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Configuration Manual

Bijender Gupta
Student ID: x20142358

1 Introduction

The goal of this study is to identify and classify the toxic comments that have been posted on
Wikipedia pages. Detailed instructions for replicating a research project have been provided in
this configuration manual. Data gathering, model testing, and assessment are covered in detail
in this article. Code snippets are referenced as necessary.

2 Configuration of the System

Kaggle Notebook with a Tesla P100-PCIE-16GB GPU was used to accomplish the work.

Kaggle Notebook maintains that the model training session is not interrupted due to a lack of
RAM.

IDE Kaggle Notebook (Cloud Based)

Programming Language | Python

Computation 1 GPU (Tesla P100-PCIE-16GB)

Visualization Library Matplotlib, WordCloud, Seaborn, Wandb

Modeling Library SimpleTransformer, HuggingFace Transformer,
Sklearn, Pandas, NumPy, NLTK, Regex

Framework Pytorch|

3 Dataset Collection

Google Jigsaw released a dataset in December 2017 as part of the Kaggle "Toxic-Comment-
Classification-Challenge" that we utilized in our work. It is a collection of labeled comments
posted from Wikipedia articles on Kaggle that are freely available to the public.The data for
this study was obtained from Kagale.

4 Kaggle Notebook Setup

In the input folder of Kaggle Notebook, the data retrieved from Kaggle is saved. Below figure
is a sample of code that demonstrates how to load the data into a data frame.


https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

for dirname, _, filenames in os.walk(' /kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))

We also made sure that the GPU was available before we started coding.

# SETTING UP THE GPU IF POSSIBLE
import torch

if torch.cuda.is_available():
device = torch.device("cuda")
print(f'There are {torch.cuda.device_count()} GPU(s) available."')
print('Device name:.', torch.cuda.get_device_name(8))

else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")

There are 1 GPU(s) available.
Device name: Tesla P10@-PCIE-16GB

5 Installing Python Pre-processing and Modelling Libraries

The pre-processing and modelling libraries needed to run the code are installed and imported
into the system.

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import seaborn as sns

import time

import datetime

from sklearn.metrics import precision_score, recall_score

# import pyTorch

import torch

import torch.nn as nn

import torch.optim as optim

from torch.optim import 1lr_scheduler

# import other parts of transformers as well as tqgdm

from transformers import (AutoTokenizer, AutoModel,
AutoModelForSequenceClassification,
DataCollatorWithPadding, AdamW, get_scheduler,
get_linear_schedule_with_warmup,
)

import pyarrow as pa

from tqdm.auto import tgdm

from torch.utils.data import TensorDataset, Dataloader, RandomSampler, SequentialSampler

import datasets

import random

from sklearn.metrics import classification_report, hamming_loss, accuracy_score

A pandas dataframe is used to read and store the supplied dataset.
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# Read CSV File

train_csv = pd.read_csv(TRAIN)
print(train_csv.shape)
train_csv.head()

(159571, 8)

id comment_text toxic severe_toxic obscene threat insult identity_hate
0 0000997932d777bf Explanation\nWhy the edits made under my usern... 1] 0 0 0 1] 1]
1 000103f0d2cfb60f  D'aww! He matches this background colour I'm s... 0 0 0 0 0 0
2 000113f07ec002fd Hey man, I'm really not trying to edit war. It... 1] 0 0 0 1] 1]
3 0001b41b1cbbb37e “\nMore\nl can't make any real suggestions on ... 0 0 0 0 0 0
4  0001d958c54c6e35 You, sir, are my hero. Any chance you remember... 0 0 0 0 0 0

