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1 Introduction

This configuration manual describes in detail the steps required to replicate the experi-
ments undertaken to fulfill the research titled ”A Classification Approach to Identifying
Female Victims of Intimate Partner Violence in Europe and the US.” This manual doc-
uments the software and tools required, and where appropriate, how to implement these
tools. While popular packages were used, the code was highly customised through the
creation of functions that were used throughout the research to produce outputs that
facilitated analysis.

2 Hardware Overview

All research was carried out on a 2020 MacBook Air using Mac OS Monterey Version
12.5 operating system, with one 1.1 GHz Quad-Core Intel Core i5 processor, four cores
with 6 MB of L3 Cache, 8 GB of RAM, 500 GB of storage and Intel Iris Plus Graphics
1536 MB GPU.

3 Environment

All experiments were undertaken in the Python programming language. These were
completed by creating and running an ipynb file in Google Colab. Google Colab was
chosen as the environment for running the experiments due to the cloud based nature
of the platform, the option to use a GPU hardware accelerator and the fact that most
Python packages did not need to be installed to a local drive. Given the large file sizes
and large memory and disc space requirements, this environment was preferable. All code
required to complete the experiments were written in an ipynb file, which was saved to a
Google Drive account. An account is required to access both Google Drive and Colab.

4 Implementation

This section describes in detail the implementation of the code required to complete the
experiments and produce the results in the accompanying Research Project. The most
important pieces of code for replication is described through the use of screenshots of
code, inputs and outputs
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4.1 Establishment of Environment

A number of packages are required to complete research. These are imported at the
beginning of each session (Figure 1). The pandas, numpy, scikit-learn, tensorflow and
plotly packages are the most commonly used and heavily relied on packages for data
manipulation, cleansing, transformation, modelling and graphing. Following this, the
functions that are used throughout the research are loaded (Figure 2). This cell that is
loaded at the beginning of each session contains 22 functions that are repeatedly called
throughout the research. This allowed for quick manipulation of the code. For example,
if a change was made to the code that determined the outputs of each model, the change
was easily made for all models. Once the required packages and functions are loaded, the
data can be imported for manipulation and testing.

Figure 1: The packages required to complete the research.

Figure 2: An example of the functions that are called throughout the research.

4.2 Data Manipulation

All practical experiments are carried out in two parts. All data are uploaded and the
European data, or European Union Agency for Fundamental Rights (FRA)1 dataset, is
explored, cleansed, transformed and modelled first. The same process is followed for
the USA data, or National Crime Victimisation Survey (NCVS)2 dataset, following this.
To save memory, only the variables identified as of interest prior to implementation are

1https://bit.ly/3sVmbeg
2https://bit.ly/3t5B8u7
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uploaded. To upload the data, the FRA and NCVS datasets in TAB and TSV formats
respectively, are zipped and added to Google Drive (Figure 3). To replicate this research
without changing the directory, it is recommended that the zipped file be added to the
Google Drive homepage, “My Drive,” highlighted in red in Figure 3, and not to any
subsequent folders. The data are then imported into Google Colab by mounting the
session to Google Drive and unzipping the files (Figure 4). Following this, cleansing can
begin. The variables are renamed to a descriptor to enable intuitive analysis (Figure
5). Redundant values such as “Refused” and “No answer” are replaced with nulls. The
number of complete cases are output (Figure 6). Data are further manipulated and
variables with a high number of null values are removed until an acceptable number of
complete cases remain for modelling. The rows where nulls exist are removed, and the
target variable is created by concatenating existing columns such as physical and sexual
violence and the percentage that IPV makes up of the target variable is output (Figure
7).

Figure 3: The zipped data files uploaded to Google Drive.

Following cleansing, the data are explored. Functions that output skewness, kurtosis,
a histogram describing the distribution of numerical variables and a correlation plot are
called. The final step before transformation is to rename the values of each variable
to descriptors as these will later become the feature names following encoding (Figure
8). Some values are also consolidated in this step, for better analysis and to reduce
the number of small categories. For transformation to begin, the data are split into
training and test sets first to avoid data leakage3. These subsets are passed to a function
that transforms the data by ordinal or one hot encoding, or normalisation dependent
on the data type4. SMOTE Tomek is also applied to training sets only to solve class
imbalance within the target variable (Figure 9). Finally, the test sets are label encoded
and four transformed subsets are output for modelling. The function that completes this
transformation is shown in Figure 10.

3https://machinelearningmastery.com/data-preparation-without-data-leakage/
4https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/
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Figure 4: The mounting process of Google Drive to Colab to unzip and upload the data.

Figure 5: The variables for each dataset are renamed from their codes.

