
Configuration Manual

MSc Research Project

Data Analytics

Eva Figuerola Ullastres
Student ID: x19209371

School of Computing

National College of Ireland

Supervisor: Majid Latifi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Eva Figuerola Ullastres

Student ID: x19209371

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Majid Latifi

Submission Due Date: 30/05/2022

Project Title: Configuration Manual

Word Count: 2439

Page Count: 26

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th May 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Eva Figuerola Ullastres
x19209371

1 Introduction

This configuration manual provides information on the system configuration, software,
tools and environment requirements in order to conduct the research project in ’Credit
Card Fraud Detection using Ensemble Learning Algorithms’. The purpose of creating
this document is to demonstrate how the project’s technical work was implemented so
that it can be replicated if necessary. The goal of the project was to build an ensemble
classifier that can accurately detect credit card fraud. In order to achieve the project’s
goal, a methodology was proposed and followed.

2 System Configuration

This research project was conducted using a MacBook Pro with the following configura-
tion:

• Processor: 2.4 GHz Quad-Core Intel Core i5

• Hard Disk Storage: 251 GB

• Memory: 8 GB 2133 MHz LPDDR3

• Operating System: macOS Monterey Version 12.1

3 Software and Tools

This project was implemented using Python programming language with Jupyter Note-
book as Integrated Development Environment (IDE) on the Anaconda platform. The
specific versions of the required software/tools are listed below:

• Programming Language 1 : Python 3.7.4

• IDE: Jupyter Notebook 6.0.1

• Platform 2: Anaconda 2019.10

• Tools 3: Microsoft Excel, Tableau Desktop 2021.3

• Web Browser: Google Chrome
1https://www.python.org/downloads/
2https://anaconda.org/anaconda/anaconda
3https://www.tableau.com/products/desktop/download

1

https://www.python.org/downloads/
https://anaconda.org/anaconda/anaconda
https://www.tableau.com/products/desktop/download

4 Python Packages

The Python packages (libraries) required in this project include: Pandas, NumPy, Seaborn,
SciPy, Sklearn (also known as Scikit-Learn), Imbalanced-learn and Matplotlib . They
were imported as shown in Figure 1 and Figure 2, using the pip install command if
necessary.

Figure 1: Python Packages

2

Figure 2: Python Packages (continuation)

5 Data Collection

The dataset used in this research was downloaded from the kaggle repository https://

www.kaggle.com/datasets/kartik2112/fraud-detection. See Figure 3. The dataset
contains two files in a CSV format. The files were stored on the computer hard drive.

6 Data Loading

The csv files fraudTrain.csv and fraudTest.csv were converted to a Pandas Dataframe
format for analysis, and the two files were then concatenated in order to get a better

3

https://www.kaggle.com/datasets/kartik2112/fraud-detection
https://www.kaggle.com/datasets/kartik2112/fraud-detection

Figure 3: Credit Card Fraud Dataset

insight from the data. The dataset was loaded in Python Jupyter Notebook as seen in
Figure 4.

Figure 4: Data Loading

7 Data Preprocessing

The below data transformation and data cleaning tasks were conducted as part of the
data preprocessing step. Pandas and NumPy packages were used in this step:

• Check the structure of the Pandas DataFrame. See Figure 5

• Change the datatype of the target variable ’is_fraud’ to category.
Change the datatype of the variables ’gender’ and ’category’ to category.
Change the datatype of the variables ’dob’ and ’trans-date-trans-time’ to datetime.
Convert the variables ’cc-num’, and ’zip’ to strings as they are not integers; they
are both nominal variables whose values are represented by numbers. See Figure 6

• Remove the column ’Unnamed: 0’ as it is totally irrelevant. Remove variables that
have almost unique values. See Figure 7

• Check for missing values and duplicates. See Figure 8

• Check the cardinality (number of unique values) for the categorical variables. See
Figure 9

4

Figure 5: Structure of the Pandas DataFrame

Figure 6: Data Transformation

Figure 7: Data Cleaning

5

Figure 8: Checking for Missing values and Duplicates

Figure 9: Number of Unique values (for the categorical variables this is the cardinality)

8 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was performed in order to get an general understanding
of the data and its underlying structure. Pandas, NumPy and Seaborn packages were
used in this step. The below tasks were performed as part of the EDA process:

• EDA for the target variable ’is-fraud’. A bar plot was created to see the class
distribution of the target variable. As seen in Figure 10 and Figure 11, the dataset
is heavily imbalanced.

• Bar plots for the rest of categorical variables. Figure 12 shows the bar plot for the
variable ’category’. Same code can be reused for the rest of categorical variables.

• Descriptive statistics (Figure 13) and histograms for the continuous variables.

