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Hierarchical Classification of Yoga Poses using Deep
Learning Techniques

Aishwarya Ghongane
20177259

Abstract

Yoga has grown incredibly in recent years due to the physical, mental, and spir-
itual benefits it provides to those who practice it. Many of these yoga poses entail
performing complex body postures. However, failing to perform these poses with
great care and attention may prove ineffectual to one’s health. To avoid unfortu-
nate incidents raises the need to develop a system that will correctly classify the
yoga poses and ultimately assist the Yogis (yoga practitioners) in understanding the
difference between yoga poses to avoid injuries. Existing research to develop such
a system has employed various Machine Learning algorithms and Deep Learning
techniques. However, the typical approach followed by them is that the classifica-
tion of the yoga poses is based on the final posture attained by the Yogi and not
the intermediate steps. The limitation of this approach is the misclassification of
yoga poses due to similar intermediate steps. Therefore, this report proposes a
novel deep learning framework to classify the yoga poses hierarchically using the
knowledge of intermediate steps involved in the yoga pose. To achieve the aim of
this research, two frameworks are broadly designed and tested using the Yoga-82
dataset. Firstly, the state-of-the-art model using DenseNet-201 architecture was
implemented to form a baseline for comparative study. Secondly, a deep learning
framework using a modified ResNet-50 architecture was used. The modifications
include classifying the yoga poses at three levels: coarse level 1, coarse level 2,
and fine level. The data augmentation techniques were also used to analyze the
performance of the DenseNet-201 and ResNet-50 classifiers. The model perform-
ance is evaluated using top-1, top-3, and top-5 accuracy metrics. Amongst all the
approaches that were followed, the modified DenseNet-201 architecture along with
image augmentation proved to perform better for hierarchical classification. In ad-
dition, the use of data augmentation techniques improved the model performance
by 7%-8%.

1 Introduction

1.1 Background and Motivation

The technological advancements in the internet and social media have led to an idle and
sedentary lifestyle. People spend more time on mobiles, laptops, and video games or are
busy due to a hectic work schedule. As a result, most people suffer from health issues
related to physical illness or mental stress. In recent years, specifically during the COVID-
19 pandemic, people became more sensitive toward their health and adopted Yoga as a
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part of their lifestyle. Regularly practicing Yoga proved essential for developing a robust
immune system. From the years 2019 to 2021, that is, during the nationwide lockdown
tenure, outdoor activities, including physical activities such as gym, running, and jog-
ging, were banned. Hence, people started indoor exercise such as Yoga to maintain good
health and avoid COVID-19 infection. Although Yoga has many benefits, improper way
of doing the yoga poses could cause muscle and bone injuries to the Yogis, which can
result in long-term chronic health problems (Rishan et al.; 2020). Hence, the research
in this paper was initiated with the motivation to develop a system that will assist yoga
practitioners in identifying whether they are attaining the postures correctly and provide
a feedback mechanism for the same. The first step of recognizing the yoga poses and
classifying them is completed as a part of this research. In existing studies, the human
pose estimation models such as Openpose (Yadav et al.; 2019) and PoseNet (Shah et al.;
2021) , Deep Learning, and Machine Learning algorithms are used extensively. However,
the approach is mainly based on classifying the final yoga pose. Further, the experi-
ments are carried out with a limited number of yoga poses. This research is focused on
the hierarchical classification of Yoga poses with 82 yoga classes. The term hierarchical
refers to classifying the yoga postures from coarse to fine levels. Hence, in this research,
the yoga poses are coarsely divided into six classes at level 1, sub-divided into twenty
classes at coarse level 2, and further sub-divided into 82 classes at fine levels that belong
to 82 yoga poses. An example of coarse to the fine level classification of Warrior I or
’Virabhadrasana I’ Pose is depicted in Figure 1.

Figure 1: An illustration of hierarchical structure of yoga pose
1.

The Warrior I Pose belongs hierarchically to the standing class at coarse level 1, the
side bend class at coarse level 2, and the Warrior I Pose at fine level class. The problem
with the models using flat classification is that they often fail to understand the difference
between yoga poses belonging to the same class, such as forward bend and side bend yoga
poses belonging to the standing class. Hence, this paper adopts coarse to fine level classi-
fication of the yoga poses to address the issue. To accomplish the research goal, modified
DenseNet-201 and ResNet-50 architectures along with image augmentation techniques
are used.
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The ”Yoga-82”2 dataset is used in this research which consists of 82 different yoga
poses. The dataset has a wide variety of images, for instance, human images, stick fig-
ures, and animated images. These images are captured in varying background conditions
and both indoors and outdoors. The hierarchical classification of the yoga poses will
be carried out firstly by using the existing Modified DenseNet-201 architecture proposed
by (Verma et al.; 2020) and secondly using modified ResNet-50 architecture and image
augmentation techniques.

