Configuration Manual

MSc Research Project
Data Analytics

Aishwarya Ghongane
Student ID: x20177259

School of Computing
National College of Ireland

Supervisor: Dr. Prashanth Nayak

~

National
Collegeof
[reland

National College of Ireland National

Project Submission Sheet College of
School of Computing Ireland
Student Name: Aishwarya Ghongane
Student ID: x20177259
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Prashanth Nayak
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1116
Page Count: 15

| hereby certify that the information contained in this (my submission) is information
pertaining to research | conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to 0
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your | o
ownreference andincase aprojectislost or mislaid. It is not sufficient to keepa copy
on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Aishwarya Ghongane
x20177259

1 Introduction

The objective of the research project to hierarchically classify the Yoga poses. This
configuration manual outlines the hardware and software requirements essential to help
future researchers to replicate the project. The different stages of project implementation,
starting from data acquisition to model testing and evaluation are discussed in detail. The
reference code repositories are provided in footnotes wherever applicable.

2 System Configurations

This section outlines the hardware and software setup used during implementation.

2.1 Hardware Configurations

The hardware configuration of the computer machine that was used to implement this project
is shown in Figure 1. The M1 chip has 8-core CPU and 8-core GPU which proved powerful to
process image dataset.

O Overview Displays Storage Support Resources

macOS Monterey

Version 12.5

MacBook Air (M1, 2020)

Chip Apple M1

Memory 8 GB

Serial Number CO2FT7GJQ6L4

System Report... Software Update...

Figure 1: Hardware Configuration

2.2 Software Confugurations

To implement the coding part, Google Colaboratory IDE was used. Due to huge corpus of
data, CPU power was not enough, hence, Google Colab Pro was used to access the
GPUsand enhance RAM capacity. The dataset was uploaded on Google drive and the
data was accessed by mounting the drive to Google Colab as shown in Figure 2. Python
programming language was used throughout the implementation part.

~ Connecting to Google Drive to access all the data files

© from google.colab import drive
drive.mount('/content/drive')

[> Mounted at /content/drive

Figure 2: Mounting Google Drive

3 Importing required libraries

To implement this project, different libraries were downloaded as and when required
during the step-by-step implementation as shown in Figure 3

import os ~ 4 o O &
import socket

import urllib.request

import pandas as pd

import PIL

from pathlib import Path

from PIL import UnidentifiedImageError

import seaborn as sns

import matplotlib.pyplot as plt

import cv2

import numpy as np

import tensorflow

from tensorflow.keras.optimizers import SGD,Adam

from keras.utils import np_utils

import keras

import random

from keras.callbacks import ModelCheckpoint,CSVLogger

import tensorflow as tf

import keras.backend as K

from PIL import Image

from PIL import ImageFile

ImageFile.LOAD_TRUNCATED_IMAGES = True

from sklearn.metrics import classification_report, confusion_matrix
import warnings

warnings.filterwarnings("ignore")

from keras.layers import Dense,Dropout,Conv2D,Input,MaxPool2D,Flatten,Add,Activation,GlobalAveragePooling2D,BatchNormalization,MaxPooling2D, Conv2D
from keras.models import Model
keras.backend.set_image_data_format('channels_last')

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from tensorflow.keras import layers

from tensorflow.keras import backend

from tensorflow.keras import models

from tensorflow.keras import utils as keras_utils

from keras_applications import imagenet_utils

from keras_applications.imagenet_utils import decode_predictions
from keras_applications.imagenet_utils import _obtain_input_shape

Figure 3: Installing Important Libraries

4 Data Collection and Pre-processing

4.1 Data Collection

For the purpose of this research project, the Yoga-82 dataset was used which is available
here '. The dataset comprised of three text files, namely, a train data file, test data file,
and another file containing the URLs of all the images belonging to different yoga
classes. The train and test files consist name of the yoga class folder, image name, and
the hierarchical label of the yoga pose. All the images were downloaded using Python

programming as shown in Figure 4. The invalid URLs were ignored while downloading the
images.

