===

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
MSc in Data Analytics

Purnima Duggal
Student ID: x20237928

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

‘——
\ National

College
MSc Project Submission Sheet Ireland

National College of Ireland

School of Computing

Student Name: Purnima Duggal

Student ID: 20237928

Programme: Data Analytics Year: 2022
Module: MSc. Research Project

Lecturer: Vladimir Milosavljevic

Submission Due

Date: 15-08-2022

Project Title: Predicting Credit Card Fraud Using Conditional Generative
Adversarial Network

Word Count 1385 Page Count 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Y L T 1= 1 o T -SSR
D PSPPI

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

O

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

O

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Purnima Duggal
x20237928

1 Introduction

This paper aims to present a comprehensive outline of all the steps involved in conducting the
research from setting up the environment to getting the results. We aim to improve the
prediction of credit card fraud by using CT-GAN to address the issue of class identification.
With the goal of addressing the class imbalance, we have used two approaches: SMOTE and
CT-GAN. After applying SMOTE and CT-GAN we performed two experiments using three
different classifiers namely: isolation forest, multilayer perceptron, and random forest.

2 System Specification

2.1 Hardware Specification

Table 1: Hardware Specifications

Operating
System Windows 10 Home
11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42
Processor GHz
RAM 8GB
System Type 64- bit Operating System, x64-based processor

2.2 Software Specification

We have used Google Collaboratory to conduct this research. Google Collab is a free coding
tool by Google and gives free access to the cloud platform. The code is written in Python
programming language having Version: Python 3.7.11

3 Environment Setup
The actions mentioned below must be followed in order to set up Google Collab:
1. Log into your Gmail account using your credentials.

2. Now, go to Google Drive from the Google Apps menu and upload the dataset
downloaded from Kaggle. This will take some time to upload.

3.

Once, the data is uploaded to google drive, now we will go to google Collaboratory,
where we will create a new notebook and also enable the GPU to run the code.l have
created a folder on Google Drive with name ‘thesis_dt’.

Now using the below code, we will import our dataset from google drive by mounting
the drive with google collab.

o

IMPORTING DATA

from google.colab import drive

drive.mount('/content/drive")

df = pd.read_csv("/content/drive/My Drive/Colab Noteboocks/thesis_dt/creditcard.csv™)

[» Mounted at /content/drive

Figure 1: Importing dataset from Google Drive

5. After this, a dialog box will appear where Google will request for access to Google Drive,
click on Allow.

4 Data Understanding

4.1 Dataset Setup

1.

2.

3.

Download the Credit Card Fraud dataset from the Kaggle repository as seen in Figure.
Q_ search
O MACHINE LEARNING GROUF - ULE - UPDATED 4 YEARS AGO - 9308 New Notebook @

Credit Card Fraud Detection

Anonymized credit card transactions labeled as fraudulent or genuine

Data Code (3702) Discussion (102) Metadata

About Dataset Usability ©
8.53

Context License
Database: Op: Database, Con

tis important that credit card companies are able 10 recognize fraudulent credit card transactions so that customers are not charged for items

purchas Expected update frequency

Mot specified

Content

Figure 2: Credit Card Fraud Dataset

Now we follow the steps mentioned in Section 3 for setting up the coding
environment.
We need to import the required libraries to be used in later sections.

import packages

import numpy as np

import pandas

import seaborn

import matplotlib.pyplot as plt

For GANs
from tensorflow import keras

for PCA
from sklearn.decomposition import PCA

For oversampling
from imblearn.over_sampling import SMOTE

for scaling
from sklearn.preprocessing import MaxAbsScaler

MLP model package

from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, classification_report

Isolation Forest and Random Forest packages
from sklearn.ensemble import IsolationForest, RandomForestClassifier

Figure 3:Importing the required libraries

4.2 Data Exploration

1. We began by looking at the dataset's sample size, the number of columns, and data
type of each column.

1 ° print('Sample size of dataset : ' + str(df.shape[@]))
print(Number of Columns present : ' + str(df.shape[1]))
for i in range(df.shape[1]) :

print(df.columns[i], end = " ")

sample size of dataset : 284807
Number of Columns present : 31
Time V1 V2 V3 V4 V5 V6 V7 VB VO Vi1e V11 V12 V13 V14 V15 V16 V17 V18 V19 V2@ V21 V22 V23 V24 V25 VW26 V27 V28 Amount Class

Figure 4: Dataset sample size and columns

sample size : 284887

<class 'pandas.core.frame.DataFrame’>
Inte4Index: 2843087 entries, @ to 284368
Data columns (total 31 columns):