1.2 Research Question and Objectives

To what extent does the deep learning techniques, in conjunction with the data augment-
ation, assist in improving the performance of hierarchical classification of Yoga poses?

The objective of this research is to improve the performance of the existing hierarch-
ical classification model. This includes modifying the ResNet-50 network to facilitate
hierarchical classification. The other objective includes performing a critical review of
the different data augmentation techniques for image classification. The model will be
trained using a blend of techniques, and its performance will be evaluated using top-N
accuracy metrics.

The rest of the report is organized to discuss a brief review of the existing research
in image classification in section 2. The project methodology and design specifications
of the models are discussed in sections 3 and 4, respectively. Section 5 highlights the
implementation of the final stage of the proposed solution. The results and key findings
of the research are discussed in section 6. Finally, section 7 concludes the research and
discusses the potential future work.

2 Related Work

In this section, the different machine learning algorithms and deep learning techniques,
and the use of electronics sensors that have been explored by various researchers for yoga
pose classification problem statement has been discussed.

2.1 Yoga Pose Classification using sensors

Many researchers have proposed using electronic devices such as sensor-based measure-
ment units, inertial measurement units, wearable sensors, and Microsoft Kinect devices to
classify yoga poses. The Kinect device is a camera sensor to capture pictures. A critical
feature includes an infrared laser projector, a multi-array microphone, and an RGB cam-
era to take color images and suitable dimensions. It also creates a 3D model of the human
body skeleton and provides information on the joint coordinates. Pullen and Seffens (n.d.)
utilized the Microsoft Kinect utility tool, Visual Gesture Builder (VGB), which offers a
data-driven approach to gesture identification using machine learning. The yoga postures
performed by some students were captured and classified into different categories using

2https://sites.google.com/view/yoga-82/home
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AdaBoostTrigger or Random Forest Regression Progress, two inbuilt detection systems
in VGB. From the evaluation results, it can be illustrated that using AdaBoostTrigger,
all the categories of yoga poses were classified correctly with accuracy above 90%. This
is because it uses only specific features to improve the prediction capability of the model.

Trejo and Yuan (2018) also used the Kinect VGB and Adaboost algorithm to train
six yoga postures. In addition, an interactive voice system was integrated to carry out
voice commands and assist the users with feedback related to the correctness of the pos-
ture. Although the final dataset achieved good accuracy figures, the integration made the
system complex, requiring more computational power. Also, using a single Kinect device
does not consider the position of the Yogi from the 360-degree angle perspective and
causes misclassification for some yoga poses. Hence, as opposed to using a single Kinect
device, Chen et al. (2013) developed a Yoga self-training (Yoga-ST) system using two
Kinect devices. The two Kinects were aligned perpendicularly to capture the front and
side views of the person practicing the yoga pose. The body maps are captured using
Kinect, and contour, skeleton, and feature axis representations are obtained using the
OpenNI library. These features are then compared with templates of yogasanas pre-built
from experts’ yoga poses. The deviation of the yoga pose by the practitioner from that
of the experts is recorded to provide an easy understanding of the practitioner’s posture
correction.

The Kinect devices have shown high accuracy for yoga classification, however, the
importance of correctness of execution is ignored in almost all of the research discussed
above. Hence, (Gupta and Jangid; 2021) developed a YogaHelp system to monitor and
evaluate the accuracy of the Sun Salutation yoga. It was mainly focused on identifying
yogasanas with the proper level of execution. The body gestures were recorded with the
help of an accelerometer and gyroscope, and a labeled dataset was created with all the
coordinates. The labeled dataset was fed to a deep learning framework that compares
the training data with the velocity and angular displacement of the actual yoga pose.
The main difference is that the feedback system has been designed in such a way that it
is activated at each step of the yoga pose, unlike other systems that are enabled only to
analyze the final position. The system was tested for a span of four weeks, and it was
observed that the performance of the yoga practitioners was improved by 20%.