file_dir = f"/content/drive/MyDrive/Yoga_Image_Dataset_Links/" #Path to text file containg Image URLs
download_img_dir = f"/content/drive/MyDrive/Downloaded_Images/" #New directory to store downloaded images

socket.setdefaulttimeout(10) #default timeout parameter set, if the website fails to respond

def check_folder_exists(dir_name): #function to check if yoga class directory exists, if not creates new directory
if not os.path.isdir(dir_name):
os.makedirs(dir_name)|

[

all_files = os.listdir(file_dir)
txt_files = filter(lambda x: x[-4:] == '.txt', all_files) #To select only text files
try:

for file in txt_files:
folder_name = os.path.splitext(file) [0]
image_directory = file_dir+file
with open(image_directory,'r') as data_file:
check_folder_exists(download_img_dir+folder_name)
print("opening file",folder_name)
for line in data_file:
data = line.split()
file_name = datal[0].replace(" ","_")
url = data[1]
try:
urllib.request.urlretrieve(url, download_img_dir+file_name)
print(" Status", download_img_dir+file_name,' :downloaded successfully')
except Exception as e:
print(" File download error",e)
continue
except Exception as e:
print(" An exception occurred",e)

Figure 4: Downloading the dataset

4.2 Data Cleaning

After downloading the images, some of the images were corrupted, while some images
were not in readable format. Such images were deleted from the directory using the Py-
thon Imaging Library (PIL) module in Python as shown in Figure 5.

Thttps://sites.google.com/view/yoga-82/home

import PIL
from pathlib import Path
from PIL import UnidentifiedImageError
rootdir = f"/content/drive/MyDrive/Downloaded_Images/"
path = Path(rootdir).rglob("*.jpg") #Filter image URLs with jpg image format
for img_p in path:
try:
img = PIL.Image.open(img_p)
except PIL.UnidentifiedImageError:
print("error image",img_p)
os.remove(img_p) #remove corrupt imagd

Figure 5: Removing corrupt images

4.3 Data Balancing

The dataset was highly imbalanced. This imbalance ofthe dataset was impacting model
performance. Hence, to have enough data and adequate samples from each class, 110
images were selected from each class as shown in Figure 6.

from shutil import copy

src_dir = f"/content/drive/MyDrive/Downloaded_Images/" #Source Directory
dst_dir = f"/content/drive/MyDrive/Yoga_82/" #Destination Directory

try:
for subdir, dirs, files in os.walk(src_dir):
dst_sub = dst_dir + subdir.split("/")[-1]
for f in files[:110]: #Select only 110 images from each class
if f.endswith('.jpg"):
copy (0s.path.join(subdir, f), dst_sub)
except Exception as e:
print("Error occurred while copying the files", e)

Figure 6: Balancing the Dataset

4.4 Creating train data and test data

The Yoga-82 dataset had around 28k images. However, the data cleaning step left us with
around 15k images. Hence, the train and test files provided cannot be used directly.So to
maintain data consistency, new train and test data files were created to ensure,

that the entries of deleted images while data cleaning are removed from both train and test
data files. This was achieved using the Python’s Pandas series function as shown in Figure 7.

image_list = []
dst_dir = f"/content/drive/MyDrive/Yoga_82/"
for subdir, dirs, files in os.walk(dst_dir):
for file in files:
image_1list.append(subdir.split("/") [-1]+"/"+file)

image_series = pd.Series(image_1list)
print("Total Number of Images in new dataset:", len(image_series))

Figure 7: Filtering the dataset

The images retrieved using series function were then filtered by comparing with the
image entries present in train and test files.

train_df = pd.read_csv(f"/content/drive/MyDrive/Train_Test_Data/yoga_train.txt",header= None)
train_df.head()

print("Total number of images in used baseline project train dataset:", len(train_df))

filter_df = train_df[train_df[0].isin(image_series)]

print("Total number of images in used current project train dataset:", len(filter_df))
filter_df.to_csv(f"/content/drive/MyDrive/Train_Test_Data/Train_82.txt",index = False,header = None)

Figure 8: Creating train data file

test_df = pd.read_csv(f"/content/drive/MyDrive/Train_Test_Data/yoga_test.txt",header= None)
test_df.head()

print("Total number of images in used baseline project test dataset:", len(test_df))

filter_test_df = test_df[test_df[0].isin(image_series)]

print("Total number of images in used current project train dataset:", len(filter_test_df))
filter_test_df.to_csv(f"/content/drive/MyDrive/Train_Test_Data/Test_82.txt",index = False,header = None)

Figure 9: Creating test data file

4.5 Data Transformation

After reducing the dataset for the purpose of data balance, the train and test datasetsize
was not enough to solve the research problem. This is because, image classifica- tion
requires massive image data. Hence, image augmentation techniques were employed.

