~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Eva Figuerola Ullastres
Student ID: x19209371

School of Computing
National College of Ireland

Supervisor: Majid Latifi

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Eva Figuerola Ullastres
Student ID: x19209371
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Mayjid Latifi
Submission Due Date: 30/05/2022
Project Title: Configuration Manual
Word Count: 2439
Page Count: [26]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th May 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Eva Figuerola Ullastres
x19209371

1 Introduction

This configuration manual provides information on the system configuration, software,
tools and environment requirements in order to conduct the research project in ’Credit
Card Fraud Detection using Ensemble Learning Algorithms’. The purpose of creating
this document is to demonstrate how the project’s technical work was implemented so
that it can be replicated if necessary. The goal of the project was to build an ensemble
classifier that can accurately detect credit card fraud. In order to achieve the project’s
goal, a methodology was proposed and followed.

2 System Configuration

This research project was conducted using a MacBook Pro with the following configura-
tion:

e Processor: 2.4 GHz Quad-Core Intel Core i5
e Hard Disk Storage: 251 GB
e Memory: 8 GB 2133 MHz LPDDR3

e Operating System: macOS Monterey Version 12.1

3 Software and Tools

This project was implemented using Python programming language with Jupyter Note-
book as Integrated Development Environment (IDE) on the Anaconda platform. The
specific versions of the required software/tools are listed below:

e Programming Language E] : Python 3.7.4

e IDE: Jupyter Notebook 6.0.1

e Platform P Anaconda 2019.10

e Tools E]: Microsoft Excel, Tableau Desktop 2021.3

e Web Browser: Google Chrome

"https://www.python.org/downloads/
2https://anaconda.org/anaconda/anaconda
3https://www.tableau.com/products/desktop/download

1

https://www.python.org/downloads/
https://anaconda.org/anaconda/anaconda
https://www.tableau.com/products/desktop/download

4 Python Packages

The Python packages (libraries) required in this project include: Pandas, NumPy, Seaborn,
SciPy, Sklearn (also known as Scikit-Learn), Imbalanced-learn and Matplotlib . They
were imported as shown in Figure [I] and Figure [2] using the pip install command if
necessary.

Import the essential Python libraries for data manipulation, data preprocessing and data analysis.
pip install pandas

import pandas as pd

pip install numpy

import numpy as np

pip install os sys

import os

pip install random

import random

Import math library for mathematical computations and also import scipy.stats for statistical functions.
pip install Mathematics-Module

import math

pip install scipy

import scipy.stats

from scipy import stats

from scipy.stats import pointbiserialr

from scipy.stats import chi2_contingency

from scipy.stats import randint as sp randint

pip install researchpy
import researchpy as rp
pip install ppscore
import ppscore as pps

Import ploting libraries

pip install matplotlib

import matplotlib.pyplot as plt

from matplotlib import pyplot

To enable plotting graphs in Jupyter notebook
$matplotlib inline

Import seaborn

pip install seaborn

import seaborn as sns

Import Python scikit-learn library for Machine Learning
pip install scikit-learn or pip install sklearn
import sklearn

Import Libraries for ANOVA feature selection
from sklearn.feature_selection import f_classif
from sklearn.feature selection import SelectKBest

Import the libraries to split the dataset into train and test set
from sklearn.model_selection import train_test_split

Encoding. Import the library for categorical encoding
pip install category encoders
import category_encoders as ce

Resampling

To deal with the class imbalance problem: imbalanced learn
pip install imbalanced-learn

import imblearn

from imblearn.pipeline import Pipeline

RUS = Random Undersampling

from imblearn.under_sampling import RandomUnderSampler
SMOTE = Synthetic Minority Oversampling Technique
from imblearn.over_ sampling import SMOTE

Borderline SMOTE

from imblearn.over_sampling import BorderlineSMOTE

Figure 1: Python Packages

pip install collection
from collections import Counter

Classification Algorithms

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import BaggingClassifier

pip install xgboost

from xgboost import XGBClassifier

pip install lightgbm

from lightgbm import LGBMClassifier

#pip install catboost

from catboost import CatBoostClassifier

import catboost as ctb

Import libraries for model evaluation

from sklearn import metrics

from sklearn.metrics import classification_report

from imblearn.metrics import classification_ report_imbalanced
from sklearn.metrics import confusion_matrix

from sklearn.metrics import plot_confusion matrix

from sklearn.metrics import recall_score

from sklearn.metrics import precision_score

from sklearn.metrics import fl_ score

from sklearn.metrics import matthews_corrcoef

from sklearn.metrics import average_precision_score

from sklearn.metrics import precision_recall_curve, plot_precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay

from sklearn.metrics import auc

from imblearn.metrics import geometric_mean score

from sklearn.metrics import make_scorer

For Hyperparameter Tuning
from sklearn.model_selection import RandomizedSearchCV

Cross Validation libraries.

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_validate
from sklearn.model_selection import StratifiedKFold

Other libraries

pip install DateTime
import datetime

I

Figure 2: Python Packages (continuation)

5 Data Collection

The dataset used in this research was downloaded from the kaggle repository https://
www.kaggle.com/datasets/kartik2112/fraud-detection. See Figure[3] The dataset
contains two files in a CSV format. The files were stored on the computer hard drive.

6 Data Loading

The csv files fraudTrain.csv and fraudTest.csv were converted to a Pandas Dataframe
format for analysis, and the two files were then concatenated in order to get a better

https://www.kaggle.com/datasets/kartik2112/fraud-detection
https://www.kaggle.com/datasets/kartik2112/fraud-detection

@ Dataset

Credit Card Transactions Fraud Detection Dataset

Simulated Credit Card Transactions generated using Sparkov

b‘ Kartik Shenoy e updated a year ago (Version 1)

Data Tasks Code(8) Discussion(2) Activity Metadata Download (478 MB) New Notebook H

& Usability 8.5 iz License CCO: Public Domain ® Tags finance, video games, e-commerce services

Figure 3: Credit Card Fraud Dataset

insight from the data. The dataset was loaded in Python Jupyter Notebook as seen in
Figure [4]

Import the csv file fraudTrain into a Pandas dataframe and read the csv file
In [2]: #pd.read csv('/Users/eva.figuerola.ullastres/Documents/fraudTrain.csv')
Import the csv file fraudTest into a Pandas dataframe and read the csv file
In [3]: #pd.read csv('/Users/eva.figuerola.ullastres/Documents/fraudTest.csv')
Concatenate fraudTrain + fraudTest. | call the new dataframe: fraud_df. Going forward this dataframe will be used