Further research to verify the correctness of the yoga postures was carried out by
Anantamek and Hnoohom (2019). The author’s has focused on the movement of the
lower leg muscle movement while practicing yoga. The motion signals of the limbs were
obtained using Electromyography (EMG) signals. It is a type of electrical signal that
takes place during active movement in the muscle wall. The choice to use EMG signals
was based on its wide applications, such as diagnosis of muscle disease and research into
the bio mechanics of body movement. In the next step, the recognition was performed us-
ing three machine learning algorithms, namely, Sequential minimal optimization (SMO),
Decision Tree (J48), and Random Forest. The evaluation results showed that Random
Forest has a low error rate of 12.57% and an accuracy of 87%. The drawback of this system
is that the reliability is severely impacted by the technique used to position the electrodes
on the Yogis body. If several electrodes are placed close to each other, the impedance
between the electrodes and human skin will rapidly increase, making the system unstable.
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The above research using electronic sensors, wearable devices, EMG signals, and Kin-
ect devices has shown relatively good performance in terms of accuracy. However, the
downside is that they require costly hardware setup, timely calibration, and regular main-
tenance of the sensors, and the Kinect devices have privacy issues. Further, the growing
complexity of the system makes it less portable. The accelerometers and gyroscopes
often interfere while performing yoga, making it unreliable. Hence, to overcome these
limitations, Gochoo et al. (2019) IoT-based yoga poses identification system that uses
Deep Convolutional Neural Network (DCNN) and wireless sensor network formed with
low-resolution sensors. The wireless sensors comprise three nodes acting as three axes
(x,y,z). Each axis is integrated with an 8x8 pixel thermal sensor. The output of these
sensors is connected to the DCNN via a WiFi Module. Initially, the model was trained on
93000 images with output from all three axes and achieved 99.89% accuracy. However,
the system had many latency issues.

2.2 Yoga Pose Classification using Machine Learning Algorithms

An attempt to classify the yoga poses using tf-pose estimation algorithm was made by
Agrawal et al. (2020). The tf-pose algorithm creates a stick figure representation of the
yoga pose by joining the body joints. The coordinates of the joints are then used to
calculate the angles, which are then passed on to different models built using machine
learning algorithms. These angles act as features that are stored in a CSV file and used
during model building. Six machine learning algorithms like SVM, Decision tree, Naive
Bayes, Logistic Regression, KNN, and Random Forest were used for experimentation.
The results showcase that the Random Forest algorithm outperformed other models in
terms of accuracy figure of 99.04%.

The YOGI dataset was used by Sharma et al. (2022) to develop the iYogacare system
for self-assistance and Yoga posture correction. The system also supported the recogni-
tion of Hand Mudras (Hand Gestures). The skeletal feature extraction for yoga poses
and hand gestures was carried out using two separate algorithms to distinguish between
them clearly. The final recognition and classification model was trained using XgBoost
machine learning algorithm, and model fitting was done using Random Search CV. It
gave 99.2% accuracy. Although both the research attained good results, the YOGI data-
set had only 5000 images captured in enclosed rooms and did not consider images with
varying backgrounds. The research in this paper is focused on using wide variety of yoga
pose images with varying background conditions.

Shah et al. (2021) employed a combination of Posenet and KNN classifiers for Yoga
pose classification. The dataset’s images were combined to form a single video sequence.
By identifying the essential key points of the human limbs, the suggested model was
trained using the output video to determine the position of the Yoga practitioner. As
the system was designed for real-time pose estimation, it used a browser to access the
webcam to test the result. Posenet was used to detect the key points and compare them
with the trained model. The KNN classifier then used the output of the comparison unit
to classify the poses, and the deviation of the pose from the actual pose was displayed on
the screen. The proposed model achieved 94.4% overall accuracy. However, the dataset
was limited to 5 yoga classes only. Moreover, the system required a computer screen,
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making it bulky, and hence the yoga activity was restricted indoors. An enhancement to
this could be developing a mobile application to make the system portable and easy to use.

Likewise, Tarek et al. (2021) also developed a Yoga trainer system to classify Yoga
Hatha postures and identify incorrect poses. The system was designed to be used in
real-time. The key points from the skeletal joints were extracted using PoseNet, and the
output coordinates of each joint were fed to ML5 Neural Network. The key points are
matched to a corresponding yoga pose at this stage. Further, the model was trained using
a machine learning technique employing an Artificial Neural Network for classification
purposes. Test accuracy of 82.2% was achieved using this strategy.

Many of the research using deep learning and human pose estimation models followed
calculating coordinates of the key points obtained from pose estimation tools. However,
the models did not consider the physical characteristics of people, such as weight, height,
and so on. To overcome this limitation, Thar et al. (2019) proposed yoga pose assessment
using Openpose for self-learning, where angles between the key points (body parts) were
calculated instead of coordinates of the key points. The main idea was to provide a self-
learning tool for yoga practitioners. Hence, the study was mainly focused on comparing
the angles of specific body parts of the practitioner and the instructor. Further, a creat-
ive solution was employed to assess the results where a color coding scheme was applied
to showcase the angular difference between the joints. To elaborate, red color was used
to represent a large angular difference stating wrong postured had been attained, while
green color contour highlighted that the correct yoga pose had been performed. This
proved helpful for the Yogis to follow correct pose irrespective of their size, age, height,
and without any instructor.

