~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Programme Name

Shubham Garg
Student ID: x19205295

School of Computing
National College of Ireland

Supervisor: ~ Martin Alain

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shubham Garg
Student ID: x19205295
Programme: Programme Name
Year: 2021
Module: MSc Research Project
Supervisor: Martin Alain
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 604
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shubham Garg

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shubham Garg
x19205295

1 Introduction

This paper is the manual of configuration which enlists the all the requirements is needed
to run the whole code of the project on the local machine environment. this manual also
includes the screenshot of the hardware requirements as well as the software requirements.
This file also includes the pictures of code of the Exploratory Data Analysis, Data loading
, Data pre-processing, Data cleaning, Model applied which are Long Short Term Memory.

2 Environment

In this section of this module we have explained the requirements of hardware as well as
the software and their version to re run the code on the local environment.

2.1 Hardware requirements

To perform research code we need hardware of minimum 11th generation of intel core i5
of version 1135G7 with the processor speed of 2.40GHz., 16GB RAM of DDR4 version
with the speed of 3200 MHz, with the operating system of windows 11 of version 64 bit
and the hard drive of 512GB SSD.Figure

@ Device specifications

Device name DESKTOP-JPE2JTA

Processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 1.38 GHz
Installed RAM 24.0 GB (23.7 GB usable)

Device ID 32D59860-29A1-4599-BEF1-5ESF3DF3C5DD

Product ID 00327-35922-44027-AA0EM

System type 64-bit operating system, x64-based processor

Pen and touch ~ No pen or touch input is available for this display

Related links Domain or workgroup ~ System protection Advanced system settings

== Windows specifications

Edition Windows 11 Home Single Language

Version 21H2

Installed on 28-10-2021

OS build 22000.318

Experience Windows Feature Experience Pack 1000.22000.318.0

Microsoft Services Agreement
Microsoft Software License Terms

Figure 1: Hardware Requirements

2.2 Software Requirements

e Anaconda Navigator for Windows (Version 1.9.12)
e Jupyter Notebook (Version 6.0.3)

e Python (Version 3.9)

3 Data Collection

The data set for the research project is taken from Kaggle which is an open directory.

Link for dataset ishttps://www.kaggle.com/eliasdabbas/flights-serps-and-landing-pages?
select=flights_serp_scrape.csv
https://www.kaggle.com/eliasdabbas/search-engine-results-flights-tickets-keywords?
select=flights_tickets_serp2019-08-15.csv both are the same file but the second

link has the data set which has been taken twice in every month from december 2018 to

st of april 2020 what makes it the data set of 24 different csv with same script of code

to scraping. it has 4000 rows of first 10 ranked pages for the same query. The rank has

been changed every time.

 https://www.kaggle.com/eliasdabbas/flights-serps-and-landing-pages?select=flights_serp_scrape.csv
 https://www.kaggle.com/eliasdabbas/flights-serps-and-landing-pages?select=flights_serp_scrape.csv
https://www.kaggle.com/eliasdabbas/search-engine-results-flights-tickets-keywords?select=flights_tickets_serp2019-08-15.csv
https://www.kaggle.com/eliasdabbas/search-engine-results-flights-tickets-keywords?select=flights_tickets_serp2019-08-15.csv

4 Data Exploration

4.1 Importing The Libraries

There are many libraries which is required for processing the the code which has pre-
defined functions shown below

from mpl toolkits.mplot3d import Axes3D

from sklearn.preprocessing impert StandardScaler

import matplotlib.pyplot as plt # plotting

import numpy as np # linear algebra

import os # accessing directory structure

import pandas as pd # data processing, CSV file I/0 (e.g. pd.read _csv)

Figure 2: Libraries

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from keras.preprocessing.text import Tokenizer

Ffrom keras.preprocessing.sequence import pad_sequences
from keras.models import Sequential

from keras.layers import Dense, Embedding, LSTM, SpatialDropoutlD
from sklearn.model_ selection import train_test_ _split

from keras.utils.np_wutils import to categorical

from keras.callbacks import EarlyStopping

from keras.layers import Dropout

import re

import nltk

from nltk.corpus import stopwords

from nltk import word_tokenize

nltk _ _download(' stopwords")

STOPWORDS = set(stopwords.words({''english"))

from bsd4d import BeautifulSoup

import plotlwy.graph_objs as go

#import plotly.plotly as pw

import cufflinks

from IPython.core.interactiveshell import InteractiwveShell
import plotly. figure fTactory as +F
Interactiveshell.ast_node_interactiwvity = "=11°

Ffrom plotly . offline import iplot

cufflinks.go offline()

cufflinks.set_config file(world_readable=True, theme='pearl®')

[nltk_data] Downloading package stopwords to Jfroot/nltk_data.. .
[mltk datal Unzipping corpora/stopwords. =zip.