6

Figure 10: Occurrences of Legitimate and Fraudulent Transactions

Figure 11: Volume of Legitimate and Fraudulent Transactions

From looking at the descriptive statistics for the ’amount’ variable shown in Figure 13,
it is observed that the average amount for a fraudulent transaction is $530.66 in com-
parison with the average amount for a legitimate transaction which is $67.65. This
demonstrates that despite fraudulent transactions being infrequent, not detecting them
can result significant financial losses.

7

Figure 12: Volume of Legitimate and Fraudulent Transactions by Category

Figure 13: Descriptive Statistics for the Variable Amount

8

9 Feature Engineering

Feature engineering was performed to derive more informative features. Pandas, NumPy,
SciPy and Seaborn packages were used in this step.

9.1 Create the variable ’age’ at the time of the transaction

Since the variable ’dob’ does not bring much information in its raw format, the variable
’age’ was derived, which is more meaningful. The variable ’age’ is computed by subtract-
ing the date of birth (’dob’) from the transaction date (’trans-date-trans-time) as seen in
Figure 14.

Figure 14: Age at the Time of the Transaction

9.2 Create the variable ’transaction-hour’

The time of the transaction may be an important predictor of credit card fraud. However,
the variable ’trans-date-trans-time’ is not very informative in its raw format; hence the
reason to split this variable into three different variables: transaction hour, day of the
week and month. Figure 15 shows how the variable ’transaction-hour’ is computed from
the variable ’trans-date-trans-time’. Figure 16 shows how the variable ’transaction-hour’
for fraudulent transactions is computed.

Figure 15: Transaction Hour

Figure 16: Transaction Hour for Fraudulent Transactions

Figure 17 shows the volume of fraudulent transactions by hour. It was observed
that most of the fraudulent transactions occur between 10pm and 12am. The variable
’transaction-hour’ seems to have some association with the ’class’ of the transaction
since the majority of fraudulent transactions occur at night time. The ’transaction-hour’
variable was encoded as seen in Figure 18.

9

Figure 17: Volume of Fraudulent Transactions by Hour

Figure 18: Hour Encoded

9.3 Create the variable ’day-of-week’

The variable ’day of the week’ is derived from the variable ’trans-date-trans-time’ as seen
in Figure 19.

Figure 19: Day of the Week

9.4 Create the variable ’month of transaction’

The variable ’month of transaction’ is derived from the variable ’trans-date-trans-time’
as seen in Figure 20.

Figure 20: Month of Transaction

10

9.5 Create the variable ’time since last transaction’

The variable ’time since last transaction’ (in seconds) is derived from the variable ’trans-
date-trans-time’ as seen in Figure 21.

Figure 21: Time since last transaction (in seconds)

9.6 Generate Frequencies of Transactions made in the last 1/ 7
/ 14 / 30 / 60 days

The frequency of transactions could be an important predictor of credit card fraud, be-
cause if the number of transactions made using the same card suddenly increases, it could
be a sign of a fraudulent transaction. Figure 22 shows how the number of transactions
made over the last 7 days is computed. Same code can be reused to compute frequencies
over the last day, 14, 30, 60 days, etc.

Figure 22: Last 7 days Transaction Count

After conducting feature engineering, the variables ’dob’ and ’trans-date-trans-time’
were removed since new variables were derived from them and they became redundant.

11

The variable ’trans-num’ was also removed as it is a transaction identifier and is not
relevant for modelling. See Figure 23.

Figure 23: Removing redundant and irrelevant variables

10 Feature Selection

Feature selection was conducted to improve the predictive performance and reduce over-
fitting and the training time of the classifiers. Since the dataset used in this research
contains a mix of continuous and categorical features, different statistical tests were con-
ducted to determine the most relevant features for modelling. The Sklearn and SciPy
packages were used in this step.

10.1 Feature Selection for Continuous Variables

A correlation plot was computed to visualise the correlation between the continuous
predictors and the target variable (’class of transaction’). From looking at the correlation
plot in Figure 24 it is observed that the variable ’amount’ has the strongest relationship
with the class of transaction (’is_fraud’).

The univariate feature selection method SelectKBest from sklearn.feature_selection,
which uses ANOVA F-values to compute the feature importance scores, was used to se-
lect the most important features. The 8 most informative features to predict the class of
transaction were selected. See F-test in Figure 25 and the selected features in Figure 26.

12

Figure 24: Correlation Matrix

Figure 25: Anova F- Test for Feature Selection

Figure 26: Selected Features after conducting Anova F-test

13

10.2 Feature Selection for Categorical Variables

Chi-Square test was conducted to determine whether there is an association between each
of the categorical features and the target variable (’is_fraud’). The SciPy package was
used to perform Chi-Square test. See Figure 27. Cramer’s V test was performed to
quantify the strength of the association between each of the categorical features and the
’class of transaction’. Figure 28 shows how Cramer’s V test was computed using the
research.py package.

