~

“—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Dhwani Dharmesh Hingu
Student ID: X19216742

School of Computing
National College of Ireland

Supervisor: Dr. Catherine Mulwa

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Dhwani Dharmesh Hingu
Student ID: X19216742
Programme: MSc in Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Catherine Mulwa
Submission Due Date: 31/01/2022
Project Title: Configuration Manual
Word Count: 645
Page Count: [13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Dhwani Hingu

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature: Dhwani Dharmesh Hingu

Date:
Penalty Applied (if applicable):

Configuration Manual

Dhwani Dharmesh Hingu
X19216742

1 Introduction

This Configuration Manuals covers all steps how the research study was build, implemen-
ted, and executed with support of some hardware and software configurations.

2 System Configuration

This Research study have used images and deep learning models, so in order to success-
fully run all programs with an ease some hardware and software configurations needs to
be taken into consideration before starting the project. The Hardware Setup Section [2.1
helps with hardware specification needs to have also on the other hand Software setup
section aids with programming language used along with all necessary libraries needed
to be installed with their versions.

2.1 Hardware Setup

In order to make the models perform well, GPU setting was changed in NVIDIA controll
panel and the steps are shown in the Figure 2] [3] and [4]

Device specifications

HP Pavilion Gaming Laptop 15-dkOxxx

Device name Dhwani

Processor Intel(R) Core(TM) i5-9300H CPU @ 2.40GHz 2.40
GHz

Installed RAM 8.00 GB (7.84 GB usable)

Device ID 200F3BF4-53F4-48F4-A1BB-4277FA613CF7

Product ID 00327-35907-47449-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch No pen or touch input is available for this display

Figure 1: Computer Specifications

B3 NVIDIA Conrol Panel
File Esit Desitop 30 Setings Help

;. Manage 3D Settings

etings|
Configure Surround,

woukd ke to use the following 3D setting

Global Setings Program Settings

1. Selecta program to customize:

\programdatalmicrosftvnd
@ Google Crvome (chrome.exe)
53 Control (conrol.exe)

<) Microsoft Viuel Studi (devenv.exe)

B Microsot xcel (excel exe)

= Windows Explrer (exlorer.exe)

/23 Metro video Payer (<ims &, V)

/3 intel Conrol Fanel (it Grephics Command Center)
3 HcrosotEcge (Mcroso £dge)

|3 Microsot Wht'sNew (Microsof Tips)
@ Microsot Edge eta (msedge.exe)
12 et i)

WD ControlFanel (WD3A Cortrol Fane)
Il Gerorce Experience 3.0 (nvidia geforce experience.exe)
3 Microsort OneNote (onerte.exe)
8 Microsot Onetoe (anenatem.exe)
© orign (orgin.exe)
| Microsot Powerpint (poverprt.exe)
[icrosoft Fowershell 15 (povershell_ise exe)
Descrp 2 Skype Metro App (Skype)

{2 Spoty (SpotyAe. Spotiyhusi)

13 Microsot starenspeienceost (start)

Windows System Process tesimar.exe)
& LCmedia player (vcexe)
2 Caluotor (Windovss Colaiator)
23 Comera (Windows Camero]
3 Windows Lock Screen (Windoves Defoult Lock Screen)
ypicl| [l Microsot Text Input Apicaton (Windows Feature Experence Pack)

. = custom program
(BT « Configure seting for a program nat provided inthe drver relsse

ﬂ R Type here to search

Figure 2: GPU Setting

Restore Defaults

B3 NVIDIA Coirol Panel
file Edit Desitop 30 Settings Help

(<X <

[Gwsengs | Manage 3D Settings

age 30 seins
Configure Surround, Physx

Iwoukd ke to use the folowing 3D settings:
Global Setings _pragram Settings

prefered graphics processar:

Sezng ~
Image Sharpering Starpening off
Amblent Occlusion or
Antaasing - FXAA off
Antalasng - Gomma correction
Antininsng - Mode. Applcaton-conrolisd
ntalasng - Setting nwolled
Antaiasng - Transparency o
Background Applicaton Mex Frame Rate OFF
A~ Geus A
Low Latency Mode, or
Mo Frame Rote o v
@ Resire
Descrpton:
Indicates ihich programs vl use the
DI

Typical usage scenarios:

« Auto-slect allows the v t pick the most compatile processor

« ntegrated graphic prowdes longer batery Ife

Figure 3: Setting GPU as High Performance

Restore Defaults

512201 N

B3 NVIDIA Conrol Panel
File Esit Desitop 30 Setings Help

“wsw ||| Configure Surround, PhysX

PhysX

ity
GeForce GTX 1650 Intel(R) UHD Grophics 630

Descripton:

Selecting » GFU sllows e in
Support Physx. Choose AURG-slect t et KVIDIA use th best proc

et support Physi

Restore Defaults

Figure 4: Assigning GPU Processor

2.2 Software Setup

Python as programming language was used and Jupyter notebook was used as shown
in the |5 to carry out all code. Necessary python libraries along with their versions are
mentioned in the Table [[] which needs to be installed in order to build and execute further

experiments.

Z Jupyter aut | | Logout
Files Running Clusters
Select items to perform actions on them. Upload | New ~ |[2
o ~ m/ Last Modified File size
pyo—
ayearago
ayeirap
8 months ago
an hour ago
7 days ago
ahoursago
ayearago
O O Links ayearago
O O Music ayearago
O © 0IDva_Toolkit 9 days ago
0o 4 months ago
O O Pictures 8 months ago

Figure 5: Snapshot of Jupyter

pandas 1.1.3
numpy 1.19.2
sklearn 0.24.1
matplotlib 3.3.2
seaborn 0.11.0
tensorflow 2.7.0
imblearn 0.8.0
keras 2.7.0
cv2 454

Table 1: Libraries and their versions

3 Data Gathering

Google Open Image Dataset E] as seen in the Figure |§] The google open image dataset
consisted of 9M images with more than 600 classes. For this research study 10 classes
images (ie.) were extracted. Three different dataset were created as bellow, for train in
the Figure [7] for test in the Figure [§ and for validation as shown in the Figure [9]

Open Images Dataset V6 Explore [ESSSSUSGMM Download Extended Extras News Challenge

Figure 6: Dataset Used : Google Open Image Dataset V4

hon main.py downloader --classes Toy Television Couch Blender Bicycle Laptop Handbag Headphones Camera Watch --type.csv train —-multiclasses 1 —/imit 500

era’, ‘Watch'] together

P Type here to search

Figure 7: Extraction of Train Data

'https://storage.googleapis.com/openimages/web/factsfigures_v4.html

https://storage.googleapis.com/openimages/web/factsfigures_v4.html

L Type here to search

P Type here to search

Figure 9: Extraction of Validation Data

4 Data Preparation and Transformation

The dataset had images of all different size, so scaling data to a fixed sized was carried
out and data augmentation was done using ImageDataGenerator Class as shown in the
Figure

Directories

train_directory "D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/train"
valid_directory = "D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/validation"”
test_directory = "D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/test"

Figure 10: Setting Path for all Dataset Directory

Constants

img_rows = 224

img cols = 224

input_shape = (img_rows,img_cols,3)
epachs = 10

batch_size = 64

num_of_classes = 1@
num_of_train_samples = 4649
num_of_valid_samples 537
num_of_test_samples = 1327

Load Train Data as image generator with Keras, Normalization with (rescale=1./255)

train_generator = ImageDataGenerator(rescale=1./255).flow_from_directory(directory=train_directory,
class_mode="categorical’,
batch_size=batch_size,
target_size=(img_rows, img_cols),
color_mode="rgb",
shuffle=True)

Load Validation Data as image generator with Keras, Normalization with (rescale=1./255)

valid_generator = ImageDataGenerator(rescale=1./255).flow_from_directory(directory=valid_directory,
class_mode="categorical’,
batch_size=batch_size,
target_size=(img_rows, img cols),
color_mode="rgb",
shuffle=True)

Load Test Data as image generator with Keras, Normalization with (rescale=1./255)

test_generator = ImageDataGenerator(rescale=1./255).flow_from_directory(directory=test_directory,
class_mode="categorical’,
batch_size=batch_size,
target_size=(img_rows, img_cols),
color_mode="rgh",
shuffle=False)

Figure 11: Extraction of Validation Data

5 Experimental Setup

5.1 Experiment with CNN

CNN Model’s parameter were changed in order to achieve good performing model. By
tuning these parameters various combinations of experiments were conducted and further
compared for evaluation. The adjusted parameters are highlighted in each figure.