Similarly, Huang et al. (2021) implemented a yoga coaching system, where human
pose key points were obtained using Open pose. However, instead of comparing the in-
structor’s yoga pose and the practitioner’s yoga pose, a new method was designed to score
the correctness of the posture based on a conditional judgement approach. The score was
generated using a data-based entropy weighing method and further used to correct the
posture. Three separate models were trained with varying numbers of frames captured
from the input video frame. The three models comprised 14, 32, and 66 frames per
second, respectively. The results highlighted that models with 32 and 66 FPS achieved
better accuracy ranging from 80%-90%. Further, Mean Square Error (MSE) and Mean
Absolute Error (MAE) metrics were used to measure correctness.

So far, the research discussed above has implemented posture recognition and classi-
fication in real-time and integrated it with a feedback mechanism. The feedback system
was designed to provide the correct or incorrect posture attempts. None of the systems
had voice feedback for each level of yoga pose execution. Hence, Huang et al. (2020) de-
veloped a mobile application where the yoga postures were detected using the Openpose
estimation model. The model training was divided into four steps: start, pose, breath,
and stop. During the breath step, the mobile camera captures the pose and sends it
to the Openpose for keypoint detection. The angle of each key point is calculated for
computing the score of posture correctness. This score is then compared with the original
yoga pose, and the feedback mechanism is activated. During the four stages of execution,
all the instructions are stored in text format, and after score evaluation, these messages
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are converted to the voice message to help the yoga practitioner. The system was capable
of providing 80% accurate results.

Sun Salutation, also known as ’Surya Namaskar’, is an ancient form of yoga that
comprises 12 steps, out of which eight are distinct, and four steps are repetitive. These
12 steps allow complete body exercise in all directions. Hence, it is vital to perform all
the steps in a correct manner. Bhambure et al. (2021) focused on identifying and clas-
sifying still images of the Sun Salutation yoga to help users avoid severe injuries while
performing Surya Namaskar. The methodology included using Openpose for keypoint
detection and a Convolutional Neural Network for classification purposes. The model
is trained using the COCO keypoint dataset, which is a state-of-the-art dataset in the
human pose estimation field. The dataset was fitted onto a 14-layer CNN model, which
helped to achieve 91% accuracy with 20 epochs. Later experimental results showed that
the performance of the system was challenged with complex yoga poses.

Palanimeera and Ponmozhi (2022) proposed a unique technique for yoga pose detec-
tion and classification. The base architecture for feature extraction and representation of
yogic postures was based on AlexNet and a pre-trained Deep CNN model. ALexNet was
trained using the ImageNet dataset. In the next stage, the classification was achieved
using a hybrid model composed of SVM and a KNN classifier. The hybrid model was
able to tackle the disadvantages of both SVM and KNN algorithms and, at the same
time, utilized their capabilities to classify the images correctly. The final output showed
98.15% accuracy using leave out one cross-validation technique. However, the dataset
comprised only seven yoga classes. Hence, the approach can be extended to consider a
wide range of yoga poses.

2.3 Yoga Pose Classification using Open Pose and Deep Learn-
ing techniques

The challenge of estimating human posture, often known as locating human joints, is
vital in the field of computer vision. The authors Yadav et al. (2019) presented a Yoga
pose estimation model using OpenPose, Caffe deep learning framework along with Con-
volutional Neural Network (CNN) and Long Short-Term Memory (LSTM). CNN played
a crucial role in analyzing the video sequence and retrieving the spatial attributes. The
LSTMs were capable of storing the entire Yoga pose from start to end. The combina-
tional architecture helped to achieve 99.04% accuracy on single video frames. However,
the model assessment took place in an enclosed room with no background objects or
lights. Hence, in a practical scenario where yoga is performed in an open space, the
model performance can be affected.

Rishan et al. (2020) developed an Infinity Yoga Tutor application for Yoga posture re-
cognition and correction. The application was based on a real-time recognition approach;
hence, the application captures the body movements of the Yogis using the mobile camera
and is further sent to the detection system. The authors extended the research carried
out by Yadav et al. (2019). The keypoint detection was achieved using Openpose and
Masked Region-based Convolutional Neural Network (Masked RCNN), and the output
was applied to 2 different models that were built using CNN and LSTM. The first model,
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that is, the single model used all the key points, and then individual models were created,
splitting the body key points and grouping them according to the body joints. It was
observed that Masked RCNN performed better with an accuracy of 99.85% train data
and 99.96% accuracy on test data. However, many false positives and true negatives were
detected while implementing the system in real-time. Further, the Openpose body split
model performed well but introduced a delay in the prediction of the yoga pose. Hence,
finally, the Openpose single model using CNN and LSTM was defined as the optimal solu-
tion. The approach followed by the authors was commendable. Nevertheless, a minimal
number of simple yoga poses were considered for the experiment purpose. The research
in this report considers the scope to broaden the yoga poses as opposed to Rishan et al.
(2020) research.