The augmentation techniques such as rotation, and flipping the image were applied using

Open CV library 2 as shown in Figure 10 respectively.

dir_R45_R90 = f'"/content/drive/MyDrive/Yoga_82_R45_R90/"
list_ditems_in_dir = os.listdir(dir_R45_R90)

c =20
for subdir, dirs, files in os.walk(dir_R45_R90):
IERY:
for index, item in enumerate(files):
image, ext = item.split(".")
read_img = (subdir+"/"+item)
img = cv2.imread(read_img)

(h, w) = img.shapel:2]
(cX, c¥) = (w // 2, h // 2)

#Flip the image at vertical axis

img_FV= cv2.flip(img, 1)

save_FV_img = (subdir + "/"+image+"'"_FV"+"."+ ext)
cv2.imwrite(save_FV_img, img_FV)

#Rotate image by 45 degree angle
img_matrix_R45 = cv2.getRotationMatrix2D((cX, cY),
img_R45 = cv2.warpAffine(img, img_matrix_R45, (w,
save_img = (subdir + "/"+image+'"_45"+"."+ ext)
cv2.imwrite(save_img, img_R45)
#Rotate image by 90 degree angle
img_matrix_R9@ = cv2.getRotationMatrix2D((cX, cY),
img_R90@ = cv2.warpAffine(img, img_matrix_R90, (w,
save_90_img = (subdir + "/"“+image+'"_90"+"."+ ext)
cv2.imwrite(save_90_img, img_R90)
except Exception as e:
print("Error:",e)
continue

1.0)

1.0)

Figure 10: Data Augmentation

5 Creating Augmented train data and batches for

processing

The next step was to create the train data file with the newly augmented images as shown
in Figure 11. Before proceeding with the model building process, the train, validation, and
test files are processed to generate data in batch size of 32. Figure 12 shows data generator
function for train data.Similarly, it was done for validation data and test data as shown

in Figure 13 and Figure 14 respectively.

?https://towardsdatascience.com/top-python-libraries-for-image-augmentation-in-computer-vision-

2566bed0533e

Train_R45_R90 = f"/content/drive/MyDrive/Train_Test_Data/yoga_train_R45_R90.txt"
ff = open(Train_R45_R90, 'r')
lines = ff.readlines()

cnt = 0

for 1 in lines:
img_name = l.split(',")[0]
x1_label = l.split(',")[1]
x2_label = lL.split(',"')[2]
x3_label = L.split(',")[-1]
image, ext = img_name.split(".")

image_R45 = (image + "_45" + "." + ext + "," + x1_label + "," + x2_label + "," + x3_label)
image_R90 = (image + "_90" + "." + ext + "," + x1_label + "," + x2_label + "," + x3_label)

write_file = open(Train_R45_R90,'a")
if cnt==0:
write_file.write("\n")
cnt=1
write_file.write(image_R45)
write_file.write(image_R90)
write_file.close()

Figure 11: Creating augmented train data file

def generator_train_batch(train_txt,batch_size,num_classes,img_path):
ff = open(train_txt, 'r')
lines = ff.readlines()
num = len(lines)
class_6 = num_classes[0]

class_20 = num_classes[1]
class_82 = num_classes[2]
try:

while True:

new_line = []

index = [n for n in range(num)]

random. shuffle(index)

for m in range(num):

new_line.append(lines[index[m]])
try:
for i in range(int(num/batch_size)):

a = ixbatch_size
b = (i+1)xbatch_size

x_train, x1_labels, x2_labels, x3_labels = process_batch(new_linel[a:b], img_path,train=True)

x = preprocess(x_train)

yl = np_utils.to_categorical(np.array(x1_labels), class_6)
y2 = np_utils.to_categorical(np.array(x2_labels), class_20)
y3 = np_utils.to_categorical(np.array(x3_labels), class_82)
y = [yl,y2,y3]

print(y)

yield x, y

except Exception as e:
print("Error:", e)

except Exception as e:
print("Error:", e)

