen on the
left in Figure 10, it resembles the slope of a straight line which can be represented with
y = mx + x. By initialising a random value to x within a sizable world-space (750 x
750 pixels), an x-coordinate can be recorded. The same is done for the m, c and theta
variables. From this, the y-coordinate can be gotten by simply substituting into the y =
mx + c and get the value of θ through the arctan of the slope. The result is a point that
can only move forward or backward along its x-axis. A perfect representation of a fixed
wheel.

Omni wheel: In this instance, x, y, and θ get values at random within the range of
numbers that support x,y ¡ worldsize. Since they can move in any direction, as seen in
the right diagram in Figure 10, it is easier to generate and synthesize data to represent
particles within the space.
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Two fixed wheel: Captured on the left in Figure 10, here, the radius of the fixed
wheels, the length between them and angular velocity of the wheels is taken into account
using the formulae to get a robot position in the robot reference. We can convert this to
the global reference using the transformation matrix mentioned in section 2.

3.6 Data Mining

In Figure 11, there are three wheel types in the generated data. There is no class
imbalance among the wheel types. A classification task will be used to determine the
wheel type when the robot is in motion. The prediction results need to be gotten as
quickly as possible since the model is moving the environment and needs to correctly
identify its location within the space. Another factor to consider for the model to be used
is complexity. A simple model and easy to interpret model can perform the classification
objective. Using the criteria of simple(non-complex) and timely result, with a good
chance of high accuracy and least log loss, the following machine learning models are
considered for use in this research.

To carry out data mining, four classifier algorithms are tested and three are selected
for hyper-tuning based on having the lowest log loss. Table 1 shows this classifier analysis
done for 100 robot steps. KNN has a high log loss compared to the others so it is excluded
from hyper-parameter tuning.

Classifier Accuracy(%) Log Loss Kappa Score(%) F1-Score(%)
LogisticRegression 43.0 1.08 14.74 42.87
KNeighborsClassifier 60.56 5.3 41.26 62.06
DecisionTreeClassifier 97.78 0.77 96.66 97.77
RandomForestClassifier 99.56 0.03 99.33 99.56

Table 1: Accuracy/Log Loss Table of classifiers

4 Results

In the previous section, a description of how input data is synthesized for the prediction
model to mirror the motion constraints for the wheels chosen in this research is discussed.
Some classification algorithms are evaluated to see their performance on the data and
KNeighborsClassifier is eliminated due to its high log loss. After tuning the hyper-
parameter, a new set of data is generated and used to test the predictor model once
again. The results can be found in the Figure 18, 19 and 20 in appendix.

4.1 Hyperparameter Optimization

A grid-search is used to hyper-tune the logistic regression and randomized search for
Random Forest and Decision Tree. The same 100 robot steps dataset used in the classifier
analysis is used for the optimization. Randomized search instead of grid-search is used for
Random Forest and Decision Tree due to how long it will take to test all the parameters in
a grid-search. Randomized search selects parameters at random. finds the best parameter
values and delivers results quicker.
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4.1.1 Logistic Regression

On initial run of logistic regression for 100 steps, an accuracy of 43% with a log loss of 1.08
is observed. On further hyper-parameter tuning, an accuracy of 47.89% with improved
log loss of 0.52 is observed, when the following parameters from the best accuracy is used.
c = 0.01, penalty = L2, solver = newton-cg. It can be seen from the plots in Figure 12
how the accuracy increases, and how the log loss reduces, as the number of steps increases.
To ensure model over-fitting does not happen, new datasets are generated and tested on
the predictor model. The predictor has an accuracy of 51.03% and log loss of 0.49. The
model has not been over-fitted.

Figure 12: Number of steps vs hyper tuned Logistic Regression accuracy and log loss

4.1.2 Decision Tree

When decision tree is applied to the dataset, an initial value of 98.22% for accuracy
and 0.60 for the log loss is observed. After tuning the hyper-parameters using ran-
domized search, 96.67% for accuracy and 0.03 for log loss with tuned parameter values
of min samples split= 3, min samples leaf= 3, max leaf nodes=80, max depth=5, cri-
terion= ’gini ’ is observed. The ideal model will have the lowest log loss, hence the tuned
parameters model are selected over the default model.

Figure 13 show how accuracy increases and log loss reduces with the increase in the
number of steps. Like before, to test for over-fitting, generated data is run on the model,
where model performance has an accuracy of 97.07% and log loss of 0.03.

4.1.3 Random Forest

The initial accuracy gotten from random forest model is 99.44% with the log loss as 0.03.
On applying the hyper-tuned parameters, the accuracy remains at 99.44% but the log
loss improves by reducing to 0.005. Figure 14 show how the number of steps relates with
the accuracy and log loss. Generated data is run on the model and observed result shows
the accuracy on the new test set is 98.9% with a log loss of 0.01. It can be concluded the
model has not been over-fitted.