In [4]: fraud df = pd.concat([pd.read_csv('/Users/eva.figuerola.ullastres/Documents/fraudTrain.csv'),pd.read csv('/Users/eva.fi

Figure 4: Data Loading

7 Data Preprocessing

The below data transformation and data cleaning tasks were conducted as part of the
data preprocessing step. Pandas and NumPy packages were used in this step:

e Check the structure of the Pandas DataFrame. See Figure

e Change the datatype of the target variable ’is_fraud’ to category.
Change the datatype of the variables ‘gender’ and ’category’ to category.
Change the datatype of the variables 'dob’” and ’‘trans-date-trans-time’ to datetime.
Convert the variables ‘cc-num’, and ’zip’ to strings as they are not integers; they
are both nominal variables whose values are represented by numbers. See Figure [0]

e Remove the column 'Unnamed: 0’ as it is totally irrelevant. Remove variables that
have almost unique values. See Figure [7]

e Check for missing values and duplicates. See Figure

e Check the cardinality (number of unique values) for the categorical variables. See
Figure [9]

fraud_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1852394 entries, 0 to 1852393
Data columns (total 23 columns):

Column Dtype

0 Unnamed: 0 int64

1 trans_date_trans_time object
2 cc_num inté64

3 merchant object
4 category object
5 amt floaté64
6 first object
7 last object
8 gender object
9 street object
10 city object
11 state object
12 zip int64

13 lat floaté64
14 long floaté64
15 city_pop int64

16 job object
17 dob object
18 trans_num object
19 unix_time int64

20 merch_lat floaté64
21 merch long float64
22 is_fraud inté64

dtypes: float64(5), int64(6), object(12)
memory usage: 325.1+ MB

Figure 5: Structure of the Pandas DataFrame

Change the datatype of the dichotomous target variable 'is_fraud' to category

n [10]: fraud df["is_fraud"] = fraud df["is_fraud"].astype('category')
fraud df["is_fraud"].dtypes

ut[10]: CategoricalDtype(categories=[0, 1], ordered=False)

Change the datatype of the variables 'gender' and 'category' to category

n [11]: fraud_df["gender"] = fraud_df["gender"].astype('category')
fraud_df["category"] = fraud_df["category"].astype('category')

Change the datatype of the variables 'dob' and 'trans_day_trans_time' to datetime

n [12]: fraud_df['dob'] = pd.to_datetime(fraud_df['dob'])
fraud_df['trans_date_trans_time'] = pd.to_datetime(fraud_df['trans_date_trans_time'])

Convert the variables 'cc_num', and 'zip' to strings . They are not integers. They are both nominal variables whose values are represented by numbers.

n [13]: fraud_df["zip"] = fraud_df["zip"].astype('str')
fraud_df["cc_num"] = fraud df["cc_num"].astype('str')

Figure 6: Data Transformation

#Remove irrelevant column
fraud df = fraud df.drop(columns="Unnamed: 0")

fraud_df = fraud df.drop(columns="unix time") # remove it as the variable has almost unique values.
fraud_df = fraud df.drop(columns="merch_lat") # remove it as the variable has almost unique values.
fraud_df = fraud_df.drop(columns="merch_long") # remove it as the variable has almost unique values.

Figure 7: Data Cleaning

fraud df.isnull().sum().sum()

0

fraud df.duplicated().sum()

0

Figure 8: Checking for Missing values and Duplicates

fraud _df.nunique()

trans_date_trans_time 1819551
cc_num 999
merchant 693
category 14
amt 60616
first 355
last 486
gender 2
street 999
city 906
state 51
zip 985
lat 983
long 983
city_ pop 891
job 497
dob 984
trans_num 1852394
is_fraud 2

dtype: inté64

Figure 9: Number of Unique values (for the categorical variables this is the cardinality)

8 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was performed in order to get an general understanding
of the data and its underlying structure. Pandas, NumPy and Seaborn packages were
used in this step. The below tasks were performed as part of the EDA process:

e EDA for the target variable ’is-fraud’. A bar plot was created to see the class
distribution of the target variable. As seen in Figure[10] and Figure [I1] the dataset
is heavily imbalanced.

e Bar plots for the rest of categorical variables. Figure |12 shows the bar plot for the
variable 'category’. Same code can be reused for the rest of categorical variables.

e Descriptive statistics (Figure and histograms for the continuous variables.

Occurrences of legitimate and fraudulent transactions
occurrences = fraud df['is fraud'].value counts()
occurrences

Here I get the number of legitimate ('0') and fraudulent ('l') transactions.
0: Legitimate transaction
1: Fraudulent transaction

0 1842743
1 9651
Name: is_fraud, dtype: inté64

Figure 10: Occurrences of Legitimate and Fraudulent Transactions

I plot the number of legitimate and fraudulent transactions.
colors = ['green', 'red']

sns.countplot (fraud_df['is_fraud'], palette = colors).set(title='Volume of Legitimate and Fraudulent Transactions')
plt.show()

green = legitimate transactions ('0')
red = fraudulent transactions ('1l')

THE DATASET IS HIGHLY IMBALANCED

Volume of Legitimate and Fraudulent Transactions

1750000

1500000

1250000

S 1000000
8

750000

500000

250000

0

is_fraud

Figure 11: Volume of Legitimate and Fraudulent Transactions

From looking at the descriptive statistics for the ’amount’ variable shown in Figure
it is observed that the average amount for a fraudulent transaction is $530.66 in com-
parison with the average amount for a legitimate transaction which is $67.65. This
demonstrates that despite fraudulent transactions being infrequent, not detecting them
can result significant financial losses.

I plot the number of legitimate and fraudulent transactions by category
colors = ['green', 'red']

plt.figure(figsize=(20,8))

plt.title('Volume of Legitimate and Fraudulent transactions by Category')
sns.barplot(x="category", y='trans_num' ,hue="is_fraud",palette=colors,

data=fraud_df.groupby (['category','is_fraud']).agg({'trans_num': 'count'}).reset_index())

<matplotlib.axes._ subplots.AxesSubplot at 0x7f£9e504£4290>

Volume of Legitimate and Fraudulent transactions by Category

175000

150000

125000

100000

trans_num

75000

50000

25000

entertainment food dining gas_transport grocery net grocery_pos health_fitness home kids_pets misc_net misc_pos personal_care shopping_net shopping_pos