Figure 12: Data Generator function to create batches of training data images

def generator_val_batch(val_txt,batch_size,num_classes,img_path):
f = open(val_txt, 'r")
lines = f.readlines()
num = len(lines)
class_6 = num_classes[0]
class_20 = num_classes[1]
class_82 = num_classes[2]
while True:
new_line = []
index = [n for n in range(num)]
#random. shuffle(index)
for m in range(num):
new_line.append(lines[index[m]])
for i in range(int(num / batch_size)):
a = 1 x batch_size
b = (i+ 1) % batch_size
y_test,yl_labels, y2_labels, y3_labels = process_batch(new_line[a:b],img_path,train=False)
X = preprocess(y_test)
yl = np_utils.to_categorical(np.array(yl_labels), class_6)
y2 = np_utils.to_categorical(np.array(y2_labels), class_20)
y3 = np_utils.to_categorical(np.array(y3_labels), class_82)
test_data = x
y = [yl,y2,y3]
yield test_data, y

Figure 13: Data Generator function to create batches of validation data images

hef generator_test_batch(test_txt,batch_size,num_classes, img_path):
f = open(test_txt, 'r')
lines = f.readlines()
num = len(lines)
class_6 = num_classes[0]
class_20 = num_classes[1]
class_82 = num_classes[2]
while True:
new_line = []
index = [n for n in range(num)]
#random.shuffle(index)
for m in range(num):
new_line.append(lines[index[m]])
for i in range(int(num / batch_size)):
a = 1 x batch_size
b = (i + 1) % batch_size
y_test,yl_labels, y2_labels, y3_labels = process_batch(new_line[a:b],img_path,train=False)
x = preprocess(y_test)
yl = np_utils.to_categorical(np.array(yl_labels), class_6)
y2 = np_utils.to_categorical(np.array(y2_labels), class_20)
y3 = np_utils.to_categorical(np.array(y3_labels), class_82)
test_data = x
y = [yl,y2,y3]
yield test_data, y

Figure 14: Data Generator function to create batches of testing data images

6 Model Building
6.1 Model Building

In this step, the DenseNet-201 and ResNet-50 architectures were modified to as- sist
hierarchical classification. The state-of-the-art model by Verma et al. (2020) using DenseNet-
201 has been implemented to form a baseline for comparing the results. The ResNet-50
network has been modified as a part of this research. The code for building the basic structure
of DenseNet 3 and ResNet4 networks is available on Keras github re- pository. The code for
modified architecture of DenseNet-201 is available on Yoga-82 github repository 5. The code
blocks for modfified ResNet-50 architecture are shown in Figure 15, Figure 16, and Figure 17.

def identity_block(input_tensor, kernel_size, filters, stage, block):
filtersl, filters2, filters3 = filters

if backend.image_data_format() == ‘channels_last’':
bn_axis = 3
else:
bn_axis = 1
conv_name_base = 'res' + str(stage) + block + '_branch’
bn_name_base = 'bn' + str(stage) + block + '_branch'
x = layers.Conv2D(filters1, (1, 1),
kernel_initializer='he_normal’',
name=conv_name_base + '2a') (input_tensor)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a"') (x)
x = layers.Activation('relu"') (x)
x = layers.Conv2D(filters2, kernel_size,
padding="'same',
kernel_initializer="'he_normal’',
name=conv_name_base + '2b') (x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b"') (x)
x = layers.Activation('relu') (x)
x = layers.Conv2D(filters3, (1, 1),
kernel_initializer='he_normal’',
name=conv_name_base + '2c') (x)
x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c"') (x)
x = layers.add([x, input_tensorl)
x = layers.Activation('relu') (x)