CNN Model

Create a model for CNN
def getCNModel(num_of_layers=2, num_of_filters=32, filter_size=(3, 3), initializer='glorot_uniform',
activation_function='relu', dropout=0.2, opt='adam'):
Create a Sequential
model = Sequential()

Create Convolution layers
for i in range(®, num_of_layers):
model.add(Conv2D(num_of_filters, filter_size, kernel_initializer=initializer, activation=activation_function,
[input_shape=input_shape))
model. add(MaxPooling2D(2, 2))
model . add(Dropout (dropout))

model.add(Flatten())

model.add(Dense(512, activationzactivation function, kernel initializerzinitializer))
model.add(Dense(num_of_classes, activation='softmax'))

Compile model
model.compile(optimizerzopt, loss='categorical crossentropy’, metricsz['accuracy'])

model . summary ()

return model

Figure 12: CNN Model Building Code

Combination 1

model = getCNNModel(num_of layers=2, num_of_filters=32, filter_size=(3, 3), initializer='glorot normal',
activation_function='relu', dropout=8.2, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model.save('D: /0IDv4 ToolKit-master/OIDv4 ToolKit-master/0ID/Dataset/New model combl.h5')

Figure 13: CNN Combinationl

Combination 2

model = getCNNModel(num_of layers=2, num_of filters=32, filter_size=(5, 5), initializer="glorot normal’,
activation_function='relu', dropout=0.2, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model.save('D:/0IDv4 ToolKit-master/OIDv4 ToolKit-master/OID/Dataset/model comb2.h5')

Figure 14: CNN Combination2

Combination 3

model = getCNNModel (num_of_layersz2, num_of_filters=32, filter_size=(3, 3), initializer='glorot_normal',
activation_functionz'relu', dropout=08.7, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model .save('D:/0IDv4_ToolKit-master/OIDv4_ToolKit-master/0ID/Dataset/model_comb3.h5')

Figure 15: CNN Combination3

Combination 4

model = getCNNModel(num_of_layers=3, num_of_filters=32, filter_size=(3, 3), initializer='glorot_uniform',
activation_function='relu', dropout=8.2, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model.save('D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/model_comb4d.h5')

Figure 16: CNN Combination4

Combination 5

model = getCHNModel(num_of_ layers=3, num_of_filters=32, filter size=(5, 5), initializer='glorot uniform',
activation_functionz'relu’, dropout=0.2, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model.save('D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/OID/Dataset/model_comb5.h5")

Figure 17: CNN Combination5

Combination 6

model = getCNMModel(num_of layers=3, num_of filters=32, filter size=(3, 3), initializer=z'glorot uniform’,
activation_function='relu', dropout=8.7, opt='adam')

model = trainModelAndGetConfusionMatrix(model)

model.save('D:/0IDv4_ToolKit-master/0IDv4 ToolKit-master/0ID/Dataset/model_comb6.h5')

Figure 18: CNN Combination6

Once all the experiments with adjusting different parameters was done. A function
was written to compare all CNN models as shown in the Figure

combinations = list(data.keys()})
accuracies = list(data.values()})

fig = plt.figure(figsize = (20, 10))

creating the bar plot
plt.bar{combinations, accuracies, color="#@857D9F', width=8.5)

plt.xlabel("Combination of CHN")

plt.ylabel("Test Accuracy")

plt.title("Test Accuracies of Some Combinations of CHNN Model")
plt.show()

Figure 19: CNN Models Comparison code

5.2 Experiment with Transfer Learning Models

The experiment with CNN models were not reliable for carrying out image retrieval.
Thus, transfer learning technique was taken into consideration. So, VGG16 and ResNet50
models were developed as shown in the Figure 20| and

Get VGG-16 Model
def getVWGG16Model(lastFourTrainable=False):
vgg_model = VGG16({weights='imagenet', input_shapezinput_shape, include_top=True)

Make all layers untrainable
for layer in vgg_model.layers[:]:
layer.trainable = False

Add fully connected layer which have 1824 neuron to VGG-16 model
output = vgg model.get layer('fc2').output

output = Flatten(namez'new flatten')(output)
output = Dense(units=1824, activation='relu', name='new_fc')(output)
output = Dense(units=18, activation='softmax')(output)

vgg_model = Model{vgg_model.input, output)