Figure 12: Volume of Legitimate and Fraudulent Transactions by Category

category

Compute some relevant summary statistics for the variable 'Amount'(‘amt’)

max_legitimate_amt=legitimate['amt'].max()
max_fraudulent_amt=fraudulent['amt'].max()

import statistics

mean_legitimate amt= legitimate['amt'].mean()
mean_fraudulent amt= fraudulent['amt'].mean()
median legitimate amt= legitimate['amt'].median()
median_ fraudulent amt= fraudulent['amt'].median()

print('Maximun
print('Maximun

print('Average
print('Average

print('Median of Legitimate Transactions Amount: {}'.format(median_ legitimate_amt))
print('Median of Fraudulent Transactions Amount: {}'.format(median_ fraudulent_amt))

Legitimate Transactions Amount: {}'.format(max legitimate_ amt))
Fraudulent Transactions Amount: {}'.format(max_ fraudulent_amt))

Legitimate Transactions Amount: {}'.format(mean legitimate_ amt))
Fraudulent Transactions Amount: {}'.format(mean_ fraudulent_amt))

Maximun Legitimate Transactions Amount: 28948.9
Maximun Fraudulent Transactions Amount: 1376.04
Average Legitimate Transactions Amount: 67.6512778613193
Average Fraudulent Transactions Amount: 530.6614122888789
Median of Legitimate Transactions Amount: 47.24
Median of Fraudulent Transactions Amount: 390.0

Figure 13: Descriptive Statistics for the Variable Amount

travel

9 Feature Engineering

Feature engineering was performed to derive more informative features. Pandas, NumPy,
SciPy and Seaborn packages were used in this step.

9.1 Create the variable ’age’ at the time of the transaction

Since the variable ’dob’ does not bring much information in its raw format, the variable
‘age’ was derived, which is more meaningful. The variable ’age’ is computed by subtract-
ing the date of birth ("dob’) from the transaction date (‘trans-date-trans-time) as seen in

Figure [14]

fraud_df['age’'] = np.round((fraud df['trans date trans_ time'] - fraud df['dob'])/np.timedelta64(1,'Y’

Convert 'age' to integer:
fraud df['age'] = fraud_df['age'].astype('int')
fraud_df.dtypes[['age']]

Figure 14: Age at the Time of the Transaction

9.2 Create the variable ’transaction-hour’

The time of the transaction may be an important predictor of credit card fraud. However,
the variable ’trans-date-trans-time’ is not very informative in its raw format; hence the
reason to split this variable into three different variables: transaction hour, day of the
week and month. Figure [L15|shows how the variable ’transaction-hour’ is computed from
the variable trans-date-trans-time’. Figure [16|shows how the variable transaction-hour’
for fraudulent transactions is computed.

1: | # Derive the feature 'transaction hour'. Transaction hour for all transactions
Extract the hour of the transaction from the variable 'trans day trans time'
fraud_df['transaction _hour'] = fraud df['trans_date_ trans_time'].dt.hour
fraud_df['transaction_hour']

Figure 15: Transaction Hour

1]: # Transaction Hour for Fraudulent Transactions
Extract the hour of fraudulent transactions from the variable 'trans day trans time'
fraudulent=fraud df[fraud df['is_ fraud']==1]

fraudulent['transaction_hour']= fraudulent['trans_date trans_time'].dt.hour
fraudulent['transaction_hour']

Figure 16: Transaction Hour for Fraudulent Transactions

Figure shows the volume of fraudulent transactions by hour. It was observed
that most of the fraudulent transactions occur between 10pm and 12am. The variable
‘transaction-hour’ seems to have some association with the ’class’ of the transaction
since the majority of fraudulent transactions occur at night time. The ’transaction-hour’
variable was encoded as seen in Figure [18]

12]: sns.countplot(fraudulent['transaction_hour']).set(title='Volume of Fraudulent Transactions by Hour')
plt.show()
Plot the Number of Fraudulent Transactions per hour

Volume of Fraudulent Transactions by Hour

2500

2000

1500

count

1000

500

0
01234567 891011121314151617181920212223
transaction_hour

Figure 17: Volume of Fraudulent Transactions by Hour

1: # Encode the variable 'transaction hour':
'risky-transactions': between 21:00 and 04:00

fraud_df['hourEncoded'] = 0
fraud_df.loc[fraud df.transaction_hour < 4, 'hourEncoded'] = 1
fraud_df.loc[fraud_df.transaction_hour > 21, 'hourEncoded'] = 1

the interval from 21:00 to 4:00 gives me a much higher Cramer's V coefficient than putting 22:00 - 4:00.

Figure 18: Hour Encoded

9.3 Create the variable ’day-of-week’

The variable ’day of the week’ is derived from the variable 'trans-date-trans-time’ as seen
in Figure (19|

1: # Extract the day_of week for all transactions
fraud_df['day_of week'] = fraud_df['trans_date_ trans_time'].dt.day_name()
fraud_df['day_of_week']

Figure 19: Day of the Week

9.4 Create the variable 'month of transaction’
The variable 'month of transaction’ is derived from the variable ’trans-date-trans-time’

as seen in Figure 20

Extract the year month for all transactions
fraud_df('year_month'|=fraud_df('trans_date_trans_time'].dt.to_period('l')
fraud df['year_month']

Extract the Month of transaction
fraud_df['month of trans']=fraud df['year month'].dt.month
fraud_df['month_of trans']

Figure 20: Month of Transaction

10

9.5 Create the variable ’time since last transaction’

The variable 'time since last transaction’ (in seconds) is derived from the variable "trans-
date-trans-time’ as seen in Figure 21}

4]: # Time since last transaction = 'time since last trans' and is computed in 'seconds'
I create a new function called 'timeDifference' that will compute the time since last transaction
Time since the card holder made his last credit card transaction.
def timeDifference(x):
x['time_since last_trans'] = x.trans_date_trans_time - x.trans_date_trans_time.shift()
return x

5]: # cc-num identifies a card holder
fraud df = fraud_df.groupby('cc_num').apply(timeDifference)

6]: fraud df['time_since_last_trans'] = fraud df['time_since_last_trans'].dt.seconds

Check null values for this new created feature. Since it computes the time since last transaction, there will be some null-values as it can be the customer's

first transaction!
7]1: fraud df['time_since last trans'].isnull().sum().sum()
71: 999

Replace the null values by 0. It means '0' seconds from last transaction

8]: fraud df['time_since_ last trans'] = fraud df['time since_last_trans'].replace(np.nan, 0)
9]: fraud df['time_since last trans'].isnull().sum().sum()
9]: 0

Figure 21: Time since last transaction (in seconds)

9.6 Generate Frequencies of Transactions made in the last 1/ 7
/ 14 / 30 / 60 days

The frequency of transactions could be an important predictor of credit card fraud, be-
cause if the number of transactions made using the same card suddenly increases, it could
be a sign of a fraudulent transaction. Figure [22/ shows how the number of transactions
made over the last 7 days is computed. Same code can be reused to compute frequencies
over the last day, 14, 30, 60 days, etc.