return x

Figure 15: Identity block for ResNet-50 network

#Build Convolutional Block for ResNet—-50
def conv_block(input_tensor,kernel_size, filters, stage,block,strides=(2, 2)):

filtersl, filters2, filters3 = filters

if backend.image_data_format() == "channels__last"':
bn_axis = 3

else:
bn_axis = 1

conv_name_base = 'res' + str(stage) + block + *'_branch"*

bn_name_base = "'bn' + str(stage) + block + '_branch’

x = layers.Conv2D(filters1, (1, 1), strides=strides,

kernel_initializer="'he_normal"’,

name=conv_name_base + '2a') (input_tensor)

x1 = Tlayers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2a')(x)
x1 = layers.Activation('relu') (x)
x1 = layers.Conv2D(filters2, kernel_size,
padding='same®', kernel_initializer="he_normal"®,
name=conv_name_base + '2b"') (x1)
x1 = layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2b')(x1)
x1 = layers.Activation('relu') (x1)
x1 = Tlayers.Conv2D(filters3, (1, 1), kernel_initializer='he_normal"',
name=conv__name_base + '2c"') (x1)
x1 = Tlayers.BatchNormalization(axis=bn_axis,
name=bn_name_base + '2c®')(x1)
shortcut = layers.Conv2D(filters3, (1, 1), strides=strides,
kernel_initializer="he_normal®*,
name=conv_name_base + "'1"') (input_tensor)
shortcut = layers.BatchNormalization(axis=bn_axis,
name=bn_name_base + "1') (shortcut)
x = layers.add([x1, shortcutl)
x = layers.Activation('relu®) (x1)

return x

Figure 16: Convolutional block for ResNet-50 network

def ResNet50_hir_new(
input_shape = (224,224,3),
class_6=6,
class_20=20,
class_82=82):

inputs = Input(input_shape)

base_model= ResNet50_hir(include_top=False, weights=None,
input_tensor = inputs,
backend = keras.backend,
layers = keras.layers,models = keras.models,
utils = keras.utils)

[x1,x2,x] = base_model.output|

x1 = BatchNormalization(epsilon=1.001e-5, name = 'bn_class6_last') (x1)

x1 = Activation('relu', name='relu_class6_last')(x1)

x1 = GlobalAveragePooling2D(name="'GAvgPool_class6_last"') (x1)
x2 = BatchNormalization(epsilon=1.001e-5, name = 'bn_class20_last') (x2)
X2 = Activation('relu', name='relu_class20_last')(x2)

x2 = GlobalAveragePooling2D(name="'GAvgPool_class20_1last') (x2)

X = GlobalAveragePooling2D () (x)
x1 = Dense(class_6, activation= ‘'softmax')(x1)
x2 = Dense(class_20, activation= 'softmax') (x2)

X = Dense(class_82, activation='softmax') (x)
model = Model(inputs, [x1,x2,x])

for layer in base_model. layers:
layer.trainable = True

return model

Figure 17: Modified ResNet-50 network

10

7 Model Training

Finally, the model is compiled, trained, and saved for evaluation purpose as shown in
Figure 18.

path = f'/content/drive/MyDrive/Yoga_82_R45_R90/' T ToERUT
img_path = path

path_test = f'/content/drive/MyDrive/Downloaded_Images/'

train_file = f'/content/drive/MyDrive/Train_Test_Data/Train_R45_R90.txt'
val_file = f'/content/drive/MyDrive/Train_Test_Data/Validation.txt'
test_file = f'/content/drive/MyDrive/Train_Test_Data/Test.txt'

f1 = open(train_file, 'r')

lines = f1.readlines()

f1.close()

train_samples = len(lines)

f2 = open(test_file, 'r')

lines = f2.readlines()

f2.close()

test_samples = len(lines)

num_classes = [6,20,82]

batch_size = 32

epochs = 30

model = ResNet50_hir_new()