Make last 4 layers trainable if lastFourTrainable == True
if lastFourTrainable == True:
vgg_model.get layer(’'block5_conv3').trainable = True
vgg_model.get layer('fcl').trainable = True
vgeg_model.get_layer('fc2').trainable = True
vge_model.get_layer('new_fc').trainable = True

Compile VGG-16 model
vgg model._compile(optimizer="adam', loss='categorical crossentropy', metrics=['accuracy'])

vegg_model. summary ()

return vgg_model

Figure 20: VGG16 Model code

Get ResNet-58 Model
def getResNetSeModel(lastFourTrainable=False}):
resnet_model = ResNet5@(weights="imagenet®, input_shape=input_shape, include_top=True)

Make all Layers non-trainable
for layer in resnet_model.layers[:]:
layer.trainable = False

Add fully connected Layer which have 1824 neuron to ResNet-58 model
output = resnet_model.get_layer('avg_pool’)}.output

output = Flatten(name='"new_flatten')(output)

output = Dense(units=1824, activation="relu', name="new_fc") (output)
output = Dense(units=1@, activation='softmax')(output)

resnet_model = Model(resnet_model.input, output)

Make Last 4 Layers trainable if lastFourTrainable == True

if lastFourTrainable == True:
resnet_model.get_layer('conv5_block3_2_bn').trainable = True
resnet_model.get_layer('conv5_block3 3_conv').trainable = True
resnet_model.get_layer('conv5_block3_3_bn').trainable = True
resnet_model.get_layer('new_fc').trainable = True

Compile ResNet-58 model
resnet_model.compile{optimizer="adam', loss="categorical crossentropy’, metrics=['accuracy'])
resnet_model.summary()

return resnet_model

Figure 21: ResNet50 Model code

Further, these model’s last four layer trainable parameter was adjusted either true or
false and results were recorded as well as compared with evaluation methods.

Get ResNet-50 Model with LastFourTrainable=False

resnet_model_a = getResNet5@Model(lastFourTrainable=False)

Train ResNet-58 Model and get Confusion Matrix

resnet_model_a = trainModelAndGetConfusionMatrix(resnet_model_a)
resnet_model_a.save_weights('D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/model_resnet_nontrainable.h5')

Figure 22: ResNet50 Model code
with last four layer trainable as False

Get ResNet-58 Model with LastFourTrainable=True

resnet_model b = getResNetSeModel(lastFourTrainable=True)

Train ResNet-58 Model and get Confusion Matrix

resnet_model b = trainModelAndGetConfusionMatrix(resnet model b)

resnet_model b.save_weights('D:/0IDv4_ToolKit-master/0IDv4 ToolKit-master/0ID/Dataset/model resnet_trainable.h5")

Figure 23: ResNet50 Model code
with last four layer trainable as True

Get VGG-16 Model with lastFourTrainable=False

vgg_model_a = getVGG16Model(lastFourTrainable=False)

Train VGG-16 Model and get Confusion Matrix

vgg_model_a = trainModelAndGetConfusionMatrix(vgg_model_a)
vgg_model_a.save_weights('D:/0IDv4_ToolKit-master/OIDv4 ToolKit-master/0ID/Dataset/model_vgg_nontrainable.h5")

Figure 24: VGG16 Model code
with last four layer trainable as False

Get VGG-16 Model with LlastFourTrainable=True

vgg_model b = getVGG1l6Model(lastFourTrainable=True)

Train VGG-16 Model and get Confustion Matrix

vgg_model b = trainModelAndGetConfusionMatrix(vgg_model b)

vgg_model b.save weights('D:/0IDv4 ToolKit-master/OIDv4 ToolKit-master/0ID/Dataset/model vgg trainable.h5')

Figure 25: VGG16 Model code
with last four layer trainable as True

Once, all the models were build and experimented with adjusting the last layer train-
able. A bar chart was plotted and the results were compared as shown in the Figure

combinations = list(data.keys())
accuracies = list(data.values())

fig = plt.figure(figsize = (15, 18))

creagting the bar plot
plt.bar{combinations, accuracies, color="#FFCABB', width=8.5)

plt.xlabel{"Transfer Learning Model™)

plt.ylabel("Test Accuracy™)

plt.title("Test Accuracies of Transfer Learning Models™)
plt.show()