Figure 27: Chi-Square Test

Figure 28: Cramer’s V Test

From looking at Figure 27 it is observed that all the categorical predictors are associa-
ted with the ’class’ of transaction. However, according Cramer’s V test, the association
of the categorical predictors with the ’class’ of transaction is weak/very weak. But this
does not mean that they are not important. Cramer’s V coefficient only measures the
’effect’ size; however, it needs to be considered that when having a large sample size,
small effects can become significant4.

4https://www.datascienceblog.net/post/statistical_test/effect_size/

14

https://www.datascienceblog.net/post/statistical_test/effect_size/

For feature selection purposes, a Post-Hoc Test was conducted after Chi-Square test
in order to decide whether to select a particular categorical predictor for modelling. Since
Chi-Square tests the data as a whole, when having multiple classes within a categorical
variable, we can not tell which class/es are responsible for the relationship between the
categorical predictor and the target variable. This is why it was decided to conduct a Post-
Hoc test using Bonferroni Adjustment. Only those predictors that all their categories have
a significant relationship with the target variable ’is_fraud’ were selected for modelling.
A Bonferroni test was computed for each categorical predictor. Figure 29 and Figure 30
show how the Bonferroni test was computed; same code can be reused for the different
variables. Among all the categorical predictors, only the predictors ’category’ and ’day
of the week’ were selected for modelling. The selected features for modelling are shown
in Figure 31.

Figure 29: Bonferroni Correction Post-Hoc Test

Figure 30: Bonferroni Correction Post-Hoc Test (continuation)

15

Figure 31: Selected Features for Modelling

11 Data Preparation for Modelling

In order to prepare the data for modelling , the following tasks were performed using the
Sklearn and Imbalanced-learn packages:

• Split the dataset into Train and Test set

• Categorical Encoding

• Balance the Train set

11.1 Split the Dataset into Train and Test Set

The dataset was split in the 70:30 ratio; that is, 70% train and 30% test, using the
train_test_split function from sklearn. Because the dataset is extremely imbalanced,
stratified splitting was applied in order to preserve the class proportions observed in the
original dataset. See Figure 32

Figure 32: Train Test Split

11.2 Categorical Encoding

Since most machine learning algorithms do not take categorical variables as input, cate-
gorical variables need to be encoded before creating the models. Also, in order to apply

16

sampling techniques on the training set to balance the class distribution, all the variables
need to be converted to numerical. The dataset used for modelling contains two cate-
gorical variables : ’category’ and ’day-of-week’. To convert them to numerical, CatBoost
encoder was used. The reason why CatBoost encoder was the chosen technique is because
it avoids target leakage and hence prevents the risk of overfitting and poor generalisation
of the model. CatBoost encoding needs to be performed separately on the train and test
set. See Figure 33

Figure 33: CatBoost Encoder

11.3 Dealing with the Class Imbalance : Balance the Train set

Since the dataset is highly imbalanced, in order to avoid bias towards the majority class
in the models, the class imbalance was reduced on the training set before building the
classifiers. The imblearn package was used. Only the training data was balanced, as it is
used to build the models. The test data does not have to be balanced, as the purpose of
the test data is to simulate the results of the model in a ’real-world’ setting, and in real
life all the credit card fraud datasets are highly imbalanced.

A hybrid sampling approach of RUS (Random Undersampling) and Borderline-SMOTE
was used to reduce the class imbalance on the train set. The large size of the train set
(1,296,675 observations) would make training the models computationally expensive. In
order to reduce the training time of the models, the train set was first undersampled (RUS)
and then oversampled (Borderline SMOTE). The sampling parameters were manually ad-
justed in a way that the majority class was reduced to 20 times the size of the minority
class (sampling strategy= 0.05), and the minority class was 90% of the size of the majority
class (sampling strategy = 0.9). See Figure 34, Figure 35 and Figure 36.

Figure 34: Define the Resampling Pipeline

17

Figure 35: Resample the Train Set

Figure 36: Class Distribution of the Train Set Before and After Resampling

12 Model Implementation

The models (classifiers) were implemented on the train set shown in Figure 37. The
Sklearn package was used to train the different models.

Figure 37: Balanced Train Set

12.1 Random Forest

The RF model was first computed with the default hyperparameters as seen in Figure 38.
Randomized search 3-fold cross validation (CV) was then computed to get the optimised
parameters using the function RandomizedSearchCV() as seen in Figure 39 and Figure 40.
It was found that the RF with default hyperparameters achieved a better performance
than the RF with optimised hyperparameters. Hence, the RF was built with the default
hyperparameters.