6 EDA
Code snippet for plotting Wordcloud

HANALYZING THE MOST COMMON WORD IN OUR TRAIN DATASET USING WORDCLOUD
X =1]
for items in train_csv] ' comment_text']:
X.append(text_preprocessing(items))
commonWord = ' '.join(X)
from wordcloud import WordCloud, STOPWORDS
wordcloud = WordCloud(stopwords=STOPWORDS,
background_color="black"’,
width=3660,
height=25608
) .generate(commonWord)
# Plot the wordcloud
plt.figure(1, figsize=(12, 12))
plt.imshow(wordcloud)
plt.axis('off")
plt.show()

Word cloud plot for showing frequency of bad words in the comment.
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7 Data Pre-processing

Instantiate tokenizer, model using "bert-base-uncased" for preprocessing. The abbreviations
like "wouldn't" and "shouldn't" in the comment have been extended to provide more
information. All of the comment in the dataset are iterated through using lambda expressions
and regex.



# Instantiate tokenizer, model using "bert-base-uncased”
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=Tru
def preprocessing_for_bert(data):
input_ids = []
attention_masks = []

# For every sentence...
for sent in data:
encoded_sent = tokenizer.encode_plus(
text=text_preprocessing(sent), # Preprocess sentence

add_special_tokens=True, # Add “[CLS]  and " [SEP]"
max_length=MAX_LEN, # Max length to truncate/pad
pad_to_max_length=True, # Pad sentence to max length
truncation = True,

return_attention_mask=True # Return attention mask

)

input_ids.append{encoded_sent.get( ' input_ids'))
attention_masks.append(encoded_sent.get( 'attention_mask'))

# Convert lists to tensors
input_ids = torch.tensor(input_ids)

attention_masks = torch.tensor(attention_masks)

return input_ids, attention_masks

Downloading: 100% || G 232k/232k [00:00<00:00, 593kB/s]
Downloading: 100% [ 25.0/28.0 [00:00<00:00, 1.09KB/s]

Fixing padding length for 300:

MAX_LEN = 308

token_ids = list(preprocessing_for_bert([X[@]])[8].squeeze().numpy())
print('Original: ', X[8])
print('Token IDs: ', token_ids)

# Run function ‘preprocessing_for_bert  on the train set and the validation set
print('Tokenizing data..."')

train_inputs, train_masks = preprocessing_for_bert(X_train)

val_inputs, val_masks = preprocessing_for_bert(X_val)

fopt/conda/lib/python3.7/site-packages/transformers/tokenization_utils_base.py:2879: Futurelarning: The "“pad_to_max_length® argument is deprecated
and will be removed in a future version, use "padding=True® or °“padding='longest'™ to pad to the longest sequence in the batch, or use “padding="m
ax_length’” to pad to a max length. In this case, you can give a specific length with “max_length™ (e.g. “max_length=45") or leave max_length to N
one to pad to the maximal input size of the model (e.g. 512 for Bert).
FuturelWarning,

Original: Explanation Why the edits made under my username Hardcore Metallica Fan were reverted? They weren't vandalisms, just closure on some GA
s after I voted at New York Dolls FAC. And please don't remove the template from the talk page since I'm retired now....

Token IDs: [1@1, 7526, 2339, 1995, 18085, 2015, 2081, 2184, 2026, 5310, 18442, 13876, 12392, 2850, 5478, 20208, 16487, 1029, 2027, 4694, 1085, 185
6, 3158, 93@5, 22556, 1@le, 2074, 85083, 2006, 2070, 3886, 2044, 1845, 5444, 2012, 2047, 2259, 14421, 6504, 2278, 1812, 1998, 3531, 2123, 1e@es, 1a@5

