~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Avinash Sanjay Gawale
Student 1D: x20247303

School of Computing
National College of Ireland

Supervisor: Jorge Basilio

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Avinash Sanjay Gawale
Student ID: x20247303
Programme: MSc in Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Jorge Basilio
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 745
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Avinash Sanjay Gawale
x20247303

1 Introduction

The configuration manual includes everything needed to replicate the study’s findings on
a particular environment. A snapshot of the code for data import and pre-processing,
exploratory data analysis, all built models, and evaluation is included, along with the
necessary tools and hardware.

The report is structured as follows: Information regarding the configuration of the
environment is provided in Section Information about data gathering is detailed in
Section [3] Data pre-processing and exploratory data analysis are included in Section [4]
Information on data splitting for the training and testing phases is provided in Section
bl Details on each model created, along with results and visualizations, are provided in
Section [6l

2 Environment

Details about the software and hardware needed to put the research into practice are
provided in this section.

2.1 Hardware Requirements

The necessary hardware and software specifications are provided in Figure[I]and Figure [2]
Apple M1 chip with 8 GB installed unified RAM memory, 512 GB SSD, and 4 performance
and 4 efficiency cores.

MacBook Pro

Hardware Overview:

Model Name: MacBook Pro

Model Identifier: MacBookPro17,1

Chip: Apple M1

Total Number of Cores: 8 (4 performance and 4 efficiency)
Memory: 8 GB

System Firmware Version: 6723.140.2

OS Loader Version: 6723.140.2

Serial Number (system): FVFG15EUQO5S5F

Hardware UUID: A4EO02BCA4-AA75-58F4-A467-1F11069AE047
Provisioning UDID: 00008103-001218D001B2001E
Activation Lock Status: Enabled

Figure 1: System Hardware Overview

MacBook Pro

System Software Overview:

System Version: macOS 11.6 (20G165)

Kernel Version: Darwin 20.6.0

Boot Volume: Macintosh HD

Boot Mode: Normal

Computer Name: Avinash's MacBook Pro
Username: Avinash Gawale (avinashgawale)
Secure Virtual Memory: Enabled

System Integrity Protection: Enabled

Time since boot: 3 days 6:53

Figure 2: System Software Overview

2.2 Software Requirements

e Python (Version 3.7.13)

e Google Colab : Google Colab, a robust framework for learning and rapidly building
machine learning models in Python, is used to carry out the project. Based on
Jupyter Notebook, it facilitates team development. Colab is particularly well suited
to machine learning, data analysis, and education. It enables anyone to create and
execute arbitrary Python script through the browser.

3 Data Collection

The dataset is taken from UCI machine learning repository, which is available on link
https://archive.ics.uci.edu/ml/datasets/wine+quality. The dataset includes red
and white variants of Portuguese ”Vinho Verde” wine. The dataset contains 6497 samples
of red and white wine. These datasets can be used to perform regression or classification
tasks. The dataset consists one dependent variable quality based on sensory data and 11
independent variables based on physicochemical testing.

4 Data Exportation

4.1 Importing Libraries

Initially, a few of the common libraries required to build a model for predicting wine
quality are installed. Figure [3| shows some of the standard libraries, including NumPy,
matplotlib, pandas, and seaborn. The latest versions of these libraries are installed.

https://archive.ics.uci.edu/ml/datasets/wine+quality

#Importing libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

from sklearn.linear model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

from warnings import filterwarnings

filterwarnings (action="'ignore')

Figure 3: Required Python Libraries

4.2 Importing and Reading Dataset

The dataset file is available in CSV format. The code to import and read the dataset is
included in Figure [4

#Importing dataset
from google.colab import files
uploaded = files.upload()

#Reading csv file
wine df = pd.read csv("winequality.csv")

Figure 4: Importing and Reading Dataset
The code to check the data head and data shape is included in Figure
#Checking DataFrame head

wine df.head()

#Checking DataFrame shape
wine df.shape

Figure 5: Checking Data Head and Shape

4.3 Exploratory Data Analysis

The code for generating the count plot for our dependent variable, quality, is shown in
Figure [0]

#Countplot of quality attribute
sns.countplot(wine df['quality'])
plt.show()

2500 1

2000 1

S 1500 -

1000 -

500 1

3 4 5 6 7 8 9
quality

Figure 6: Count Plot of Dependent Variable

4.4 Data Pre-Processing & Transformation

Code for checking the null values is shown in Figure [7]

#Checking Null values
wine_df.isnull().sum().sort values(ascending=False)

fixed acidity 1
pH

volatile acidity
sulphates

citric acid

residual sugar
chlorides

type

free sulfur dioxide
total sulfur dioxide
density

alcohol

quality

dtype: inté64

C OO0 O OO MNNWPROWWO

Figure 7: Checking Null Values
As seen in Figure [§] all null values were replaced with mean values.

