

Configuration Manual

MSc Research Project
Data Analytics

Aishwarya Ghongane

Student ID: x20177259

School of Computing
National College of Ireland

Supervisor: Dr. Prashanth Nayak

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Aishwarya Ghongane
Student ID: x20177259
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Prashanth Nayak
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1116
Page Count: 15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 12th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your
own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy
on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed

into the assignment box located outside the office.

Office Use Only
Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Aishwarya Ghongane
x20177259

1 Introduction
The objective of the research project to hierarchically classify the Yoga poses. This
configuration manual outlines the hardware and software requirements essential to help
future researchers to replicate the project. The different stages of project implementation,
starting from data acquisition to model testing and evaluation are discussed in detail. The
reference code repositories are provided in footnotes wherever applicable.

2 System Configurations
This section outlines the hardware and software setup used during implementation.

2.1 Hardware Configurations

The hardware configuration of the computer machine that was used to implement this project
is shown in Figure 1. The M1 chip has 8-core CPU and 8-core GPU which proved powerful to
process image dataset.

Figure 1: Hardware Configuration

2

2.2 Software Confugurations

To implement the coding part, Google Colaboratory IDE was used. Due to huge corpus of
data, CPU power was not enough, hence, Google Colab Pro was used to access the
GPUs and enhance RAM capacity. The dataset was uploaded on Google drive and the
data was accessed by mounting the drive to Google Colab as shown in Figure 2. Python
programming language was used throughout the implementation part.

Figure 2: Mounting Google Drive

3 Importing required libraries
To implement this project, different libraries were downloaded as and when required
during the step-by-step implementation as shown in Figure 3

Figure 3: Installing Important Libraries

3

4 Data Collection and Pre-processing

4.1 Data Collection

For the purpose of this research project, the Yoga-82 dataset was used which is available
here 1. The dataset comprised of three text files, namely, a train data file, test data file,
and another file containing the URLs of all the images belonging to different yoga
classes. The train and test files consist name of the yoga class folder, image name, and
the hierarchical label of the yoga pose. All the images were downloaded using Python
programming as shown in Figure 4. The invalid URLs were ignored while downloading the
images.

Figure 4: Downloading the dataset

4.2 Data Cleaning

After downloading the images, some of the images were corrupted, while some images
were not in readable format. Such images were deleted from the directory using the Py-
thon Imaging Library (PIL) module in Python as shown in Figure 5.

1https://sites.google.com/view/yoga-82/home

4

Figure 5: Removing corrupt images

4.3 Data Balancing

The dataset was highly imbalanced. This imbalance of the dataset was impacting model
performance. Hence, to have enough data and adequate samples from each class, 110
images were selected from each class as shown in Figure 6.

Figure 6: Balancing the Dataset

4.4 Creating train data and test data

The Yoga-82 dataset had around 28k images. However, the data cleaning step left us with
around 15k images. Hence, the train and test files provided cannot be used directly. So to
maintain data consistency, new train and test data files were created to ensure,

5

that the entries of deleted images while data cleaning are removed from both train and test
data files. This was achieved using the Python’s Pandas series function as shown in Figure 7.

Figure 7: Filtering the dataset

The images retrieved using series function were then filtered by comparing with the

image entries present in train and test files.

Figure 8: Creating train data file

Figure 9: Creating test data file

4.5 Data Transformation

After reducing the dataset for the purpose of data balance, the train and test dataset size
was not enough to solve the research problem. This is because, image classifica- tion
requires massive image data. Hence, image augmentation techniques were employed.

6

The augmentation techniques such as rotation, and flipping the image were applied using
Open CV library 2 as shown in Figure 10 respectively.

Figure 10: Data Augmentation

5 Creating Augmented train data and batches for
processing

The next step was to create the train data file with the newly augmented images as shown
in Figure 11. Before proceeding with the model building process, the train, validation, and
test files are processed to generate data in batch size of 32. Figure 12 shows data generator
function for train data. Similarly, it was done for validation data and test data as shown
in Figure 13 and Figure 14 respectively.

2https://towardsdatascience.com/top-python-libraries-for-image-augmentation-in-computer-vision-

2566bed0533e

7

Figure 11: Creating augmented train data file

Figure 12: Data Generator function to create batches of training data images

8

Figure 13: Data Generator function to create batches of validation data images

Figure 14: Data Generator function to create batches of testing data images

9

6 Model Building

6.1 Model Building

In this step, the DenseNet-201 and ResNet-50 architectures were modified to as- sist
hierarchical classification. The state-of-the-art model by Verma et al. (2020) using DenseNet-
201 has been implemented to form a baseline for comparing the results. The ResNet-50
network has been modified as a part of this research. The code for building the basic structure
of DenseNet 3 and ResNet4 networks is available on Keras github re- pository. The code for
modified architecture of DenseNet-201 is available on Yoga-82 github repository 5. The code
blocks for modfified ResNet-50 architecture are shown in Figure 15, Figure 16, and Figure 17.

Figure 15: Identity block for ResNet-50 network

10

Figure 16: Convolutional block for ResNet-50 network

Figure 17: Modified ResNet-50 network

11

7 Model Training
Finally, the model is compiled, trained, and saved for evaluation purpose as shown in
Figure 18.

Figure 18: Model compilation and training

3https://github.com/keras-team/keras-applications/blob/master/kerasapplications/densenet.py
4https://github.com/keras-team/keras-applications/blob/master/kerasapplications/resnet50.py
5https://github.com/maniver7/yoga-82

12

8 Model Evaluation
The model has been evaluated on validation dataset using evaluate function as shown in
figure Figure 19. Post this, accuracy for all the levels is derived as shown in Figure 20.

Figure 19: Model evaluation

Figure 20: Calculating Model Accuracy

13

9 Model Prediction
For predicting and classifying the Yoga classes, a custom function has been defined. This
is because the default function to plot the confusion matrix does not support hierarchical
classification. This is shown in Figure 21.

Figure 21: Confusion Matrix

Post this, the model prediction is carried out on test data as shown in Figure 22.

13

Figure 22: Model Prediction

10 Calculating Top-N Accuracy
Finally, using predicted labels and true labels, Top-N accuracy is calculated for all three
levels of hierarchy as shown in Figure 23.

All the code blocks shown above remain same for all the models, except for the model being
called and the data used, that is, augmented and not augmented.

Figure 23: Calculating Top-N accuracy

14

References
Verma, M., Kumawat, S., Nakashima, Y. and Raman, S. (2020). Yoga-82: A new dataset for

fine-grained classification of human poses, 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW), pp. 4472–4479.