: # Volume of Transactions made in the last 7 days
def last7DaysTransCount(x):
temp = pd.Series(x.index, index = x.trans_date_trans_time, name='count 7 days').sort_index()
count_7_days = temp.rolling('7d').count() - 1
count_7_days.index = temp.values
x['last 7 days_ trans count'] = count_7_days.reindex(x.index)
return x

: fraud df = fraud_df.groupby('cc num').apply(last7DaysTransCount)

Figure 22: Last 7 days Transaction Count

After conducting feature engineering, the variables ’dob’ and ’trans-date-trans-time’

were removed since new variables were derived from them and they became redundant.

11

The variable ’trans-num’ was also removed as it is a transaction identifier and is not
relevant for modelling. See Figure [23|

I drop the column DOB as I have calculated the age. DOB is now a redundant and unncessary column,
fraud_df = fraud_df.drop(columns="dob")

Remove the variable trans date trans time as I it is now a redundant variable.
fraud_df = fraud_df.drop(columns="trans_date_trans_time")

Remove the variable trans num (transaction number) as it is unique and irrelevant for modelling purposes.
fraud df = fraud_df.drop(columns="trans_num")

Figure 23: Removing redundant and irrelevant variables

10 Feature Selection

Feature selection was conducted to improve the predictive performance and reduce over-
fitting and the training time of the classifiers. Since the dataset used in this research
contains a mix of continuous and categorical features, different statistical tests were con-
ducted to determine the most relevant features for modelling. The Sklearn and SciPy
packages were used in this step.

10.1 Feature Selection for Continuous Variables

A correlation plot was computed to visualise the correlation between the continuous
predictors and the target variable (’class of transaction’). From looking at the correlation
plot in Figure [24] it is observed that the variable ’amount’ has the strongest relationship
with the class of transaction (’is_fraud’).

The univariate feature selection method SelectKBest from sklearn.feature_selection,
which uses ANOVA F-values to compute the feature importance scores, was used to se-
lect the most important features. The 8 most informative features to predict the class of
transaction were selected. See F-test in Figure 25| and the selected features in Figure [26]

12

fig, ax =

3]:

plt.subplots(figsize=(20,10))

sns.heatmap(fraud_df.corr(),annot=True).set_title('Correlation heatmap')

’]: Text(0.5, 1,

dty_pop

is_fraud

age

transaction_hour
hourEncoded
time_since_last_trans
last_1_day_trans_count
last_7_days_trans_count
last_14_days_trans_count
last_30_days _trans_count

last_60_days_trans_count

'Correlation heatmap')

Correlation heatmap

-08

0.011 0.0024 0.018 0.019

0.014

0.014

0.017 0.019 0019

0.045

0.088

0.014

0.015 0.44

0.0043

0.013

0.017 0.013 096 1 095 087
0.018 089 095 1 095
0.019 082 087 095 1
T B 5] 2 € € € € €
H 8 g g g E g g g g g
= S | S S,
5 e g & g g g g g g
] 3 = 14 g g g g
g
3 H y E g g £ £
g s z) 5 5)
£ 5 3) 3 3)
E Wl ~ - o o
£ z ~ =] g
o n o o]
E g o " o
- 8 8 L]

Figure 24: Correlation Matrix

Separate the target variable 'is fraud' from the dataframe
X = fraud df2.loc[:, fraud df2.columns != 'is fraud']
y = fraud df2.is_fraud

Conduct ANOVA F-test for feature selection

define feature selection (fs)

fs = SelectKBest(score_func=f classif, k=9) # k = 9 predictors. I want to obtain 9 predictors

fit= fs.fit(X,y)

Figure 25: Anova F- Test for Feature Selection

: | # Apply feature selection
X_selected = fs.fit_transform(X, y)
print(X_selected.shape)

(1852394, 9)

See the columns that have been selected
X.columns[fit.get_support (indices=True)].tolist()

g
«

'transaction_hour’,
"hourEncoded ',
‘time_since_last_trans',
"last_7_days_trans_count',
'last_14_days_trans_count',
'last_30_days_trans_count',
"last_60_days_trans_count']

The variable 'transaction_hour' and 'hour_encoded' mean the same, so only one will be selected. | will select 'hourEncoded' as it has a higher correlation with
the target variable 'is_fraud'. See correlation plot in previous step.

Figure 26: Selected Features after conducting Anova F-test

13

10.2 Feature Selection for Categorical Variables

Chi-Square test was conducted to determine whether there is an association between each
of the categorical features and the target variable (’is_fraud’). The SciPy package was
used to perform Chi-Square test. See Figure Cramer’s V test was performed to
quantify the strength of the association between each of the categorical features and the
‘class of transaction’. Figure shows how Cramer’s V test was computed using the
research.py package.

Test the association between the categorical independent variables and the target variable 'is fraud'
chi2_check = []
for i in categorical_ columns:
if chi2_contingency(pd.crosstab(fraud df['is_fraud'], fraud df[i]))[1] < 0.05:
chi2_check.append('Reject Null Hypothesis')
else:
chi2_check.append('Fail to Reject Null Hypothesis')
res = pd.DataFrame(data = [categorical_columns, chi2_check]
)T
res.columns = ['Column', 'Hypothesis']
print(res)

The Null Hypothesis states that there is no association between the categorical predictor and the target
variable 'is fraud'.

Column Hypothesis
category Reject Null Hypothesis
street Reject Null Hypothesis

zip Reject Null Hypothesis

city Reject Null Hypothesis

state Reject Null Hypothesis
region Reject Null Hypothesis
first Reject Null Hypothesis

last Reject Null Hypothesis

cc_num Reject Null Hypothesis

job Reject Null Hypothesis
merchant Reject Null Hypothesis
day of week Reject Null Hypothesis
month_of trans Reject Null Hypothesis

0N WN PO

=0
N = o

Figure 27: Chi-Square Test

crosstab, test_results_category, expected = rp.crosstab(fraud df["is_fraud"], fraud df["category"],
test= "chi-square",
expected_freqs= True,
prop= "cell")

test_results_category

Chi-square test results

0 Pearson Chi-square (13.0) = 8329.1399
1 p-value = 0.0000

2 Cramer's V = 0.0671
Figure 28: Cramer’s V Test

From looking at Figure|27]it is observed that all the categorical predictors are associa-
ted with the ’class’ of transaction. However, according Cramer’s V test, the association
of the categorical predictors with the ’class’ of transaction is weak/very weak. But this
does not mean that they are not important. Cramer’s V coefficient only measures the
‘effect’ size; however, it needs to be considered that when having a large sample size,
small effects can become significantf]]