6, 6366, 1996, 23561, 2013, 1996, 2831, 3931, 2144, 1045, 1005, 1049, 3394, 2085, 1012, 1ei1z, 1e12, 1e12, 102, @, @, @, @, @, @, @, @, @, @, @, @,
@,9,0%@,060°%0¢%@690°¢04®@%®o°%0°%e8es%9e4®0800090000.00008e0040.0029004as48e040.0.0%0.0.0.480.0,.8,80,
e,o,e8,80°¢90¢892908%8e4034%o008e09e4a4®9e.04o.0028.0.040.390020040.00089490.38.00.20.0408.0.486.80,.08,
@,9,6%9,80,0,9,¢9,0,0,@,0,0,0,¢,90,0,0,0,0,0,0,0,0,0,0,80,9,0,0,0,0,90,0,9,90,80,0,0,0,0,6,80,0,0,0,8,8,
e,9,e@,0600¢89808e8®04%86008¢e8®04®e®@es04%o.0040.0.%080°308%°4088040.400208900480400400%080.80.390.80.s88,
0,9, 0,0,00,%9e,@0902®90809e004%@.2849e29400.00480.28080.80.0,.0]

-

Creating Data loader for training and validation set:



from torch.utils.data import TensorDataset, Dataloader, RandomSampler, SequentialSampler

# Convert other data types to torch.Tensor
train_labels = torch.tensor(y_train)
val_labels = torch.tensor(y_val)

# For fine-tuning BERT, the authors recommend a batch size of 16 or 32.
batch_size = 32

# Create the Dataloader for our training set

train_data = TensorDataset(train_inputs, train_masks, train_labels)

train_sampler = RandomSampler(train_data)

traln_dataloader = Dataloader(train_data, sampler=train_sampler, batch_size=batch_size)

# Create the Dataloader for our validation set

val_data = TensorDataset(val_inputs, val_masks, val_labels)

val_sampler = SequentialSampler(val_data)

val_dataloader = Dataloader(val_data, sampler=val_sampler, batch_size=batch_size)

8 Model Implementation

Check the input file and run the toxic_comment_classification_teacher_model file before
running the baseline model (Bert-Base). One new file will be created after training and testing
on this model.

We need that created file since we will use it as an input file to run our student model.

For validation and test samples of data, we used BERT, MobileBert, Logistic Regression,
Random Forest, Decision Tree, and the XG-Boost Model. Both models have comparable
implementation procedures. The measures taken for Bert are summarized in the section below.



# Create the BertClassfier class
class BertClassifier(nn.Module):
def __init__(self, freeze_bert=False):
super (BertClassifier, self).__init__()
# Specify hidden size of BERT, hidden size of our classifier, and number of labels
D_in, H, D_out = 768, 58, 2

# Instantiate BERT model
self.bert = BertModel.from_pretrained(’ bert-base-uncased’)
# Instantiate an one-layer feed-forward classifier
self.classifier = nn.Sequential(

nn.Linear(D_in, H),

nn.RelLU(),

nn.Linear(H, D_out)

)

# Freeze the BERT model
if freeze_bert:
for param in self.bert.parameters():
param.requires_grad = False

def forward(self, input_ids, attention_mask):
# Feed input to BERT
outputs = self.bert(input_ids=1input_ids,
attention_mask=attention_mask)
# Extract the last hidden state of the token "[CLS]  for classification task
last_hidden_state_cls = outputs[8][:, 8, :]
# Feed input to classifier to compute logits
logits = self.classifier(last_hidden_state_cls)

return logits

CPU times: user 3 ps, sys: @ ns, total: 3 ps
Wall time: 5.96 ps

Initialize optimizer and length of training steps:
from transformers import AdamW, get_linear_schedule_with_warmup

def initialize_model(epochs=4):
"""Initialize the Bert Classifier, the optimizer and the learning rate scheduler.

# Instantiate Bert Classifier
bert_classifier = BertClassifier(freeze_bert=False)

# Tell PyTorch to run the model on GPU
bert_classifier.to(device)

# Create the optimizer
optimizer = AdamW(bert_classifier.parameters(),

1r=5e-5, # Default learning rate
eps=1e-8 # Default epsilon value
)

# Total number of training steps
total_steps = len(train_dataloader) * epochs

# Set up the learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=8, # Default value
num_training_steps=total_steps)
return bert_classifier, optimizer, scheduler



Training and Validation steps:

def train(model, train_dataloader, val_dataloader=Nene, epochs=4, evaluation=False):
valid_loss_min = np.Inf
checkpoint_path = "/kaggle/working/checkpoint.pth”
best_model_path = "/kaggle/working/ best_model.pth”

Train the BertClassifier model.