Figure 3: Libraries

4.2 Exploratory Data Analysis
4.2.1 Data description

rank totalResults count startIndex searchTime formattedSearchTime

count 4000.00000 4.000000e+03 4000.0 4000.0 4000.000000 4000.000000
mean 550000 5.538642e+07 10.0 1.0 0.321426 0.321350
std 287264 8.004667e+07 0.0 0.0 0.061791 0.062045
min 1.00000 9.940000e+04 10.0 1.0 0.162895 0.160000
25% 3.00000 9.217500e+06 10.0 1.0 0.278504 0.280000
50% 550000 2.300000e+07 10.0 1.0 0.314640 0.310000
75% 8.00000 7.097500e+07 10.0 1.0 0.354942 0.352500
max 10.00000 5.420000e+08 10.0 1.0 0.533649 0.530000

Figure 4: DATA DESCRIPTION

4.2.2 checking Null values

This code will check the null or Nan values in the dataset.

import seaborn as sns

import matplotlib.pyplot as plt
plt.figure(figsize={18,6))
sns.heatmap(df.isnull())
plt.title("Missing values?" fontsize = 18)
plt.show()

<Figure size 720x432 with @ Axes»<matplotlib.axes._ subplots.AxesSubplot at @x7f54f5c08796>Text(8.5, 1.8, 'Missing values
Missing values?

-10

126
22
378
504
e
&8 08
1008
1134
1260
B3
1638 - 06
1764
1890
2016
2142
2268
2394 - 0.4
2520
2646
2172
2898
B
3276 02
3402
3528
3654
3780
3906 00
v ox B = @ M T T E YD e ¥ o x oo ™ v o oM
EEZ2 e c 85582282850 ™ 8
EeEgS=Ez282sBESEfZEgs ™ EEZ
= FE cdEEESE ©3 E2C 5% &
£ 5 FE EEE® BY F48 g 53
8 a ES 55 &8
i £ e g5 i3
=]
£ E

Figure 5: Null values

4.2.3 Percentage of traffic by rank

This is percentage of traffic on rank based regardless the websites.

traffic = {

DNONAWNE
000000000
]

a
v

EE 2.
1e: @.ez}

Display the percentage of traffic with colors

colors = []
Ffor i in range(l@):
*C = round(e.7-@.es5*i.2)
€ = (xXC.>xC.@.5)
colors.append(c)
colors = colors + [“red”]
=x = [str(t) for Tt in range(1,11)] +[~>1™]
» = [traffic[key]l*l1o@e for key in traffic.keys()]
¥ += [1@e-sumly)d]

plt.figure(figsize—(=,63)
plt.bar(x,y, color — colors}

plt.title("Estimation of percentage of traffic by rankinginin Google search results”, fontsize = 16)
plt.xticks(x)

plt.xlabel("#® rank™)

plt.ylabel(% of traffic™)

plt.show()

Figure 6: Percentage of traffic by rank

4.2.4 Percentage of traffic by websites

This code will give the percentage of traffic on the websites regardless the rank.

Select the columns we will use
df = df[["searchierms”, “rank”, “title”, “snippet”, “displayLink”]].copy()

Calculate the percentage of the total traffic by website

df["traffic%"] = df["rank”].map(traffic)

bylraffic - pd.pivot_table(df. walues = ~traffick”, index = “displayLink”, agefunc = “sum”).sort_values(traffick ., ascending - ralse)
nb_terms — df[“searc hTerms"].nunique()

byTraffic["traffic%”] = byTraffic[“traffick"].apply(lambda x: (1€e/2) * (x/nb_terms))

Display the percentage of the total traffic by website
Supposing that each term has an equal amount of traffic
what isn 't true. It is the only way get an estimation
because the dataset doesn 't have the amount of trat+ic
by scarch term.

number of top websites to plot
nb_website = 2@

Display the result with colors
colors = [1]

for i in range(nb_website):
x — round(©.7-0.02%i.2)
€ = (x.%x.8.5)

colors.append(c)

plt. Migure(ligsize=(16,6))
plt.title(f Percentage of traffic on {nb_terms} search terms by website”. fontsize = 16)
byTraffic[“traffic%”].iloc[:nb_website].plot.bar(color = colors)

plt.xlabel("")

plt.ylabel("% of total trafllic")

plt.show()

Figure 7: Percentage of traffic by websites

4.2.5 keyword concentration in titles

This code will get the percentage of the titles over the rank same code will be used for
snippet column to know the concentration of key words in snippet.

Calculate the % of keywords/search terms in the titles
df["ksearch_term in title"] = df["searchTerms"].apply(lambda x: len(x.split(" "))) / df["title"].apply(lambda x: len(x.split(" "))}
df["%search_term_in_title"] = 188 * df["%search_term_in _title"] # Convert the result in %

Display the result

proc_searchterm_rank = pd.pivot_table(df, values = "Esearch_term_in_title", index = "rank”, aggfunc = "mean").sort_index(ascending = False)
proc_searchterm_rank.plot.barh(figsize = (8,5), color = (8.32, 6.32, 8.5))

plt.legend(™")

plt.xlabel("Exact keyword concentration in %", fontsize = 12)

plt.ylabel("# rank”, fontsize = 14)

plt.title("Average keyword concentration in titles\nby rank®, fontsize = 16)

Figure 8: keyword concentration in titles

4.2.6 concatenating all data

This function concatenate the all the data sets and formed one data set and make the
new data frame.