“https://www.datascienceblog.net/post/statistical_test/effect_size/

14

https://www.datascienceblog.net/post/statistical_test/effect_size/

For feature selection purposes, a Post-Hoc Test was conducted after Chi-Square test
in order to decide whether to select a particular categorical predictor for modelling. Since
Chi-Square tests the data as a whole, when having multiple classes within a categorical
variable, we can not tell which class/es are responsible for the relationship between the
categorical predictor and the target variable. This is why it was decided to conduct a Post-
Hoc test using Bonferroni Adjustment. Only those predictors that all their categories have
a significant relationship with the target variable >is_fraud’ were selected for modelling.
A Bonferroni test was computed for each categorical predictor. Figure [29] and Figure
show how the Bonferroni test was computed; same code can be reused for the different
variables. Among all the categorical predictors, only the predictors 'category’ and ’day
of the week’” were selected for modelling. The selected features for modelling are shown
in Figure [31}

categorical_columns = ['category']

chi2_check = []
for i in categorical_columns:
if chi2_contingency(pd.crosstab(fraud df['is_ fraud'], fraud df[i]))[1] < 0.05:
chi2_check.append('Reject Null Hypothesis')
else:
chi2_check.append('Fail to Reject Null Hypothesis')
res = pd.DataFrame(data = [categorical_columns, chi2_check]
).T
res.columns = ['Column', 'Hypothesis']
print(res)

Column Hypothesis
0 category Reject Null Hypothesis

Figure 29: Bonferroni Correction Post-Hoc Test

In [243]: check = {}
for i in res[res['Hypothesis'] == 'Reject Null Hypothesis']['Column']:
dummies = pd.get_dummies(fraud_df[i])
bon_p_value = 0.05/fraud_df[i].nunique()
for series in dummies:

if chi2_contingency(pd.crosstab(fraud df['is_fraud'], dummies[series]))[l] < bon_p_value:
check['{}-{}'.format(i, series)] = 'Reject Null Hypothesis'
else:
check['{}-{}'.format(i, series)] = 'Fail to Reject Null Hypothesis'
res_chi_ph = pd.DataFrame(data = [check.keys(), check.values()]).T
res_chi_ph.columns = ['Pair', 'Hypothesis']
res_chi_ph
out[243]:
Pair Hypothesis
tegory Reject Null Hyp

[
1
2
3
4
5
6
7
8
9

B 2 3

13

category-food_dining
category-gas._transport
category-grocery_net
category-grocery_pos.
category-health_fitness
category-home
category-kids_pets
category-misc_net
category-misc_pos
category-personal_care
category-shopping_net
category-shopping_pos

category-travel

Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis
Reject Null Hypothesis

Reject Null Hypothesis

All the categories in the 'category' predictor have a significant relationship with the 'class' of transaction. Hence, this predictor will be selected for modelling.

Figure 30: Bonferroni Correction Post-Hoc Test (continuation)

15

: fraud_data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1852394 entries, 0 to 1852393
Data columns (total 11 columns):

Column Dtype

0 amt float64
1 age int64

2 hourEncoded inté64

3 time_since_last_trans float64
4 last_7_days_trans_count floaté64
5 last_14_days_trans_count float64
6 last_30_days_trans_count float64
7 last_60_days_trans_count float64
8 category category
9 day_of_ week category
10 is_fraud category

dtypes: category(3), float64(6), int64(2)
memory usage: 197.0 MB

Figure 31: Selected Features for Modelling

11 Data Preparation for Modelling

In order to prepare the data for modelling , the following tasks were performed using the
Sklearn and Imbalanced-learn packages:

e Split the dataset into Train and Test set
e Categorical Encoding

e Balance the Train set

11.1 Split the Dataset into Train and Test Set

The dataset was split in the 70:30 ratio; that is, 70% train and 30% test, using the
train_test_split function from sklearn. Because the dataset is extremely imbalanced,
stratified splitting was applied in order to preserve the class proportions observed in the
original dataset. See Figure

Split the dataset into train test sets
train, test = train_test_ split(fraud_data, test_size=0.30, random state=1, stratify=fraud data['is_fraud'])
random state 1 is to produce the same results accross a different run

708 of the data will be used to train the models
30% of the data will be used to test and evaluate the models

training_set_size = len(train)

test_set_size = len(test)

print(training_set_size) # number of transactions in the training set . Training set will be used to build the models
print(test_set_size) # number of transactions in the test set. Test set will be used to test the models

1296675
555719

Figure 32: Train Test Split

11.2 Categorical Encoding

Since most machine learning algorithms do not take categorical variables as input, cate-
gorical variables need to be encoded before creating the models. Also, in order to apply

16

sampling techniques on the training set to balance the class distribution, all the variables
need to be converted to numerical. The dataset used for modelling contains two cate-
gorical variables : ’category’ and 'day-of-week’. To convert them to numerical, CatBoost
encoder was used. The reason why CatBoost encoder was the chosen technique is because
it avoids target leakage and hence prevents the risk of overfitting and poor generalisation
of the model. CatBoost encoding needs to be performed separately on the train and test
set. See Figure

CATBOOST ENCODING

Define catboost encoder
cbe_encoder = ce.cat_boost.CatBoostEncoder ()

feature_list = ['category', 'day_of week'] # the categorical variables I want to encode

Fit the encoder and transform the features

train_cbe = cbe_encoder.fit_transform(X_train[feature_list],y_train) # on the train set
test_cbe = cbe_encoder.transform(X_ test[feature_list]) # on the test set

Figure 33: CatBoost Encoder

11.3 Dealing with the Class Imbalance : Balance the Train set

Since the dataset is highly imbalanced, in order to avoid bias towards the majority class
in the models, the class imbalance was reduced on the training set before building the
classifiers. The imblearn package was used. Only the training data was balanced, as it is
used to build the models. The test data does not have to be balanced, as the purpose of
the test data is to simulate the results of the model in a 'real-world’ setting, and in real
life all the credit card fraud datasets are highly imbalanced.