18

Figure 38: RF Model with Default Hyperparameters

Figure 39: RF Hyperparameter Optimisation using RandomizedSearchCV

Figure 40: Optimised Hyperparameters for RF

12.2 Bagging

The Bagging model was first computed with the default hyperparameters as seen in
Figure 41. Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure 42. The optimi-
sed Bagging model outperformed the model with default hyperparameters; hence, the
Bagging model was built with the optimised hyperparameters as seen in Figure 43.

19

Figure 41: Bagging Model with Default Hyperparameters

Figure 42: Bagging Hyperparameter Optimisation using RandomizedSearchCV

Figure 43: Optimised Hyperparameters for Bagging

12.3 XGBoost

The XGBoost model was first computed with the default hyperparameters as seen in
Figure 44. Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure 45. The optimi-
sed XGBoost model outperformed the model with default hyperparameters; hence, the
XGBoost model was built with the optimised hyperparameters as seen in Figure 46.

20

Figure 44: XGBoost Model with Default Hyperparameters

Figure 45: XGBoost Hyperparameter Optimisation using RandomizedSearchCV

Figure 46: Optimised Hyperparameters for XGBoost

12.4 LightGBM

The LightGBM model was first computed with the default hyperparameters as seen in
Figure 47. Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure 48. The optimised
LightGBM model outperformed the model with default hyperparameters; hence, the
LightGBM model was built with the optimised hyperparameters as seen in Figure 49.

21

Figure 47: LightGBM Model with Default Hyperparameters

Figure 48: LightGBM Hyperparameter Optimisation using RandomizedSearchCV

Figure 49: Optimised Hyperparameters for LightGBM

12.5 CatBoost

The CatBoost model was first computed with the default hyperparameters as seen in
Figure 50. Randomized search 3-fold cross validation (CV) was then computed to get the
optimised parameters using RandomizedSearchCV() as seen in Figure 51. The optimi-
sed CatBoost model outperformed the model with default hyperparameters; hence, the
CatBoost model was built with the optimised hyperparameters as seen in Figure 52.

22

Figure 50: CatBoost Model with Default Hyperparameters

Figure 51: CatBoost Hyperparameter Optimisation using RandomizedSearchCV

Figure 52: Optimised Hyperparameters for CatBoost

13 Model Evaluation

The models were evaluated on the test set. Figure 53 shows how the predictions were
made by testing the LightGBM model on the test data. Same code can be reused for
the different models. The evaluation metrics that were used to evaluate each classifier
are : Recall, Precision, F1-Score, Matthews Correlation Coefficient (MCC), G-Mean and
Area Under the Precision-Recall Curve (AUC -PR); and they were computed using the
Sklearn and Imbalanced-learn packages.

This section provides the code used to evaluate the LightGBM model as a sample
code, and same code can be reused for the rest of models. Figure 54 shows the sample

23

Figure 53: Predictions of the LightGBM model on the test data

code for the Classification Report. Figure 55 shows the Confusion Matrix. Figure 56
shows the AUC. Figure 57 shows the Precision-Recall curve.

Figure 54: Classification Report

Figure 55: Confusion Matrix

24

Figure 56: AUC

Figure 57: AUC-PR curve

Figure 58 shows the code used to compute the metrics for evaluating the performance
of the classifiers. Figure 59 shows the code used to compute the most important credit
card fraud predictors for the classifiers. The sample code provided is for the LightGBM
model but same code can be reused for the different models.

Figure 58: Evaluation Metrics

25

Figure 59: Variable Importance

14 Conclusion

This report outlines the different steps involved in the ’Credit Card Fraud Detection
using Ensemble Learning Algorithms’ research project. Python was the software used to
analyse the data and to create the models. Tableau was also used to create some visuali-
sations; however, this document only focuses on the analysis and modelling aspects of
the project. It was found that LightGBM and XGBoost were the best performing models
followed by CatBoost; hence, it was concluded that boosting algorithms outperformed
bagging algorithms in credit card fraud detection. It was also found that the volume of
transactions over the last 7 days, the time since last transaction, the time of the day, the
transaction amount and category are the most important variables for predicting credit
card fraud.

26

	Introduction
	System Configuration
	Software and Tools
	Python Packages
	Data Collection
	Data Loading
	Data Preprocessing
	Exploratory Data Analysis
	Feature Engineering
	Create the variable 'age' at the time of the transaction
	Create the variable 'transaction-hour'
	Create the variable 'day-of-week'
	Create the variable 'month of transaction'
	Create the variable 'time since last transaction'
	Generate Frequencies of Transactions made in the last 1/ 7 / 14 / 30 / 60 days

	Feature Selection
	Feature Selection for Continuous Variables
	Feature Selection for Categorical Variables

	Data Preparation for Modelling
	Split the Dataset into Train and Test Set
	Categorical Encoding
	Dealing with the Class Imbalance : Balance the Train set

	Model Implementation
	Random Forest
	Bagging
	XGBoost
	LightGBM
	CatBoost

	Model Evaluation
	Conclusion