& Imgovl ond merge SLL [he csv Files
1st_d+_path = |
for dirname, , Tilenames in oS.walkl "Hew foldss”) :
for filename in filenames:
1ot _df path.appendios . path. join(dirname, filename))

& List the dates of the csv Files
& Be gware thot Sose months are wissing
sorted(|d -14:-4] far d in 1st_df _path |}

Figure 9: concatenating all data

4.2.7 Most visitors on websites over the time

this code helps to know the most visited websites as the ranks changes over the time so
what will be the effect of it on the traffic of websites.

Figure 10: Most visitors on websites over the time

5 Pre Processing

5.0.1 Removing the impurities and stop words

this code help to remove all the symbols , numeric values, stop words etc. that menns it
will remove everything except the text words.

df— df.reset_index(drop=True)

REPLACE_BY_SPACE_RE = re.compile([/(){INI[NINI@.31"D)
BAD_SYMBOLS_RE — re.compile(' [~®-Sa-z #+_1")
STOPWORDS = set(stopwords.words(english))
def clean_text(text):
text: a string
return: modified initial string
Ttext — text.lower() # lowercase text
text — REPLACE_BY_SPACE_RE.sub(’ °', text) # replace REPLACE_BY_SPACE_RE symbols by space in text.
#substitute the matched string in REPLACE_BY_SPACE_RE with space.
Ttext — BAD_SYMBOLS_RE.sub(', text) # remove symbols which are in BAD_SYMBOLS_RE from text.
substitute the matched string in BAD_SYMBOLS_RE with nothing.
text - text.replace(" "t
text - text.replace(e’)
text - text.replace(1-° >
text — text.replace(2" >
text - text.replace(3" >
text - text.replace(4’ >
text - text.replace(’s” >
text - text.replace(5" >
text - text.replace(7" >
text — text.replace(8. "
text = text.replacel] 9. "]
text — re.sub(r W+, "7, text)
text = ° " .join(word for word in text.split() if word not in STOPWORDS) # remowve stopwors from tesxt
return text
df["title] = df["title’].apply(clean_text)

Figure 11: Removing the impurities and stop words

5.1 tokenizing the words

5.1.1 tokenizer function

MAX NB_WORDS = S@eoe
MAX SEQUENCE_LENGTH = 258
EMBEDDING_DIM = 1@

tokenizer = Tokenizer({num_words=MAX_NB_WORDS, filters='!"#$X&()*+,-./:;<=>2@[\]"_"{|}~", lower=True)
tokenizer.fit_on_texts(fu['combined®].values)
word_index_title = tokenizer.word_index

Figure 12: tokenizer function

5.1.2 tokenizing the words in the data frame

Y = pd.get_dummies(rank_df).values
print{'Shape of label tensor:’, Y.shape)

X_train, X test, Y train, Y test = train test split(X,Y, test size = 6.18, random state = 42)
print(X train.shape,Y train.shape)
print(X test.shape,Y test.shape)

Figure 13: tokenizing the words in the data frame

5.2 splitting into test and train

This code split the data into the ratio of 90 and 10 in train and test data respectively

Y = pd.get dummies(rank af).values
print("Shape of labal tensor:’, V.shape)

X train, X test, ¥ train, ¥ test = train test split(X,Y, test size = .18, random state = 42)
print(X train.shape,Y train.shape)
print(X test.shape,Y test.shape)

Figure 14: splitting into test and train

6 Modeling

this is the model which is applied on the data set for prediction the target variable
"RANK” this model is then changed by adding and deleting the dense layer and by
changing the weights.

model = Sequential()

model.add(Embedding(MAX NB WORDS, EMBEDDING DIM, input length=X.shape[1]))
model.add(SpatialDropoutlD(8.2))

model.add(LSTH(16@, dropout=8.2, recurrent dropout=8.2))

||10del. add(Dense(18, activation='softmax'))

model.compile(loss="categorical crossentropy’, optimizer="adam’, metrics=['accuracy'])
print(model.summary())

Figure 15: modeling

Here the model has been fitted and will provide the result with the epochs history.

epochs = 59
batch size = 15

history = model.fit(X train, V train, epachs=epochs, batch size=batch size,validation split=B.1,callbacks=[EarlyStopping(nonitor="val loss', patiencess, min delta=0.881)])

Figure 16: fitting the model

	Introduction
	Environment
	Hardware requirements
	Software Requirements

	Data Collection
	Data Exploration
	Importing The Libraries
	Exploratory Data Analysis
	Data description
	checking Null values
	Percentage of traffic by rank
	Percentage of traffic by websites
	keyword concentration in titles
	concatenating all data
	Most visitors on websites over the time

	Pre Processing
	 Removing the impurities and stop words
	tokenizing the words
	tokenizer function
	tokenizing the words in the data frame

	splitting into test and train

	Modeling