A hybrid sampling approach of RUS (Random Undersampling) and Borderline-SMOTE
was used to reduce the class imbalance on the train set. The large size of the train set
(1,296,675 observations) would make training the models computationally expensive. In
order to reduce the training time of the models, the train set was first undersampled (RUS)
and then oversampled (Borderline SMOTE). The sampling parameters were manually ad-
justed in a way that the majority class was reduced to 20 times the size of the minority
class (sampling strategy= 0.05), and the minority class was 90% of the size of the majority
class (sampling strategy = 0.9). See Figure Figure |35 and Figure

Define resampling pipeline

under = RandomUnderSampler(sampling strategy=0.05, random state=42)
over = BorderlineSMOTE (sampling strategy=0.9)

steps = [('u', under), ('o', over)]

pipeline = Pipeline(steps=steps)

random state = 42 is to produce the same results accross different runs
sampling strategy parameters have been manually tuned

Figure 34: Define the Resampling Pipeline

17

Resample the dataset

Transform the dataset
X_train_sampled, y_train_ sampled = pipeline.fit resample(X_train, y_train)

Summarize the new class distribution

Summarize the new class distribution
counter = Counter(y_train sampled)
print(counter)

Counter({0: 135120, 1: 121608})

Figure 35: Resample the Train Set

Summarize class distribution before and after applying RUS + Borderline-SMOTE
counter = Counter (y_train)
print('Before RUS + BorderlineSMOTE
counter = Counter(y_train_sampled)
print('After RUS + BorderlineSMOTE ', counter) # Class distribution AFTER applying RUS + Borderline-SMOTE

', counter) # Class distribution BEFORE applying RUS + Borderline-SMOTE

Before RUS + BorderlineSMOTE Counter({0: 1289919, 1: 6756})
After RUS + BorderlineSMOTE Counter({0: 135120, 1: 121608})

Figure 36: Class Distribution of the Train Set Before and After Resampling

12 Model Implementation

The models (classifiers) were implemented on the train set shown in Figure 37, The
Sklearn package was used to train the different models.

balanced train = pd.concat([X_train_sampled, y train sampled], axis=1)

Separate the target variable 'is fraud' from the 'sampled train' dataframe
X_balanced_train = balanced_train.loc[:, balanced_train.columns != 'is_fraud'] # Includes all the colums except the tai
balanced train = balanced train.is fraud Includes only the target variable ('is fraud'

Figure 37: Balanced Train Set

12.1 Random Forest

The RF model was first computed with the default hyperparameters as seen in Figure
Randomized search 3-fold cross validation (CV) was then computed to get the optimised
parameters using the function RandomizedSearchCV() as seen in Figure and Figure
It was found that the RF with default hyperparameters achieved a better performance
than the RF with optimised hyperparameters. Hence, the RF was built with the default
hyperparameters.

18

Import Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier

Define the model
rf = RandomForestClassifier(random_state = random.seed(42),n_jobs = -1, verbose=1)

Fit the model on training set
rf.fit(X _balanced train, y_balanced_train)

Figure 38: RF Model with Default Hyperparameters

HYPERPARAMETER SEARCH
create a dictionary with the list of hyperparameters
params_rf = {

'n_estimators': [100, 300, 500],

'‘max_depth' : [None, 4, 8],
'min_samples_split': [2, 0.020, 0.0020, 50, 100, 200],
'min_samples_leaf' : [1, 0.010, 0.0010, 25, 50, 100]

}

Due to the large size of the training set I will use 3-fold cross validations (3-fold CV)
cv = StratifiedKFold(n_splits = 3, shuffle=True, random state = 42)

Define the base RF model (rfl)
rfl = RandomForestClassifier(random state = 42, n_jobs = -1, verbose=1l)

APPLY RANDOMIZED SEARCH
Instantiate RandomizedSearchCV and pass in the hyperparameters
rand_rf = RandomizedSearchCV(rfl, params_rf, scoring = 'fl', cv = cv, n_jobs=-1, verbose=1, random state = 42)

Fit the model on training set
rand_rf.fit(X_balanced_train, y_balanced train)

Fitting 3 folds for each of 10 candidates, totalling 30 fits

Figure 39: RF Hyperparameter Optimisation using RandomizedSearchCV

Print the best hyperparameters that maximize scoring
print(rand_rf.best_params_)

{'n_estimators': 100, 'min_samples_split': 50, 'min_samples_leaf': 1, 'max_depth': None}

Print the best model (the model with the best hyperparameters)
print(rand_rf.best_estimator_)

RandomForestClassifier (min_samples_split=50, n_jobs=-1, random state=42,
verbose=1)

Figure 40: Optimised Hyperparameters for RF

12.2 Bagging

The Bagging model was first computed with the default hyperparameters as seen in
Figure Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure The optimi-
sed Bagging model outperformed the model with default hyperparameters; hence, the
Bagging model was built with the optimised hyperparameters as seen in Figure

19

Import Bagging Classifier
from sklearn.ensemble import BaggingClassifier

Define the Bagging model
bagging = BaggingClassifier(random_state = random.seed(42), n_jobs = 1, verbose=1)

Fit the model on training set
bagging.fit(X_balanced_train, y balanced_train)

Figure 41: Bagging Model with Default Hyperparameters

HYPERPARAMETER SEARCH

create a dictionary with the list of hyperparameters
params_bagging = {
'n_estimators': [10, 50, 100, 300, 500],
'max_samples' : [0.3, 0.5, 1.0],
'max_features': [0.3, 0.5, 1.0]
}

Due to the large size of the training set I will use 3-fold cross validations (3-fold CV)
cv = StratifiedKFold(n_splits = 3, shuffle=True, random state = 42)

Define the base Bagging base model (baggingl)

baggingl = BaggingClassifier(random state = 42, n_jobs = -1, verbose=1)
APPLY RANDOMIZED SEARCH

Instantiate RandomizedSearchCV and pass in the hyperparameters

rand_bagging = RandomizedSearchCV(baggingl, params_bagging, scoring = 'fl1', cv = cv, n_jobs=-1, verbose=1, random_state

Fit the model on training set
rand_bagging.fit(X_balanced train, y_balanced train)

Fitting 3 folds for each of 10 candidates, totalling 30 fits

Figure 42: Bagging Hyperparameter Optimisation using RandomizedSearchCV

Print the best hyperparameters that maximize scoring
print(rand_bagging.best_params_)

{'n_estimators': 50, 'max samples': 1.0, 'max_ features': 0.5}
Bagging best = rand bagging.best estimator
print (Bagging best) # best tuned model

BaggingClassifier(max features=0.5, n_estimators=50, n_jobs=-1, random state=42,
verbose=1)

Figure 43: Optimised Hyperparameters for Bagging

12.3 XGBoost

The XGBoost model was first computed with the default hyperparameters as seen in
Figure 44 Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure The optimi-
sed XGBoost model outperformed the model with default hyperparameters; hence, the
XGBoost model was built with the optimised hyperparameters as seen in Figure [46|

20

Define the XGBoost model
XGBoost = XGBClassifier(random state = 42, n_jobs = -1, verbosity = 1)

Fit the model on the train set
XGBoost.fit(X_balanced_ train, y balanced_train)