To present a substitute to human pose estimation models, Chaudhari et al. (2021)
aimed to extract 15 key points of human body joints using a deep learning technique that
utilizes Convolutional Neural Network. These joints were acquired from the image cap-
tured from the live camera. After identifying the joints, they are compared with actual
yoga postures, and any variation or error from the actual pose is notified to the user with
the help of a feedback system. The said model was trained using the Yoga-82 dataset
provided by Verma et al. (2020) and achieved 95% accuracy.

Another yoga poses recognition system was presented by Lo et al. (2021), which was
named as richYoga. A computer game using artificial intelligence was developed to attract
more users. Four yoga poses were considered for the experiment purpose to constitute
various playing styles: Half Wind Blown, Warrior II, Triangle, and Default. Mediapipe
APIs such as the face, pose, and Hand APIs were used to extricate the rich skeletal
joints. The LSTM model was trained with 30 poses for each class to classify the yoga
poses from the skeletal joints. Hence, only 120 samples with 2000 epochs were used to
test the model, which achieved an accuracy figure of 85%. The prediction capability was
convincingly good. Nevertheless, more efforts are required to include a wide variety of
poses and to make the system compact by developing a mobile version.

All the research that has been discussed so far considered the flat classification of Yoga
poses which is the final yoga pose. So to propose a novel approach, Verma et al. (2020)
put forward a hierarchical classification of Yoga poses. The Yoga-82 dataset has 82 dis-
tinct yoga pose images captured in varying background conditions. On a high level, the
yoga poses were segregated into six classes depending on the initial body position while
performing yoga. These six classes were further divided into 20 sub-classes to specify the
intermediate position and later divided into 82 fine classes that actually belong to the
yoga poses. The authors modified the DenseNet-201 architecture to adapt hierarchical
classification and obtained 79.35% accuracy for the third-level classifier. The drawback
of this research is the imbalanced dataset. In this research, Verma et al. (2020) work is
considered as baseline research to enhance the performance of hierarchical classification
of yoga poses while also implementing Image augmentation techniques.

It was observed that for yoga pose classification, maximum researchers have used
Human pose estimation model, hence, there is wide scope to explore the deep learning
models such as VGG19, ResNet, ALexNet, and so on.
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3 Methodology

Figure 2. depicts the various stages involved in the implementation of hierarchical classi-
fication of yoga poses. The detailed description of each step is provided below.

Figure 2: System Flow Diagram

3.1 Data Acquisition

The hierarchical labeling was used to create the Yoga-82 dataset. In contrast with existing
datasets available for yoga poses, this dataset has a wide variety of images, including
actual human images, sketch figures, stick figures, and shadow figures. The images are
photographed in varying backgrounds such as indoor, outdoor, daylight, nightlight, and
with different objects in the background. As far as yoga poses are concerned, there are
82 yoga poses which are hierarchically labeled into three levels that are 6, 20, and 82.
These classes define the hierarchical structure of the yoga pose. The first label belongs
to coarse level 1, the second label belongs to coarse level 2, and the third level belongs
to fine level classes.

3.2 Data Pre-processing

In this section, the various techniques used to clean the dataset described in section 3.1
have been discussed. The dataset included three text files: the train data, test data, and
another text file comprising URLs to download the images. While downloading the im-
ages, some URLs were invalid and getting errors; hence, such URLs were ignored. Again,
some of the images were not in a readable format; hence these images were deleted during
the data cleaning process. Finally, these images were stored using the same naming con-
vention mentioned in the train and test files. Furthermore, the entries of deleted images
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in the train and test files were also removed to maintain the consistency of these files.
Thus, the data cleaning process left us with 15224 images, which were further split into
a 70:30 ratio for train and test data.

3.3 Data Transformation

In this step, different data augmentation techniques have been used to increase the dataset
size while maintaining the balance in the train and test datasets. After processing the
images, it was observed that the dataset was highly imbalanced as shown in Figure 3.