Figure 26: Comparison Code for VGG16 and Resnet50

5.3 Experiment with Feature Extraction and Image Retrieval

Based the experiments carried in the above sections, VGG16 gave best performing results.
Using pre-trained VGG16 model, image retrieval experiment was carried out. Features

of the image were extracted as well as similarity between images were checked as shown
in the Figure

Get feature vector of an image by given model and img_path
def getFeatureVector(model, img_path):

img = cv2.imread(img_path)

img = cv2.resize(img, (224, 224))

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

feature_vector = model.predict(img.reshape(l, 224, 224, 3))

print(img_path + " is added.")
return feature_vector

Get cosine similarity between feature vectors A and B using cosine similarity

def getCosineSimilarity(A, B):
cos_similarity = np.dot(A,B.T) / (np.linalg.nerm{A)*np.linalg.norm(B)) # Get cosine similarity
return cos_similarity[e][@]

Figure 27: Function for extracting features and getting similarity

Function for get dataframe which contains the output features of given model
def getFeatureDataFrame(model):

df = pd.DataFrame(columns=['file', 'features'])

train_files = train_gensrator.filepaths

valid files = valid generator.filepaths

files = train_files + valid files
print{len(files))

df['file"] = files
df['features'] = df.apply(lambda row: getFeatureVector(model, row['file']), axis=1)

print("All files added.”)
return df

Figure 28: Function for feature vector dataframe

The model which was trained earlier with last four layer = false was used in order to
load weights and extract features as shown in the Figure

Get feature extractor model from Last Layer of vgg model_a

vgg_model_a = getVGGle6Model(lastFourTrainable=False)

vgg _model a.load weights('D:/0IDv4 ToolKit-master/OIDv4 ToolKit-master/OID/Dataset/model vgg nontrainable.h5')
feature_model_wvgg_a = Model(inputs=vgg_medel_a.input, outputs=vgg_model_a.get_layer('new_fc').output)

df = getFeatureDataFrame(feature model vgg a)
df.to_pickle("D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/features_vgg_a.pickle")

Figure 29: Feature extractor VGG Model(a)

The model which was trained earlier with last four layer = true was used in order to
load weights and extract features as shown in the Figure

Get feature extractor model from Last Layer of vgg model b

vgg model b = getVGGl6Model(lastFourTrainable=True)

vgg model b.load weights('D:/0IDv4 ToolKit-master/0IDv4 ToolKit-master/0ID/Dataset/model wgg trainable.hS')
feature_model_vgg b = Model(inputs=vgg model_b.input, ocutputs=vgg_model_b.get_layer('new_fc').output)

df = getFeatureDataFrame(feature_model vgg b)
df.to_pickle("D:/0IDv4_ToolKit-master/0OIDv4_ToolKit-master/OID/Dataset/features_vgg b.pickle")

Figure 30: Feature extractor VGG Model(b)

10

Plot similar 5 images with given image and similar images dataframe
def plotSimilarImages(img_file, similar_df, model name}:

img = cv2.imread(img_file)

img = cv2.resize(img, (224, 224))

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

split list = img file.split('/")

split_list.reverse()

img_class = split_list[1]

fig, axarr = plt.subplots(2,3)

axarr[e,8].imshow({img)

axarr[e,8].set_title("TEST IMAGE - " + model name + "\nClass:
axarr[e,a].axis('off")

+ img_class)

i, k, m=18, 8, 1

for index, sim in similar_df.iterrows():
filepath = sim['file"]
similarity = sim['similarity’]
split 1ist = filepath.split('/")
split_list.reverse()
sim _class = split list[1]

similar = cv2.imread(filepath)

similar = cv2.resize(similar, (224, 224))

similar = cv2.cvtColor(similar, cv2.COLOR_BGR2ZRGE)
axarr[k,m].imshow(similar)

axarr[k,m].set_title("Similarity: %.3f" % similarity + "\nClass:
axarr[k,m].axis(off")

+ sim_class)

m+= 1

ifm==3 and k != 1:
k += 1
m=8

j+=1
if j == 5:
break

plt.tight_layout()
plt.show()

Figure 31: Function for plotting similar images

Get and plot 5 similar images for given image path and features dataframe
def getSimilarImages(img_file, features_df, model, model name):
img_features = getFeatureVector(model, img file)
features_df['similarity'] = features_df.apply(lambda row: getCosineSimilarity(img_features, np.asarray(row[features'])),
axis=1)
sorted df = features_df.sort_values(by='similarity’, ascending=False)

plotSimilarImages(img_file, sorted_df.head(5), model_name)