Figure 44: XGBoost Model with Default Hyperparameters

HYPERPARAMETER SEARCH

create a dictionary with the list of hyperparameters
params_xgboost = {

'n_estimators': [100, 300, 500],

'learning_rate': [0.1, 0.2, 0.3],

'max_depth': [4,6],

'gamma’ : [0, 0.1, 0.2],

'subsample': [0.5, 0.75, 1],

'colsample_bytree': [0.5, 0.75, 1],

'min_child weight': [1, 5, 25],

}

Due to the large size of the training set I will use 3-fold cross validations (3-fold CV)
cv = StratifiedKFold(n_splits = 3, shuffle=True, random_state = 42)

Define the XGBoost base model
xgboostl = XGBClassifier(random state = 42, n_jobs = -1, verbosity = 1) #random state is to get same results in every 1

APPLY RANDOMIZED SEARCH
Instantiate RandomizedSearchCV and pass in the hyperparameters

rand_XGBoost = RandomizedSearchCV(xgboostl, params_xgboost, scoring = 'fl', cv = cv, n_jobs=-1, verbose=1, random_state

Fit the model on the train set
rand_XGBoost.fit(X_balanced_train, y balanced_train)

Fitting 3 folds for each of 10 candidates, totalling 30 fits

Figure 45: XGBoost Hyperparameter Optimisation using RandomizedSearchCV

Print the best hyperparameters that maximize scoring
print(rand_XGBoost.best_params_)

{'subsample': 0.75, 'n_estimators': 500, 'min_child weight': 1, 'max _depth': 6, 'learning rate': 0.3, 'gamma': 0.2,
'colsample_bytree': 0.5}

XGBoost_best = rand_ XGBoost.best_estimator_
print (XGBoost_best) # Best tuned model

XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=0.5, gamma=0.2, gpu_id=-1,
importance_type='gain', interaction_constraints='",
learning_rate=0.3, max_delta_step=0, max_depth=6,
min_child weight=1, missing=nan, monotone_constraints='()',
n_estimators=500, n_jobs=-1, num parallel tree=1, random state=42,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.75,
tree_method='exact', validate_parameters=1, verbosity=1)

Figure 46: Optimised Hyperparameters for XGBoost

12.4 LightGBM

The Light GBM model was first computed with the default hyperparameters as seen in
Figure @ Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure . The optimised
Light GBM model outperformed the model with default hyperparameters; hence, the
Light GBM model was built with the optimised hyperparameters as seen in Figure [49]

21

Define the LightGBM model
Lgbm = LGBMClassifier(random state = 42, n_jobs = -1, verbosity = 1)

Fit the model on the train set
Lgbm.fit (X balanced_train, y balanced train)

Figure 47: Light GBM Model with Default Hyperparameters

HYPERPARAMETER SEARCH
create a dictionary with the list of hyperparameters

params_lgbm = {
'n_estimators': [100, 300, 500, 1000],
'learning_rate': [0.05, 0.08, 0.1, 0.2],
'max_depth': [4, 5, 6, 7],
'num_leaves': sp_randint (500, 5000),
'min_data_in_leaf': sp_randint(500, 3500),
'max_bin': sp_randint(50, 2000),
'subsample': [0.5, 0.75, 1],
'colsample_bytree': [0.5, 0.75, 1],
}

Due to the large size of the training set I will use 3-fold cross validations (3-fold CV)
cv = StratifiedKFold(n_splits = 3, shuffle=True, random state = 42)

Define the base LightGBM model
Lgbml = LGBMClassifier(random state = 42, n_jobs = -1, verbosity = 1) #random state is to get same results in every rur

APPLY RANDOMIZED SEARCH
Instantiate RandomizedSearchCV and pass in the hyperparameters

rand_lgbm = RandomizedSearchCV(Lgbml, params_lgbm , scoring = 'fl1', cv = cv, n_jobs=-1, verbose=1, random state = 42)

Fit the model on the train set
rand_lgbm.fit(X balanced_train, y_balanced train)

Fitting 3 folds for each of 10 candidates, totalling 30 fits

Figure 48: Light GBM Hyperparameter Optimisation using RandomizedSearchCV

Print the best hyperparameters that maximize scoring
print(rand_lgbm.best_params_)

{'colsample bytree': 1, 'learning rate': 0.2, 'max _bin': 910, 'max depth': 6, 'min data_in leaf': 1630, 'n_estimator
s': 1000, 'num_leaves': 4272, 'subsample': 0.5}

LGBM best = rand lgbm.best estimator
print (LGBM best) # Best tuned model

LGBMClassifier(colsample bytree=1, learning rate=0.2, max bin=910, max depth=6,
min_data_in leaf=1630, n_estimators=1000, num leaves=4272,
random state=42, subsample=0.5, verbosity=1)

Figure 49: Optimised Hyperparameters for Light GBM

12.5 CatBoost

The CatBoost model was first computed with the default hyperparameters as seen in
Figure Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure The optimi-
sed CatBoost model outperformed the model with default hyperparameters; hence, the

CatBoost model was built with the optimised hyperparameters as seen in Figure

22

Define the CatBoost model
CatBoost = ctb.CatBoostClassifier(random_state = 42)

Fit the model on the train set
CatBoost.fit(X_balanced train, y balanced_train)

Figure 50: CatBoost Model with Default Hyperparameters

HYPERPARAMETER SEARCH
create a dictionary with the list of hyperparameters
params_catboost = {
'iterations': [500, 850, 1000, 1500, 2000],
'learning_rate': [0.03, 0.05, 0.08, 0.1, 0.3],
'depth': [4, 5, 6, 71,
'12_leaf reg': [l1.0, 3.0, 5.0, 8.0],
}

Due to the large size of the training set I will use 3-fold cross validations (3-fold CV)
cv = StratifiedKFold(n_splits = 3, shuffle=True, random state = 42)

Define the base CatBoost model
CatBoostl = ctb.CatBoostClassifier(random state = 42) #random state is to get same results in every run

APPLY RANDOMIZED SEARCH
Instantiate RandomizedSearchCV and pass in the hyperparameters

rand_catboost = RandomizedSearchCV(CatBoostl, params_catboost , scoring = 'fl1', cv = c¢v, n_jobs=-1, verbose=l, random s

Fit the model on the train set
rand_catboost.fit(X_balanced_train, y balanced_train)

Figure 51: CatBoost Hyperparameter Optimisation using RandomizedSearchCV

Print the best hyperparameters that maximize scoring
print(rand catboost.best params)

{'learning rate': 0.3, 'l2_leaf reg': 1.0, 'iterations': 2000, 'depth': 4}
CatBoost_best = rand catboost.best _estimator
print (CatBoost_best) # Best tuned model

<catboost.core.CatBoostClassifier object at 0x7f£9da384c9d0>

Figure 52: Optimised Hyperparameters for CatBoost

13 Model Evaluation

The models were evaluated on the test set. Figure shows how the predictions were
made by testing the Light GBM model on the test data. Same code can be reused for
the different models. The evaluation metrics that were used to evaluate each classifier
are : Recall, Precision, F1-Score, Matthews Correlation Coefficient (MCC), G-Mean and
Area Under the Precision-Recall Curve (AUC -PR); and they were computed using the
Sklearn and Imbalanced-learn packages.