Figure 3: Bar graph of imbalanced dataset

The training dataset had images ranging from 37 to 513 in each class. Such an im-
balance in the dataset can directly impact the model’s classification accuracy and cause
overfitting and underfitting issues. Hence, only 110 images from each yoga class were
considered for the experimentation purpose. But, it was still challenging to achieve the
data balance, as some of the classes had less than 110 images. Hence, sampling was
employed. This helped to achieve the dataset balance to a great extent and left us with
a total of 8034 images. Further, splitting the dataset gave 5825 train images and 2209
test images. However, thoroughly evaluating the performance of neural networks for the
problem statement of image classification requires a massive amount of data. Hence, to
maintain the trade-off and achieve the secondary purpose of this research, that is, to
evaluate the power of image augmentation on the hierarchical classification of the yoga
poses, the images were augmented by rotating them at different angles. OpenCV lib-
rary was used for image augmentation 3. The newly augmented images were stored with
a naming convention of ’ R45’ and ’ R90’ for the images rotated with 45 degrees and
90 degrees, respectively. The augmentation technique was applied only to the training

3https://towardsdatascience.com/top-python-libraries-for-image-augmentation-in-computer-vision-
2566bed0533e
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dataset. Further, new entries were created in the training file for augmented images to
maintain the consistency of the train data file with the newly augmented images. For
experimentation purposes, the images were augmented into 1:1, 1:2, and 1:3 ratios. At
the end of the data transformation step, three files were created, that is, train, validation,
and test data files.

3.4 Model building and evaluation

The model building stage is more focused on selecting a suitable modeling technique to
achieve the expected results. Hence, total four models were built as listed below:

Model - 1 DensetNet-201 without Image Augmentation.
Model - 2 DensetNet-201 with Image Augmentation.
Model - 3 ResNet-50 without Image Augmentation.
Model - 4 ResNet-50 with Image Augmentation.

As a first step, the pre-trained weights of ImageNet dataset (Deng et al.; 2009) are
used for model building. For training each of the models mentioned above, the modified
version DenseNet-201 and ResNet-50 network architecture were fitted to the training and
validation image data files. A detailed description of these models is explained in the
next section. The models were tested on the provided test file, and the accuracy and loss
curves were plotted. Different evaluation metrics such as top-1, top-3, and top-5 accuracy,
precision, and F1-score have been used to evaluate the hierarchical classification. Most
importantly, the top-N accuracy metric determines the model’s ability to classify the
images correctly at all three levels, from coarse to fine. The top-N accuracy metric is
suitable here as this is a multi-class classification problem4. It gives the frequency of how
many times the predicted class falls within the top N values of the Softmax distribution.

4 Design Specification

This section converse about the models designed to facilitate and improve the performance
of hierarchical classification of Yoga Pose.

4.1 DenseNet-201 Modified Architecture (SOTA)

DenseNet is a convolutional layer in which each layer receives incremental inputs from all
previous layers and transmits its feature maps to the succeeding layers using a concatena-
tion operation. To summarize, each layer receives collective knowledge from the preceding
layers. The standard DenseNet-201 architecture was modified by Verma et al. (2020) to
tailor hierarchical classification. There were three variants of the architecture as shown
in Figure 4 (Verma et al.; 2020). The top layer from the DenseNet-201 architecture has
been removed to facilitate hierarchical structure. It has four dense blocks consisting of 6,
12, 48, and 32 dense layers. To classify the three levels, three fully connected (FC) layers,
that is, three output branches, were added. In the first variant, the fully connected layers
were added following dense block 2, dense block 3, and dense block 4 for coarse level 1 (6

4https://towardsdatascience.com/understanding-top-n-accuracy-metrics-8aa90170b35
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Classes), coarse level 2 (20 Classes), and fine level classification (82 classes), respectively.
In the second variant of the architecture, coarse level 1 and coarse level 2 are classified
after dense block 3. Finally, in the third variant, all the levels are classified equally by
introducing a fifth dense block, to enhance the accuracy of the first level classifier.

Figure 4: Illustration of Modified DenseNet-201 Architecture by Verma et al. (2020)

So, overall, the network’s middle layers are used to categorize coarser classes, while the
end layers are used to categorize finer classes. This serves as the framework for the
cutting-edge model. In the results section, the authors concluded that the said accuracy
was achieved using the second variant of the architecture.

4.2 Proposed ResNet-50 Architecture

The ResNet-50 network has been used as a backbone to improve the performance of
hierarchical classification. The only difference between DenseNet and ResNet architecture
is that DenseNet concatenates (.) to the output of the previous layer with the future layer,
while ResNet uses an additive approach (+) to merge the previous layer output with the
future layer 5. The additive operation in ResNet outperforms the DenseNet network in
terms of heavy GPU memory and higher training time. Hence it has been selected for this
project (Zhang et al.; 2021). It builds a network by piling residual blocks on top of one
another. The increasing neural layers in neural networks often cause vanishing gradients
as the input to output paths to increase gradually. Alternatively, deep layers are also

5https://www.pluralsight.com/guides/introduction-to-densenet-with-tensorflow
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essential for the image classification problem domain to extract more information from the
training data. Hence, ResNet50 uses shortcuts or skip connections to move quickly across
some layers. This enables the construction of deeper network layers without encountering
the issue of vanishing gradients.