Figure 32: Function for getting Similarity between images

Test images path

feature_test path = 'D:/0IDv4 ToolKit-master/0OIDv4 ToolKit-master/0ID/Dataset/test’

feature_test_generator = ImageDataGenerater{rescale=1./255).flow_from_directory(directory-feature_test_path,
class_mode="categorical’,
batch_size=batch_size,
target_size=(img_rows, img_cols),
| color_mode="rgh",
shuffle=False)

feature_test files = feature test generator.filepaths

Found 1327 images belonging to 18 classes.

Figure 33: Giving Test Images Path

11

@Get similar images of test images for VGG-16 (a)

vgg model a = getVGGl6Model(lastFourTrainable=False)

vgg model_a.load_weights('D:/0IDv4_TooclKit-master/0IDv4_ToolKit-master/0ID/Dataset/model_vgg_nontrainable.h5")
feature_model_wvgg_a = Model{inputs=vgg_model a.input, outputs=vgg model_a.get_layer('new_fc').output)

df = pd.read_pickle('D:/0IDv4_ToolKit-master/OIDv4_ToolKit-master/DID/Dataset/features_vgg a.pickle’)
for file in feature test files:

getSimilarImages(file, df, feature model wgg a, 'VGG-16 (a)')

Figure 34: Getting Similar Images and Similarity with VGG16(a) Model

Get similar images of test images for VGG-16 (b)

vgg_model b = getVGGl6Model(lastFourTrainable=True)
vgg_model_b.load_weights('D:/0IDv4_ToclKit-master/OIDv4_ToolKit-master/OID/Dataset/model_vgg trainable.h5')
feature_model vgg b = Model({inputs=vgg model b.input, ocutputs=vgg model b.get layer('new fc').output)

df = pd.read_pickle(D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/features_vgg b.pickle')
for file in feature test files:

getSimilarImages(file, df, feature_model wgg b, "VGG-16 (b)")

Figure 35: Getting Similar Images and Similarity with VGG16(b) Model

D:/0IDv4_ToolKit-master/OIDv4_ToolKit-master/0ID/Dataset/test\Headphones\586177f964cd3d6a.jpg is added.

TEST IMAGE - VGG-16 (b} Similarity: 0.995 Similarity: 0.994
Class: Dataset Class: Dataset Class: Dataset

Similarity: 0.994 Similarity: 0.992 Similarity: 0.991
Class: Dataset Class: Dataset Class: Dataset

D:/0IDv4_ToolKit-master/OIDv4_ToolKit-master/OID/Dataset/test\Headphones\5cc7b3dabl98d5@d. jpg is added.
TEST IMAGE - VGG-16 (b} Similarity: 0.998 Similarity: 0.998
Class: Dataset Class: Dataset Class: Dataset
—h

. '
Similarity: 0.997 Similarity: 0.997 Similarity: 0.996
Class: Dataset Class: Dataset Class: Dataset

Lis

Figure 36: Example of result with VGG16(b) Model with Headphones Class

12

D:/0IDv4_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/test\Blender\445@e3ec311b52ea.jpg is added.

TEST IMAGE - VGG-16 (b) Similarity: 0.993 Similarity: 0.992
Class: Dataset Class: Dataset Class: Dataset

R '|| —~—
i

i

»
"ot ¥
f -
=3
Similarity: 0.992 Similarity: 0.991 Similarity: 0.990

Class: Dataset Class: Dataset Class: Dataset

D:/0IDvA_ToolKit-master/0IDv4_ToolKit-master/0ID/Dataset/test\Blender\4711d1564fceddea.jpg is addad.

TEST IMAGE - VGG-16 (b) Similarity: 0.990 Similarity: 0.982
Class: Dataset Class: Dataset Class: Dataset

Similarity: 0.978 Similarity: 0.977 Similarity: 0.976
Class: Dataset Class: Dataset Class: Dataset

i % i

Figure 37: Example of result with VGG16(b) Model with Blender class

13

	Introduction
	System Configuration
	Hardware Setup
	Software Setup

	Data Gathering
	Data Preparation and Transformation
	Experimental Setup
	Experiment with CNN
	Experiment with Transfer Learning Models
	Experiment with Feature Extraction and Image Retrieval