This section provides the code used to evaluate the Light GBM model as a sample
code, and same code can be reused for the rest of models. Figure |54] shows the sample

23

MAKE PREDICTIONS USING THE BEST TUNED MODEL ON THE TEST DATA

Make predictions with 'LGBM best' using the test data
y_LGBM best_pred = LGBM_best.predict(X_ test)

(predict the labels using the test set)

LGBM best_predictions = [round(value) for value in y_LGBM best pred]

Figure 53: Predictions of the Light GBM model on the test data

code for the Classification Report. Figure shows the Confusion Matrix. Figure
shows the AUC. Figure [57] shows the Precision-Recall curve.

Evaluate the predictions of the

'LightGBM best' classifier
print("Classification Report of the Tuned LightGBM classifier: \n", classification_report(y_test, y_LGBM best_pred))

Classification Report of the Tuned LightGBM classifier:

accuracy
macro avg
weighted avg

precision

recall

fl-score

1

1.
0.

1

.00
0.

70

00
85

.00

support

552824
2895

555719
555719
555719

Figure 54: Classification Report

plot_confusion_matrix(LGBM_best, X_test, y_test)

<sklearn.metrics. plot.confusion matrix.ConfusionMatrixDisplay at 0x7f9e30a0c0do0>

True label

Predicted label

i

500000

400000

300000

200000

100000

Figure 55: Confusion Matrix

24

calculate the precision-recall AUC

precision, recall, thresholds = precision_recall_curve(y_test, y LGBM best_pred)
auc_score = auc(recall, precision)

print('AUC-PR: ', auc_score)

AUC-PR: 0.7304732002434645

Figure 56: AUC

Plot the Precision-Recall curve

yhat = Lgbm.predict_proba(X_test)
yhat = yhat[:,1]
precision, recall, thresholds = precision_recall curve(y_test, yhat)

Plot the Precision-Recall (PR) Curve for the model

no_skill = len(y_test[y test==1]) / len(y_test)

pyplot.plot([0,1], [no_skill,no_skill], linestyle='--', label='No Skill')

pyplot.plot(recall, precision, marker='.', label="Tuned LGBM AUC_PR = {:0.2f}".format(auc_score), lw = 3, alpha = 0.7)
axis labels

pyplot.xlabel('Recall')

pyplot.ylabel('Precision')

pyplot.legend()

show the plot

pyplot.show()

10

08

°
o

=== No Skil
Tuned LGBM AUC PR = 0.73

Precision

°
=

Recall

Figure 57: AUC-PR curve

Figure [58 shows the code used to compute the metrics for evaluating the performance
of the classifiers. Figure 59| shows the code used to compute the most important credit
card fraud predictors for the classifiers. The sample code provided is for the Light GBM
model but same code can be reused for the different models.

recall = recall score(y_test, y LGBM best pred)
print('Recall: %.2f' % recall)

precision = precision_score(y_test, y LGBM best_pred)
print('Precision: %.2f' % precision)

F_Score = fl_score(y_test, y LGBM best_pred)
print('Fl-Score: %.2f' % F_Score)

MCC = matthews_corrcoef(y_test,y LGBM best_pred) # Matthews Correlation Coefficient
print('MCC: $.2f' % MCC)

G_Mean = geometric_mean_score(y_test, y_LGBM best_ pred, average='weighted') # Geometric Mean
print('G-Mean: %.2f' % G_Mean)

precision, recall, _ = precision recall curve(y_test, y LGBM best pred)

auc_score = auc(recall, precision) # Area Under the PR Curve
print('AUC-PR: %.2f' % auc_score)

Recall: 0.89
Precision: 0.57
Fl-Score: 0.70
MCC: 0.71
G-Mean: 0.94
AUC-PR: 0.73

Figure 58: Evaluation Metrics

25

importances_lgbm = LGBM_best.feature_importances_

Sort the feature importance in descending order
sorted_indices = np.argsort(importances_lgbm)[::-1]

plt.title('Tuned LightGBM Feature Importance')
plt.bar(range(X_train_sampled.shape[1l]), importances_lgbm[sorted_indices], align='center')
plt.xticks(range(X_train_sampled.shape[l]), X train sampled.columns[sorted indices], rotation=90)
plt.tight_layout()

plt.show()

Tuned LightGBM Feature Importance

amt
category

hourEncoded

day of week

time_since_last_trans

last_7 days_trans_count

last_14 days trans_count
last_ 60 _days trans_count
last_30_days_trans_count

Figure 59: Variable Importance

14 Conclusion

This report outlines the different steps involved in the ’Credit Card Fraud Detection
using Ensemble Learning Algorithms’ research project. Python was the software used to
analyse the data and to create the models. Tableau was also used to create some visuali-
sations; however, this document only focuses on the analysis and modelling aspects of
the project. It was found that Light GBM and XGBoost were the best performing models
followed by CatBoost; hence, it was concluded that boosting algorithms outperformed
bagging algorithms in credit card fraud detection. It was also found that the volume of
transactions over the last 7 days, the time since last transaction, the time of the day, the
transaction amount and category are the most important variables for predicting credit

card fraud.

26

	Introduction
	System Configuration
	Software and Tools
	Python Packages
	Data Collection
	Data Loading
	Data Preprocessing
	Exploratory Data Analysis
	Feature Engineering
	Create the variable 'age' at the time of the transaction
	Create the variable 'transaction-hour'
	Create the variable 'day-of-week'
	Create the variable 'month of transaction'
	Create the variable 'time since last transaction'
	Generate Frequencies of Transactions made in the last 1/ 7 / 14 / 30 / 60 days

	Feature Selection
	Feature Selection for Continuous Variables
	Feature Selection for Categorical Variables

	Data Preparation for Modelling
	Split the Dataset into Train and Test Set
	Categorical Encoding
	Dealing with the Class Imbalance : Balance the Train set

	Model Implementation
	Random Forest
	Bagging
	XGBoost
	LightGBM
	CatBoost

	Model Evaluation
	Conclusion