1r = 0.003
sgd = SGD(r=1r, momentum=0.9, nesterov=False)
adam = Adam(1r=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

model. compile(loss=["categorical_crossentropy', 'categorical_crossentropy','categorical_crossentropy'], loss_weights=[1,1,1], optimizer= sqd,
metrics=['accuracy'])
model. sunmary()
output_files = f'/content/drive/MyDrive/OutputFiles/"
checkpointer = ModelCheckpoint (filepath=output_files+'weights_betweenhirarModify_lwl1l_dense32_nopre_mix_.0003.hdf5', verbose=1, save_best_only= True,
monitor="val_loss')
csv_logger= CSVLogger(output_files+'ResNet50_With_Augmentation.csv')

train_val_fit = model.fit_generator(generator_train_batch(train_file, batch_size, num_classes,img_path),
steps_per_epoch=train_samples // batch_size,
epochs=epochs,
callbacks=[checkpointer, csv_logger],
validation_data=generator_val_batch(val_file, batch_size,num_classes,path_test),
validation_steps=test_samples // batch_size)

model. save("ResNet50_WithAugmentation.h5")

Figure 18: Model compilation and training

3https://github.com/keras-team/keras-applications/blob/master/kerasapplications/densenet.py
“https://github.com/keras-team/keras-applications/blob/master/kerasapplications/resnet50.py
Shttps://github.com/maniver7/yoga-82

11

8 Model Evaluation

The model has been evaluated on validation dataset using evaluate function as shown in
figure Figure 19. Post this, accuracy for all the levels is derived as shown in Figure 20.

#Model Evaluation
val_file = f'/content/drive/MyDrive/Train_Test_Data/Validation.txt'
score = model.evaluate_generator(generator_val_batch(val_file,8,
num_classes,path_test),
[steps=test_samples // 8, verbose=1)

metricsl = model.metrics_names
print(metricsi)

Figure 19: Model evaluation

#Deriving training and validation Accuracy

acc_CL_1 = train_val_fit.history['dense_1_accuracy'] #Coarse level 1
acc_CL_2 = train_val_fit.history['dense_2_accuracy'] #Coarse Level 2
acc_FL = train_val_fit.history['dense_accuracy'] #Fine Level
val_acc_CL1 = train_val_fit.history['val_dense_accuracy']

val_acc_CL2 = train_val_fit.history['val_dense_1_accuracy']
val_acc_FL = train_val_fit.history['val_dense_2_accuracy'l]

loss = train_val_fit.history['loss']
val_loss = train_val_fit.history['val_loss']

Figure 20: Calculating Model Accuracy

12

9 Model Prediction

For predicting and classifying the Yoga classes, a custom function has been defined. This
is because the default function to plot the confusion matrix does not support hierarchical
classification. This is shown in Figure 21.

#To plot confusion matrix for all the three levels of hierarchy
def PlotConfusionMatrix(preds,test_file):
level_1 = preds[0]
level_2 = preds[1]
level_3 = preds[2]
predicted_class_indices_1 = np.argmax(level_1,axis=1)
print(predicted_class_indices_1)
predicted_class_indices_2 = np.argmax(level_2,axis=1)
print(predicted_class_indices_2)
predicted_class_indices_3 = np.argmax(level_3,axis=1)
print(predicted_class_indices_3)
length = len(predicted_class_indices_1)
true_labels_1 = []
true_labels_2 = []
true_labels_3 [1
count = 0
with open(test_file, 'r') as f:
for line in f:
if (count < length):
count = count + 1
stripped_line = line.strip()
label_indices = stripped_line.split(','ﬂ
true_labels_1l.append(int(label_indices[1]))
true_labels_2.append(int(label_indices[2]))
true_labels_3.append(int(label_indices[3]))
print("Total test Images: ",count)
print(true_labels_1)
print(true_labels_2)
print(true_labels_3)
true_labels = [true_labels_1, true_labels_3, true_labels_3]

x = [i for i in range(6)]

print(x)

y = [i for i in range(20)]

print(y)

z = [i for i in range(82)]

print(z)

cml = metrics.confusion_matrix(true_labels_1,predicted_class_indices_1, labels=x)

crl = metrics.classification_report(true_labels_1, predicted_class_indices_1, labels=x)
cm2 = metrics.confusion_matrix{(true_labels_2,predicted_class_indices_2, labels = y)

cr2 = metrics.classification_report(true_labels_2, predicted_class_indices_2, labels=y)
cm3 = metrics.confusion_matrix(true_labels_3,predicted_class_indices_3, labels = z)

cr3 = metrics.classification_report(true_labels_3, predicted_class_indices_3, labels=z)