# Start training loop
print(“Start training...\n")
for epoch_i in range(epochs):

# Print the header of the result table
print(f"{ Epoch':*7} | {'Batch’':*7} | {'Train Loss':"12} | {'Val Loss :*18} | {'Val Acc’:%9} | {'Elapsed’:"9}")
print("-"+78)

# Measure the elapsed time of each epoch
tB_epoch, t8_batch = time.time(), time.time()

# Reset tracking variables at the beginning of each epoch
total_loss, batch_loss, batch_counts = @, 8, @

# Put the model into the training mode
model.train()

# For each batch of training data...
for step, batch in enumerate(train_dataloader):
batch_counts +=1
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.to(device) for t in batch)



# Zero out any previously calculated gradients
model.zero_grad()

# Perform a forward pass. This will return logits.
logits = model(b_input_ids, b_attn_mask)

# Compute loss and accumulate the loss values
loss = loss_fn(logits, b_labels)

batch_loss += loss.item()

total_loss += loss.item()

# Perform a backward pass to calculate gradients
loss.backward()

# Clip the norm of the gradients to 1.8 to prevent "exploding gradients”
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.8)

# Update parameters and the learning rate
optimizer.step()
scheduler.step()

# Print the loss values and time elapsed for every 28 batches

if (step % 2B == 8 and step '= @) or (step == len(train_dataloader) - 1):
# Calculate time elapsed for 28 batches
time_elapsed = time.time() - t@_batch

# Print training results
print(f"{epoch_1 + 1:*7} | {step:*7} | {batch_loss / batch_counts:*12.6f} | {'-':*8} | {'-':*9} | {time_elapsed:*9.2f}")

# Reset batch tracking variables
batch_loss, batch_counts = 8, 8
tB_batch = time.time()

# Calculate the average loss over the entire training data
avg_train_loss = total_loss / len(train_dataloader)

if evaluation == True:
# After the completion of each training epoch, measure the model’s performance on our validation set.
val_loss, val_accuracy = evaluate(model, val_dataloader)

# Print performance over the entire training data
time_elapsed = time.time() - t@_epoch

print(f"{epoch_i + 1:*7} | {'-":*7} | {avg_train_loss:*12.6f} | {val_loss:*18.6f} | {val_accuracy:*9.2f} | {time_elapsed:*9.2f}")
print("-"%78)
print(“\n")
# create checkpoint variable and add important data
checkpoint = {
‘epoch’: epoch_i + 1,
‘valid_loss_min': val_loss
‘state_dict’ : model.state_dict(),
‘optimizer': optimizer.state_dict()

}

# save checkpoint

save_ckp(checkpoint, False, checkpoint_path, best_model_path)

if val_loss <= valid_loss_min:
print(‘Validation loss decreased ({:.6f} --» {:.6f}). Saving model ...'.format(valid_loss_min,val_loss))
# save checkpoint as best model
save_ckp(checkpoint, True, checkpoint_path, best_model_path)
valid_loss_min = val_loss

print(“Training complete!")



def evaluate(model, val_dataloader):

After the completion of each training epoch, measure the model’'s performance
on our validation set.