4

#Attributes with Null values
missing_val cols = ["fixed acidity", "pH", "volatile acidity", "sulphates", "citric acid", "residual sugar", "chlorides"]

#Replacing Null values with mean

for col in missing_val_cols:
mean = wine_df[col].mean()
wine_df[col].fillna(mean, inplace=True)

Figure 8: Replacing Null Values

The Figure [0 represents the code to check and remove the outliers present in the data
if any.
#Checking for outliers in the data and removing if any
def remove outlier(df, col_name):
plt.figure(figsize=(20,20))
f, axes = plt.subplots(l, 2,figsize=(12,4))
sns.boxplot(data = df,x = col_name, ax=axes[0], color='skyblue').set_title("Before Outlier Removal: "+col_name)
Q1 = df[col_name].quantile(0.25)
03 = df[col_name].quantile(0.75)
IOR = Q03-01
df[col_name] = df[col_name].apply(lambda x : Q1-1.5*IQR if x < (Q1-1.5*IQR) else (Q3+1.5*IQR if x>(Q3+1.5*IQR) else X))
sns.boxplot(data = df, x = col_name, ax=axes[1], color='pink').set_title("After Outlier Removal: "+col_name)

plt.show()
return df

for col in X.columns:
df = remove_outlier(wine_df,col)
plt.show()

Figure 9: Outliers Check and Removal

Synthetic Minority Oversampling Technique (SMOTE) is applied to balance the data
as the data was imbalanced. The quality check is performed in which if wine quality is
greater than 6 out of 10 then it’s good quality wine if it is less than 6 then is bad quality
wine as shown in Figure After quality check we get to know the data is imbalanced in
terms of quality. There were 4113 wine samples fall under good quality and 2384 sample
fall under bad quality wine as illustrated in Figure After applying SMOTE good and
bad quality samples were equalised as can be seen in Figure

#Create classification version of target variable
wine_ df['goodquality'] = [1 if x >= 6 else 0 for x in wine_df['quality']]

Figure 10: Creating Classification Version of Target Variable

#Checking proportion of good vs bad wine dfs
wine df['goodquality'].value counts()

1 4113
0 2384

Figure 11: Before Applying SMOTE

from imblearn.over sampling import SMOTE
oversample = SMOTE(k neighbors=4)

transform the dataset

X,Y = oversample.fit resample(X, Y)

#Checking proportion of good vs bad wine dfs
Y.value counts()

1 4113
0 4113

Figure 12: After Applying SMOTE

5 Data Preparation

5.1 Data Splitting

Figure [13| provides the code for splitting the data into training and testing phase in the
ratio of 70:30.

#Spilliting the dataset in train and test
from sklearn.model selection import train test_split
X_train, X test, Y train, Y test = train test split(X,Y¥,test_size=0.3,random state=7)

Figure 13: Splitting Dataset in Train and Test

6 Model Implementation and Evaluation

Evaluation of confusion matrix and classification report is shown in Figure

#Evaluating confusion matrix and classification report
from sklearn.metrics import accuracy_score,confusion matrix,classification_report, ConfusionMatrixDisplay, precision_score,recall_score, fl_score
def model performance(modelName,model,X test,y test):
print(" ")
print("Model:",modelName)
y_pred = model.predict(X_test)
#Accuracy
print("Accuracy Score:",accuracy_score(Y_test,y_pred))
#Precision
print("Precision:",precision_score(Y_test,y_pred))
#Recall
print("Recall:",recall_score(Y_test,y pred))
#F1 Score
print("F1l Score:", f1_score(Y_test,y pred))
#Confusion Matrix

cm = confusion matrix(Y_test,y pred)
print("Confusion Matrix:\n",cm)
cmd = ConfusionMatrixDisplay(cm,display_labels=["good", "bad"])

cmd.plot()

print("Classification Report:\n",classification_report(y_test,y_pred))
plt.show()

print(" "

Figure 14: Function for Model Evaluation

6.1 Decision Tree Implementation

Evaluation of decision tree with classification report and confusion matrix is shown in

Figure [T5]

#Decision Tree implementation

from sklearn.tree import DecisionTreeClassifier

DecisionTree model = DecisionTreeClassifier(criterion='entropy',random state=7)
DecisionTree model.fit(X train,Y train)

y_pred = DecisionTree model.predict(X test)

model performance('DecisionTreeClassifier',DecisionTree model,X test,Y test)

Model: DecisionTreeClassifier
Accuracy Score: 0.7925445705024311
Precision: 0.7832278481012658
Recall: 0.8061889250814332

Fl Score: 0.7945425361155698
Confusion Matrix:

[[966 274]
[238 9907]
Classification Report:
precision recall fl-score support
0.80 0.78 0.79 1240
1 0.78 0.81 0.79 1228
accuracy 0.79 2468
macro avg 0.79 0.79 0.79 2468
weighted avg 0.79 0.79 0.79 2468
900
800
- 700
2
mn
Y 600
&
500
400
300

T

good bad
Predicted label

Figure 15: Decision Tree Implementation

6.2 Random Forest Implementation

Evaluation of random forest with classification report and confusion matrix is shown in

Figure [16]

#Random Forest implementation

from sklearn.ensemble import RandomForestClassifier
model2 = RandomForestClassifier(random state=1)
model2.fit (X train, Y train)

Yy _pred2 = model2.predict(X test)

model performance('RandomForestClassifier',model2,X test,Y test)