Column MNon-Null Count Dtype

e Time 2848@7 non-null floatesd
1 vi 284867 non-null floatéd
2 w2 284807 non-null floatés4
3 w3 2848@7 non-null floates
4 v4 284867 non-null floatéd
5 V5 284887 non-null floaté4
& VB 284887 non-null floatéesd
7oov7 284807 non-null floatéd
3 va 284887 non-null floaté4
g Vg 284887 non-null floatéesd
18 vie 284807 non-null floatéd
1 vi1 284887 non-null floaté4
12 w12 284887 non-null floatéesd
13 V13 284887 non-null floated
14 vi4 284807 non-null floatés4
15 V15 284887 non-null floatéesd
16 V1B 2848@7 non-null floatesd
17 V17 284807 non-null floatés4
18 vis 284807 non-null floatés4
1% V19 2848@7 non-null floatesd
20 v2e 284807 non-null floatés4
21 w21 284807 non-null floatés4
22 w22 2848@7 non-null floates
23 v23 284867 non-null floatéd
24 vz24 284887 non-null floaté4
25 V25 2848@7 non-null floates
26 V26 284807 non-null floatéd
27 Va7 284887 non-null floaté4
28 v2s 284887 non-null floatéesd

2% Amount 284887 non-null floated
3@ Class 284807 non-null intg4
dtypes: floate4(3@), inte4(1)

memory usage: 69.5 MB

Figure 5: Data Type of each variable

2. Before proceeding, we looked for missing values in both rows and columns and
duplicate data.

DATA QUALITY CHECK

1.Check for NULL/MISSING values both in rows and columns

percentage of mi

round(18@ * (df.isnul

percentage of missing values 1n each row
round(108 (df.1snull().sun(axis=1)/1en(df)),2).sort_values(ascending=False)

] 0.0
180869 0.0
189875 0.0
189874 0.0
189873 0.0

ELEL I

94343 08
ghead 0
saess 0l
284806 0.0

Length: 284307, dtype: floated
Figure 6: Missing values

3. We found some duplicate values; these will be handled in data preparation stage.

Check for duplicates

duplicate = df[df.duplicated()]

duplicate
Time vi vz v3 V4 Vs V6 vi Vs Vo . v2i v22 V23 V24 V25 V26 V21 V28 Amount Class
33 260 -0529912 0873892 13 0145457 0414200 0100223 0711206 0176066 -0.286717 . 0046949 0208105 -0.185548 0001031 0098816 -0.552904 -0.073288 0.023307 614 0
35 260 -0535388 0865268 1351076 0147575 0433680 0086983 0693039 0179742 -0.285642 .. 0049526 0206537 -0.187108 0000753 0098117 -0553471 -0.078306 0025427 1770
13 740 1033370 0127486 0184456 1700950 0441690 0045283 -0.036715 0350995 0118950 .. 0102520 0605089 0023092 -0.626463 0479120 -0.166937 0.081247 0.001192 118 0
14 740 1038370 0127486 0184456 1109950 0441690 0945283 -0.036715 0350995 0118950 .. 0.102520 0605089 0023092 -0626463 0479120 -0166937 0081247 0.001192 18 0
15 740 1038370 0127486 0184456 1109950 0441690 0945283 -0.036715 0350895 0118850 . 0102520 0605089 0023092 -0626463 0479120 -0.166937 0081247 0001192 180
282087 1712880 1912550 -0455240 -1750652 0454324 2089130 4160019 -0.881302 1081750 1022928 .. -0524067 -1337510 0473043 0616683 -0283548 -1084843 0073133 0036020 1199 0
282482 1716270 1464330 1368119 0815000 -0601282 -0680115 0487154 0303778 0884053 0054065 .. 0287217 5 0213773 0082026 0044127 0620270 0213565 0.110351 682 0
283485 1716270 -1457978 1376203 0811515 -0603760 -0.711883 -O. 0282535 0880654 0052808 . 0284205 0949650 -0216940 0083250 0044944 0639933 0219432 0116772 1193 0
284191 1722330 -2667936 3.160505 1007845 -0377397 -0109730 -0667233 2309700 -1.639306 .. 0391483 0266536 -0.079853 -0096395 0086719 -0451128 -1.183743 -0222200 5566 O
284103 1722330 2601642 3123168 33 1017013 -0203005 0167054 -0745886 2325616 -1.634651 .. 0402630 0250746 -0.086606 -0.007507 0083603 0453584 -1205466 -0.213020 3674 0

Figure 7: Check for Duplicate Values

4. To understand the distribution of fraud and non-fraud transaction, we plot a pie chart.

492

284,315

Figure 8: Pie chart representing Class Distribution

250000

200000

S 150000
8

100000

50000

0 1

Figure 9: Count plot of dataset

5. We plot the graphs for the columns Time and Amount to observe the distribution of
dataset.

Distribution of Transaction Amount 1e-5 Distribution of Transaction Time

0.0030

00025

00020

Density

00015

0.0010

0.0005 &

0.0000
L]

T T T T T x
5000 10000 15000 20000 25000 L] 20000 40000 60000 80000 100000 120000 140000

Figure 10: Distribution of Transaction Amount and Time

4.3 Data Preparation

1. We will start by handling the duplicate values present in Section 4.2

#Removing duplicates from the dataset

#Making a copy of dataset in card_d
card_d=df.copy()
card_d.drop_duplicates(subset=None, inplace=True)

#Checking the size of card_d after removing duplicate values
card_d.shape

(283726, 31)

#Checking size of original dataset
df.shape

(234887, 31)

#Assigning value of card_d to original dataset
df=card_d

Figure 11: Handling Duplicate values

2. As the data is highly skewed so we have used two approaches to handle this:

I. SMOTE Technique

1. We have uses SMOTE technique where it chooses two samples, where one sample is
chosen from the minority class and one from KNN. We are using K_neighbours=5.