Figure 5: Illustration of Modified ResNet-50 Architecture 6

Figure 5 shows the modified ResNet-50 architecture. The ResNet model has five
stages, with the identity and convolutional blocks being the basic building blocks. The
first stage takes care of data normalization and avoids the vanishing gradient issue. Stages
one to three are kept unchanged. However, to facilitate hierarchical classification, stage
four has been modified by adding a fully connected layer to get the coarse level 1 class at
the output. Similarly, stage 5 has been modified to extract coarse level 2 output. Finally,
the fully connected layer after the average pooling and flattening layer gives the fine
level classes. Both DenseNet-201 and ResNet-50 models use ImageNet dataset weights
for training purposes which is the state-of-the-art dataset for hierarchical classification
(Deng et al.; 2009).

5 Implementation

This section describes the hardware and software requirements( tools and languages), data
preprocessing steps, and the deep learning models, developed as a part of this project.

5.1 Software and Hardware Configurations

This project is based on deep learning frameworks, DenseNet and ResNet, and they
require heavy computation power and significant processing time. Hence, Apple MAC
with an M1 processing unit with 8GB RAM and 250GB flash storage was used. Further,
to implement the framework, Keras with TensorFlow backend was used. It also reduces
the system load and provides easy access to APIs. The Google Colab Pro IDE and
Python programming language were used throughout the implementation of this project.
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5.2 Data Pre-processing

The images in the Yoga-82 dataset were in JPG format. Hence, no further conversion
was required. However, there was a massive imbalance in the dataset; for instance, for
some yoga poses, only 37 images were available, while for some other classes, there were
around 500 images. To avoid the impact of data imbalance on the model’s performance,
only 110 images were selected from each class. Nevertheless, the data imbalance was not
entirely removed as some classes had less than 110 images. Hence, Image augmentation
techniques such as rotation, vertical flip, and horizontal flip were applied to increase the
image train data and maintain the balance. In the pre-processing function, the images
were converted to RGB color format using the Image module of the PIL library in Python
and rescaled to 224x224. The images were stored in an array of sizes 224x224x3.

5.3 Model training

The DenseNet-201 and ResNet-50 models were trained using ImageNet dataset weights
7. Stochastic Gradient Descent (SGD) optimizer was used to reduce the losses and avoid
model fitting issues. It is essential to select values of hyperparameters like optimizer para-
meters, epochs, and so on to avoid model overfitting. Hence, the choice of the essential
parameters is made after thorough consideration, and the justification for choosing them
is given below:

1. Epochs: Initially, the model building was started with ten epochs. However,
the model was facing the underfitting issue, and accuracy stagnated. This was verified
from the prediction error and training loss. Hence, the number of epochs was increased
gradually up to 50, and it was observed that optimal performance was achieved up to 30
epochs. Hence, to select a suitable number for all the models, an epoch value of 30 was
used.

2. Batch size: Selecting an optimal batch size is a trade-off between longer training
time and memory issues. Hence, considering the data size, the total number of images
was divided into a batch size of 32.

3. Learning rate and momentum: Initially, the learning rate of 0.003 was used,
and later on, it was gradually decreased by a factor of 1 when the validation loss was
constant and did not improve further. The momentum value of 0.9 was used throughout.

Apart from these hyperparameters, other processing steps involved one hot encoding
of the output values before passing them to the data generator function. This was done
due to the hierarchical nature of classification. Furthermore, while compiling the model,
the categorical cross-entropy loss function was used with loss weights equal to 1 for all the
levels. Finally, the CSV Logger function was initialized to store all three levels’ accuracy
and loss values.

6 Evaluation

In this section, the experimental results and their implications are discussed. After train-
ing the models, they were evaluated using validation data and tested on testing data using

7https://github.com/keras-team/keras-applications/releases/tag/resnet
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30 epochs. Different experiments were performed during the model building phase. The
model parameters are kept constant throughout the experimentation process to enable
direct comparison with the models built in this study. The results for all the experi-
ments are tabulated. Top-1, Top-3, and Top-5 accuracy metrics are used for evaluation
purposes. These accuracy values are highlighted for all the experiments.