# Put the model into the evaluation mode. The dropout layers are disabled during the test time.
model.eval()

# Tracking variables
val_accuracy = []
val_loss = []
precision=[]

# For each batch in our validation set...
for batch in val_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask, b_labels = tuple(t.toc(device) fer t in batch)

# Compute logits
with torch.no_grad():
logits = model(b_input_ids, b_attn_mask)

# Compute loss
loss = loss_fn(logits, b_labels)

val_loss.append(loss.item())

# Get the predictions
preds = torch.argmax(logits, dim=1).flatten()

# Calculate the accuracy rate
accuracy = (preds == b_labels).cpu().numpy().mean() * 188
val_accuracy.append(accuracy)
# Compute the average accuracy and loss over the validation set
val_loss = np.mean(val_loss)

val_accuracy = np.mean(val_accuracy)

return val_loss, wval_accuracy

Function for saving and loading the model:
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def load_ckp(checkpoint_fpath, model, optimizer):
checkpoint_path: path to save checkpoint
model: model that we want to load checkpoint parameters into
optimizer: optimizer we defined in previcus training

# load check point

checkpoint = torch.load(checkpoint_fpath)

# initiaglize state_dict from checkpoint to model
model.load_state_dict(checkpoint['state_dict’])

# initialize optimizer from checkpoint to optimizer
optimizer.load_state_dict(checkpoint[ optimizer'])

# initialize valid_ loss_min from checkpoint to valid_loss_min
valid_loss_min = checkpoint[’valid_loss_min’]

# return model, optimizer, epoch value, min validation loss

return model, optimizer, checkpoint[ epoch'], wvalid_loss_min.item()

def save_ckp(state, is_best, checkpoint_path, best_model_path):
state: checkpoint we want to save
is_best: is this the best checkpoint; min validation loss
checkpoint_path: path to save checkpoint
best_model_path: path to save best model
f_path = checkpoint_path
# save checkpoint data to the path given, checkpoint_path
torch.save(state, f_path)
# 1if it is a best model, min validation loss
if is_best:
best_fpath = best_model_path
# copy that checkpoint file to best path given, best_model_path
shutil.copyfile(f_path, best_fpath)

8 Predictions

To test the model, the predict function is utilized once the evaluation results are satisfactory.
Each model generates a confusion matrix and classification report. Perform a forward pass on
the trained BERT model to predict probabilities on the test set.

11



def bert_predict(model, test_dataloader):
"""Perform a forward pass on the trained BERT model to predict probabilities
on the test set.

# Put the model into the evaluation mode. The dropout layers are disabled during

# the test time.
model.eval()

all_logits = []

# For each batch in our test set...
for batch in test_dataloader:
# Load batch to GPU
b_input_ids, b_attn_mask = tuple(t.to(device) for t in batch)[:2]

# Compute logits
with torch.no_grad():

logits = model(b_input_ids, b_attn_mask)
all_legits.append(logits)

# Concatenate logits from each batch
all_logits = torch.cat(all_logits, dim=8)

# Apply softmax to calculate probabilities
probs = F.softmax(all_logits, dim=1).cpu().numpy()

return probs

Lastly, plotted ROC-AUC curve

from sklearn.metrics impert accuracy_score, roc_curve, auc

def evaluate_roc(probs, y_true):

- Print AUC and accuracy on the test set

- Plot ROC
@params probs (np.array): an array of predicted probabilities with shape (len(y_true), 2)
@params y_true (np.array): an array of the true values with shape (len(y_true),)

preds = probs[:, 1]

fpr, tpr, threshold = roc_curve(y_true, preds)
roc_auc = auc(fpr, tpr)

print(f'AUC: {roc_auc:.4f}")

# Get accuracy over the test set

y_pred = np.where(preds »= 8.5, 1, @)
accuracy = accuracy_score(y_true, y_pred)
print(f'Accuracy: {accuracy*188:.2f}%")

# Plot ROC AUC

plt.title( Receiver Operating Characteristic’)
plt.plot(fpr, tpr, 'b', label = 'AUC = %B.2f " % roc_auc)
plt.legend(loc = 'lower right’)

plt.plot([e, 1], [e, 1],'r--")

plt.xlim([@, 1])

plt.ylim([@, 1])

plt.ylabel( True Positive Rate')

plt.xlabel( 'False Positive Rate')

plt.show()
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