Model: RandomForestClassifier
Accuracy Score: 0.8557536466774717
Precision: 0.8682432432432432
Recall: 0.8371335504885994
Fl Score: 0.8524046434494196
Confusion Matrix:

[[1084 156]

[200 1028]]
Classification Report:

precision recall fl-score support
0 0.84 0.87 0.86 1240
1 0.87 0.84 0.85 1228
accuracy 0.86 2468
macro avg 0.86 0.86 0.86 2468
weighted avg 0.86 0.86 0.86 2468
1000
good
800
2
=
W 600
=
bad 400
200

good bad
Predicted label

Figure 16: Random Forest Implementation

6.3 XGBoost Implementation

Evaluation of XGBoost with classification report and confusion matrix is shown in Fig-

ure [I71

#XGBoost implementation

import xgboost as xgb

model5 = xgb.XGBClassifier(random state=1)
model5.fit (X train, Y train)

y_pred5 = model5.predict(X test)

model performance('xgboost',model5,X test,Y test)

Model: xgboost

Accuracy Score: 0.7807941653160454
Precision: 0.7953568357695615
Recall: 0.753257328990228

Fl Score: 0.7737348389795065
Confusion Matrix:

[[1002 238]
[303 925]]
Classification Report:
precision recall fl-score support
0.77 0.81 0.79 1240
1 0.80 0.75 0.77 1228
accuracy 0.78 2468
macro avg 0.78 0.78 0.78 2468
weighted avg 0.78 0.78 0.78 2468
1000
900
good 1 800
" 700
L
B
W 600
=
500
bad 400
300

good bad
Predicted label

Figure 17: XGBoost Implementation

6.4 Hybrid Model

To build the hybrid model, five instances of Decision Tree, Random Forest, and XGBoost
are created and the best result from each of the 15 instances is chosen as the final output,
as illustrated in Figure |18]

#Defining Hybrid Ensemble Learning Model
#create the sub-models
estimators = []

#Defining 5 Decision Tree Classifiers

from sklearn.tree import DecisionTreeClassifier
modell = DecisionTreeClassifier (max_depth = 3)
estimators.append(('cartl’', modell))

model2 = DecisionTreeClassifier (max_depth = 4)
estimators.append(('cart2', model2))
model3 = DecisionTreeClassifier (max_depth = 5)
estimators.append(('cart3’', model3l))
modeld4 = DecisionTreeClassifier(max_depth = 2)
estimators.append(('cart4’', modeld))
model5 = DecisionTreeClassifier(max_depth = 3)

estimators.append(('cart5', model5))

#Defining 5 XGBoost classifiers

modelll = xgb.XGBClassifier(random state=42)
estimators.append(('xgbl', modelll))

modell2 = xgb.XGBClassifier(random_ state=45)
estimators.append(('xgb2', modell2))

modell3 = xgb.XGBClassifier(random state=40)
estimators.append(('xgbh3', modelll))

modell4 = xgb.XGBClassifier(random state=46)
estimators.append(('xgbhd', modelld))

modell5 = xgb.XGBClassifier(random state=48)
estimators.append(('xgb5', modell5))

#Defining 5 Random Forest Classifiers

model2l = RandomForestClassifier(max_depth
estimators.append(('rfcl', model2l))

3,random_state=1)

model22 = RandomForestClassifier(max_depth
estimators.append(('rfc2', model22))
model23 = RandomForestClassifier(max_depth
estimators.append(('rfc3', model23))

4,random_state=1)

5,random_state=1)

model24 = RandomForestClassifier (max_depth
estimators.append(('rfcd', model2d))

6,random_state=1)

model25 = RandomForestClassifier(max_depth
estimators.append(('rfc5', model25))

7,random_state=1)

Figure 18: Defining Hybrid Model

10

Evaluation of hybrid model with classification report and confusion matrix is shown
in Figure [19]

#Hybrid Machine Learning Model implementation
from sklearn.ensemble import VotingClassifier
ensemble = VotingClassifier(estimators)
ensemble.fit (X train, ¥ train)

y _pred = ensemble.predict(X_ test)

model performance('HybridModel',ensemble,X test,¥Y test)

Model: HybridModel

Accuracy Score: 0.7771474878444085
Precision: 0.79073756432247
Recall: 0.750814332247557

Fl Score: 0.7702589807852965
Confusion Matrix:

[[996 244]
[306 922]]
Classification Report:
precision recall fl-score support
0 0.76 0.80 0.78 1240
1 0.79 0.75 0.77 1228
accuracy 0.78 2468
macro avg 0.78 0.78 0.78 2468
weighted avg 0.78 0.78 0.78 2468

Tue label

Predicted label

Figure 19: Hybrid Model Implementation

11

	Introduction
	Environment
	Hardware Requirements
	Software Requirements

	Data Collection
	Data Exportation
	Importing Libraries
	Importing and Reading Dataset
	Exploratory Data Analysis
	Data Pre-Processing & Transformation

	Data Preparation
	Data Splitting

	Model Implementation and Evaluation
	Decision Tree Implementation
	Random Forest Implementation
	XGBoost Implementation
	Hybrid Model