Figure 6: Redundant values such as “No answer” are replaced with nulls and the number
of complete cases is output.
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Figure 7: The final step in cleansing, when rows where nulls exist are removed, the target
variable is created and the percentage that IPV makes of the target variable is printed.

Figure 8: An example of the values for each variable being renamed to be used as feature
names following later encoding.
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Figure 9: The data are split into train and test sets, and the variables are passed to a
function that transforms the data by ordinal or one hot encoding or normalisation, and
applies SMOTE Tomek to training sets only.

Figure 10: An example of the functions that transform the data ready for modelling.
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4.3 Modelling

Following cleansing and transformation, modelling begins. Functions were created for
each of the nine models so that modelling for each dataset could be easily completed
with the ability to manipulate the inputs of each for optimisation (Figure 11). The func-
tion could then be called for either dataset with different specified parameters, and the
same output would be produced each time (Figure 12). A function was also created
that could be called within each model function to output the same metrics for each so
performance could be easily compared (Figure 13). This function produces Accuracy,
AUC and F1 score, along with a confusion matrix, by a number of methods, such as
through scikit-learn functions, normal approximation, binomial proportion intervals and
bootstrapped confidence intervals5. This was to decide which method was most appro-
priate for reporting error. Ultimately, bootstrapped confidence intervals are reported but
these outputs are maintained to allow for comparisons (Pace, 2012). Each model function
allowed for different parameters to be input for optimisation, fit the model to the train-
ing sets and made predictions from an unseen test set (Figure 11). The metrics function
was then called to produce the output metrics by comparing the prediction set and un-
seen test target variable (Figure 11). Other models such as Random Forest, XGBoost,
multilayer perceptron and TabNet also produced other outputs such as permutation and
impurity based feature importance graphs, structure graphs, loss and accuracy graphs to
monitor for overfitting (Figure 14, Figure 15). The function built to model a multilayer
perceptron was created with the help of online tutorials6. The TabNet model was built
with the aid of Arik and Pfister (2021).

The exact same process is followed to cleanse, transform and apply the same nine
models to the NCVS data and produce the same outputs as is described above. The
input parameters for each model are modified to optimise output. This is the main
reasoning behind creating functions and loading them at the beginning of the file, as
they are called multiple times throughout for either dataset.

Additional analysis was carried out on the FRA data to determine the rate of IPV by
country. This is mainly completed through the use of plotly (Figure 16).

Figure 11: The Näıve Bayes modelling function, an example of the function created for
each model.

5https://sebastianraschka.com/blog/2022/confidence-intervals-for-ml.html#method-4–confidence-
intervals-from-retraining-models-with-different-random-seeds

6https://www.section.io/engineering-education/build-ann-with-keras/; https://machinelearningmastery.com/neural-
networks-crash-course/
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Figure 12: The function called to model Näıve Bayes and the output produced.

Figure 13: An example of the function that defines the metrics output for each model.
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Figure 14: Additional impurity based feature importance barchart output when the XG-
Boost function is called.

Figure 15: Additional graphs describing the structure of the neural network and the loss
on the test set output when the multilayer perceptron function is called.

Figure 16: Additional analysis of the FRA data using the plotly graphing package.
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4.4 Error Analysis

The final analysis undertaken is error analysis. One model, Random Forest, is called
repeatedly and passed either a randomly reduced number of features or training points
or an artificially inflated amount of FRA data. This is to determine how accuracy and
variance around the accuracy returned by a bootstrapped confidence interval changes. A
second Random Forest function was created, with a seed set so that variance could be
attributed to the changing amounts of data. Both features and data points in the training
sets are randomly reduced by a quarter, a half and three quarters using pandas functions
such as sample (Figure 17). Data points are inflated through random resampling with
replacement by double, triple and quadruple also using the pandas sample function.

Figure 17: An example of error analysis, where the FRA data is reduced by a quarter to
determine the effect on accuracy.

4.5 Overfitting

When model optimisation occurred, all models were tested to ensure overfitting did not
occur. For some models, this testing was left in the outputs produced by the final models,
such as multilayer perceptron and TabNet, seen in the graphs describing loss and accuracy
of the training and test sets over the number of epochs. For other models, additional
outputs were generated to determine whether the models were being overfit dependent
on the number of estimators being passed. To reduce overall runtime and output, these
were not maintained following optimisation. An example of this work can be found at
the bottom of the ipynb file, where a function applies random forest with an increasing
number of estimators and outputs the accuracies returned on the training and test sets
(Figure 18).

The final section in the ipynb file contains rough work, which includes pieces of code
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Figure 18: An example of how models are tested for overfitting during the optimisation
process.

that may have initially been used until a decision to change a part was made or until an
alternative method was found. The progress of the research and how the code evolved
can be visualised here.
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