From the above observations, the random forest is the winning model and the research
generates weights for 5, 10, 20, 50, 100 steps initially. Later more weights are generated
for 1000, 2000, 5000 and 10000 steps. When the winning model is added to the robot
control and particle dispersion for a fixed wheel on the robot is carried out, it is observed
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Figure 13: Number of steps vs hyper tuned Decision Tree accuracy and log loss

Figure 14: Number of steps vs hyper tuned Random Forest accuracy and log loss

that the model’s prediction about the type of wheel it has is correct. The research has
been able to successfully detect the type of wheel on the robot. In the next section, the
use of this prediction by the robot is evaluated

5 Evaluation

The research objective is two fold. To predict as accurately as possible the motion model
of a robot and to solve the dead reckoning issue. From the classifier analysis, random
forest is selected as the prediction model. The evaluation used to select random forest is
shown in Table 1. It has the least log loss.

To evaluate the success of the proposal, a look into how the robot performs before
applying any motion model and after it implements a motion model based on the predic-
tion from the classifier is considered. The expectation is that before applying a specific
motion model, the particles will move in a random or omni-wheel direction when there is
no landmark in sight, however on employing a specific motion model, like a fixed wheel
for example, the particles will have to move in a straight line (with some noise) when
there is no landmark and this gives a good estimate of the robot position at all times.

Figure 15 shows the graph of average distance between the robot and its particles
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before (red) and after (blue) applying a fixed-wheel motion model. The distance is
calculated using the euclidean distance known as L2-norm while the angular difference is
derived using cosine similarity. The diagram looks similar because the change reduction
is 5% and is not easily visible. How then is the change evaluated?

Figure 15: Particle tracker before(red) and after(blue) applying motion model

The fixed wheel motion constraint is used for this example. The average distance
recorded between the robot and its particles is 378.71 before any motion constraint is
added. Some empirical fine-tuning was carried out to find the optimal constraint for
the x, y, and θ values. To simulate real world properly, random numbers are generated
from a uniform distribution and added to the odometer input for every step taken by the
robot. The motion model constraint is added to the respective axis by the noise we add.
This is done based on the wheel constraint, the noise is weighted and used to promote
forward motion. When we multiply the uniform random number we get for noise with
the following constraint values (x w: 0.25, y w:0, θ w: 1.5), a lower average of 358.95
is observed. With this, a 5% reduction in the average distance between the particles
and the robot is observed. The constraint limits the motion of the particles while still
allowing some random movement for the particles to resample correctly when they need
to. This points to some success since the particles are constrained by the motion model
for a fixed wheel. On further research, the following table is created.

Table 2 shows the results gotten between the average distance between the particles
and the known robot position for a specific number of robot steps with selected x,y
and theta constraints. The column ’Distance before’ refers to the distance between the
particles and the robot before the motion constraint is added and the column ’Distance
after’ refers to the distance between the particles and the robot after the motion con-
straint is added. Two values for the constraint on X is shown in the table. Empirical
tuning of the constraint values for x,y and theta can be tested to find values for which
the average distance after applying the motion constraint will be reduced. Further re-
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Robot steps Distance before Distance after X Y Theta
100 378.71 358.95 0.25 0 1.5
100 16.54 14.47 1.25 0 1
200 57.35 77.41 1.25 0 1
500 254.45 273.81 1.25 0 1
1000 522 472.36 1.25 0 1
2000 582.11 525.1 1.25 0 1
5000 1563.84 1421.14 1.25 0 1

Table 2: Model performance based on number of robot steps

search can be carried out to find the optimal number. In this research, it is discovered
that with more robot steps taken, the motion constraint added on the noise is able to
reduce the average distance between the particles and the robot. In Figure 21 seen
in the appendix, we see graphs of robot steps. The x-axis shows the number of robot
steps (which is the input robot step multiplied by 10), the left y-axis has the number of
landmarks encountered while the right y-axis has the average distance for the particles
and the robot for each unit robot step taken. It is noticed that when no landmark is seen
by the robot, the particles diverge around the environment. However, according to the
average distance calculated and shown in Table 2, the motion constraints added was able
to constrain the movement of the particles and reduce the distance between the particles
and the robot.

6 Ethics

The data used in this research is generated within the simulated environments. This
research does not violate morality or known laws.

7 Conclusion

In this research, a way for a robot using particle filters to constrain the motion of the
particles by applying a wheel motion constraint to the particles is proposed. This allows
the robot’s estimate error when there is no landmark to reduce because the particles can
only move in a certain manner based on the robots movement. It is observed that the
average distance between the robot and its particles before applying a motion model and
the average distance after applying a motion model can be reduced. We used a fixed
motion model and we see that the average distance reduces when a motion model is
applied.

For future works, more can be done with the wheel prediction gotten from the random
forest classifier. Specifically, particles that do not satisfy that wheel motion can be
eliminated immediately if resample particles satisfy the range of values that is possible
for the predicted wheel motion. This will lead to faster resampling and help the robot
localize faster and better in unknown environments.
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9 Appendix

Figure 16: Hyperparameter tuning for random forest

Figure 17: Hyperparameter tuning for random forest
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Figure 18: Test for decision tree overfitting

Figure 19: Test for random forest overfitting
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Figure 20: Test for logistic regression overfitting
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Figure 21: Robot steps vs Landmarks vs Average distance between particles and robot
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