#Confusion Matrix for Coarse Level 1 classes

cmdl = metrics.ConfusionMatrixDisplay(cml, display_labels=x)

cmdl.plot()

cmdl.ax_.set(title = "Confusion Matrix for Coarse Level 1 classes",xlabel='Predicted Labels', ylabel='True Labels')
print(crl)

#Confusion Matrix for Coarse Level 2 classes

cmd2 = metrics.ConfusionMatrixDisplay(cm2, display_labels=y)

cmd2.plot()

cmd2.ax_.set(title = "Confusion Matrix for Coarse Level 2 classes",xlabel='Predicted Labels', ylabel='True Labels')
print(cr2)

print(cm3)

print(cr3)

return true_labels

Figure 21: Confusion Matrix

Post this, the model prediction is carried out on test data as shown in Figure 22.

13

#Prediction with test inages
preds = model. predict_generator(generator=generator_test_batch(test_file, 8, nun_classes, path_test),
btepsetest_samles // 8, verbose=)

Figure 22: Model Prediction

10 Calculating Top-N Accuracy

Finally, using predicted labels and true labels, Top-N accuracy is calculated for all three
levels of hierarchy as shown in Figure 23.

All the code blocks shown above remain same for all the models, except for the modelbeing
called and the data used, that is, augmented and not augmented.

from sklearn import metrics
true_labels = PlotConfusionMatrix(preds, test_file)

Top — n accuracy for all the three levels of hierarchy
preds_level_1 = preds[0]
preds_level_2 = preds[1]
preds_level_3 = preds[2]

true_labels_1
true_labels_2
true_labels_3

Top-1,
top_1_acc_1
top_3_acc_1
top_5_acc_1

print("Top—1 Accuracy for Coarse level 1 with 6 classes:
print("Top—3 Accuracy for Coarse level 1 with 6 classes:
print("Top—-5 Accuracy for Coarse level 1 with 6 classes:

Top-1,
top_1_acc_2
top_3_acc_2
top_5_acc_2

print("Top—1 Accuracy for Coarse Level 2 with 20 classes:
print("Top—3 Accuracy for Coarse Level 2 with 20 classes: 0
print("Top—-5 Accuracy for Coarse Level 2 with 20 classes:

Top-1,
top_1_acc_3
top_3_acc_3
top_5_acc_3

print("Top—1 Accuracy for Fine level with 82 classes ",
print("Top—3 Accuracy for Fine level with 82 classes ",
print("Top—-5 Accuracy for Fine level with 82 classes ",

Top-—3,

Top-3,

Top-3,

true_labels[0]
true_labels[1]
true_labels[2]

and Top—5 accuracy for Coarse level 1 with 6 classes
top_n_accuracy(true_labels_1,preds_level_1,1)
top_n_accuracy(true_labels_1,preds_level_1,3)
top_n_accuracy(true_labels_1,preds_level_1,5)

', top_1_acc_1)
', top_3_acc_1)
', top_5_acc_1)

and Top—-5 accuracy for Coarse level 2 with 20 classes
top_n_accuracy(true_labels_2,preds_level_2,1)
top_n_accuracy(true_labels_2,preds_level_2,3)
top_n_accuracy(true_labels_2,preds_level_2,5)
", top_1_acc_2)
top_3_acc_2)
top_5_acc_2)

and Top—-5 accuracy for Fine level with 82 classes
top_n_accuracy(true_labels_3,preds_level_3,1)
top_n_accuracy(true_labels_3,preds_level_3,3)
top_n_accuracy(true_labels_3,preds_level_3,5)

", top_1_acc_3)
top_3_acc_3)
top_5_acc_3)

Figure 23: Calculating Top-N accuracy

13

References
Verma, M., Kumawat, S., Nakashima, Y. and Raman, S. (2020). Yoga-82: A new dataset for

fine-grained classification of human poses, 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 4472-4479.

14