6.1 Experiments

Experiment 1: DenseNet-201 without Image Augmentation (SOTA)
The baseline model byVerma et al. (2020) was implemented as a part of this experiment.
The experimental results are shown in Figure 6. Experiment 1 was conducted without
employing Image augmentation. The data size was around 5k, hence model did not
perform well in terms of accuracy and prediction. Also, the model was overfitting which
was evident as the validation loss was varying tremendously, and for higher epochs, it did
not improve further.

Figure 6: Results of Experiment 1 and Experiment 2

Experiment 2: DenseNet-201 with Image Augmentation
To enhance the model performance, Image augmentation was used, which also aided in
increasing the training dataset size to 12k. The images were augmented using rotation
and flipping techniques. It can be inferred from the results that after employing aug-
mentation, the model performance for all the levels improved by approximately 7%-8%.

Experiment 3: ResNet-50 without Image Augmentation (Proposed Model)

Figure 7: Results of Experiment 3 and Experiment 4
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The third experiment was conducted to explore the capability of modified ResNet-50
architecture and an attempt to improve the performance of hierarchical classification.
Image augmentation was not used in this experiment. The results for experiment 3 and
4 are shown in Figure 7. The top-1 accuracy for coarse level and coarse level 2 was
improved significantly. However, it did not improve for fine-level classes. Although the
overall performance was improved in this experiment, the model overfitting issue was
persistent.

Experiment 4: ResNet-50 with Image Augmentation (Proposed Model)
The last experiment was conducted using modified ResNet-50 architecture. Image aug-
mentation was employed. The model checkpoint function was used to select the epoch
with the minimum loss for further evaluation. The experimental results showcase im-
provement in model performance after using Image augmentation.

6.2 Discussion

In this section, the findings of the above experiments are discussed. All the experiments
were performed with the same set of parameters like the number of epochs, optimizer, etc.
The first experiment was an attempt to implement the baseline model using DenseNet-
201. However, the results could not be directly compared with the baseline model results
due to the difference in the size of the data. The model faced an overfitting issue because

Figure 8: Loss Curves for DenseNet-201 and ResNet model-50

of the highly imbalanced dataset. To overcome this, in the second experiment, image
augmentation was used, which helped in increasing model performance to a certain extent.
However, the model training time was huge. Further, to evaluate the potential of a
different deep learning technique, ResNet-50 was used. The ResNet-50 architecture model
with image augmentation technique performed better than the model without image
augmentation, as evident from the results of experiments 3 and 4. The training loss was
reduced significantly as shown in Figure 8. However, the validation loss could not be
improved much. It was also discovered that the accuracy decreases with the increasing
number of classes from coarse level 1 to fine level. The reason for this could be the uneven
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distribution of the yoga poses throughout the hierarchy. For instance, there could be an
equal number of images for fine level classes, however, the number of poses belonging
to coarse level 1 and coarse level 2 could vary. Hence, data balancing at all three levels
is required. Overall, it can be inferred that experimental results using DenseNet-201
model with Image augmentation gave higher accuracy for classifying the yoga pose images
hierarchically. Further, it was observed that the GPU utilization was more for models
trained using DenseNet-201 architecture as compared to ResNet-50 architecture. This
could be due to the additive approach used by ResNet-50. Also, the GPU space and
RAM provided by Google Colab are limited to processing a huge corpus of image data.
Hence, additional resources were purchased to run the models successfully.

7 Conclusion and Future Work

In conclusion, the main objective of this research was to enhance the performance of
the hierarchical yoga pose classification model as proposed by Verma et al. (2020). To
achieve this objective, the DenseNet-201 and ResNet-50 architectures were modified to
accommodate the hierarchical classification. The model performance was compared with
the existing state-of-the-art model using the accuracy metric. The initial results depicted
poor performance due to a lack of training data and huge imbalance in the dataset at fine
level classes. Hence, to improve the accuracy further, data augmentation techniques like
rotating the images at different angles were used on both the models. The augmentation
techniques were applied in consecutive steps that helped to analyze their impact on model
accuracy. The said objective was achieved by using modified DenseNet-201 architecture
along with image augmentation. However, the dataset imbalance at coarse level 1 and
coarse level 2 led to poor performance in classifying images at level 2.

For future studies, the proposed model can be modified further to improve the ac-
curacy. The dataset can also be modified to achieve data balance for all three levels of
hierarchy rather than concentrating on only fine levels. Further, there is scope to reduce
the the validation and test loss using fine parameter tuning which will also aid in avoiding
model overfitting issues. The model can be implemented to design a self-assistance yoga
system that will classify the yoga poses in real time and help people to perform yoga in
an efficient and safe manner.
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