2. We have divided the data into tests and train to perform the SMOTE technique. We

applied SMOTE technique to the training dataset X_over and Y-Over as seen in
figure 12.

Now let's evaluate the oversampling method and compare its results for different models.

Algortihm employed : SMOTE (Synthetic Minority Oversampling Technique) where random minority label sample is selected and
among its k-nearest neighbors another sample is selected. A new sample is generated on the line segment connecting the two
which is then added to the minority set

[1 # Extract from the dataframe, class 1s and @s
df_1 = df[df['Class’] == 1].sample(frac = 1.8).reset_index(drop = True)
df_2 = df[df['Class’] == @].sample(frac = 1.8).reset_index(drop = True)
Split each dataframe to certain fraction
new_df_1, old_df_1 = df_1[: 480].reset_index(drop = True), df_1[48@ :].reset_index(drop = True)
new_df_2, old_df_2 = df_2[: 999].reset_index(drop = True), df_2[999 :].reset_index(drop = True)
group them into test and train sets
test, train = pd.concat([new_df_1, new_df_2]), pd.concat([old df_1, old_df_2])
test, train = test.sample(frac = 1.8).reset_index(drop = True), train.sample(frac = 1.8).reset_index(drop = True)

[1 #len(new_dfi.index)

[1 # Now divide train dataframe into 'X' and 'y’
X = np.array(train.drop(['Class'], axis = 1))
y = np.array(train['Class"])

Oversample on this set
oversample = SMOTE(sampling_strategy = @.4, random_state = 1, k_neighbors = 5)

Get new feature matrix and class vector
X_over, y _over = oversample.fit_resample(X, y)

Figure 12: SMOTE Technique

Il. CT-GAN Approach

1. We have used CT-GAN Approach to handle the class imbalance. We begin the code by
defining the Discriminator and Generator.

° # Let's define the discriminator which takes inputs the feature
matrix and class vecter and predicts the probability of being
fake or real (8 or 1)
def dis () :

define the feature input
feature = keras.Input(shape = (38,))

define the labels input
labels = keras.Input(shape = (1,))

merge the two layers
merge = keras.layers.Concatenate()([feature,labels])

add one hidden layer
model = keras.layers.Dense(288)(merge)
model = keras.layers.LeakyReLU(alpha = @.2)(model)

add the output layer
model = keras.layers.Dense(l,activation="sigmoid"})(model)

create a model from the pipeline
d_model = keras.Model(inputs = [feature,labels], outputs = model, name = ‘discriminator’)

compile the model
d_model.compile(optimizer = keras.optimizers.Adam(learning_rate = ©.0882), loss = "binary_crossentropy’
metrics = ['accuracy'])

return the model
return d_model

[1 # Let's define the generator which takes as input latent
space and class labels and ouputs a feature matrix °"X°
def gen () :

define the latent space
latent = keras.Input(shape = (99,))

Figure 13: Defining Discriminator and Generator

2. After defining, the discriminator and generator, we have combined them into CGAN

Combine the discriminator and Generator into cGAN
Keep discriminator as non-trainable, so it does

not update its weights during training the cgan
def gan (discriminator, generator) :

Make discriminator as non-trainable
discriminator.trainable = False

get inputs from the generator
gen_latent, gen_labels = generator.input

get output from the generator
gen_feature = generator.output

get discriminator predictions
dis_predict = discriminator([gen_feature, gen_labels])

create a model from the pipeline
cgan_model = keras.Model(inputs = [gen_latent, gen_labels], outputs = dis_predict, name = 'cGAN')

compile the model
cgan_model.compile(optimizer = keras.optimizers.Adam(learning_rate = ©.8002), loss = 'binary_crossentropy’)

return the model
return cgan_model

Figure 14: Combining Generator and Discriminator to CGAN

3. Now, we have defined a function to generate fake samples of the data.

Let's define a generate_fake samples
method to generate random samples as
fake data from latent sapce

def generate_latent_point (n_samples) :

create an array of n_samples * late
-nt_space (= 99)

Z_lat = np.random.randn(n_samples*3g9)
X_lat = Z_lat.reshape(n_samples , 99}

randomly generate the class labels 'y°
y_lat = np.random.randint(@, 2, n_samples)

return the points
return [X_lat, y lat]

de

Y

generate_fake_samples (generator, n_samples) :

generate n_samples points in latent space
[X_1lat, y_lat] = generate_latent_peoint(n_samples)

predict on them using the generator
X_fake = generator.predict([X lat, y_ lat])

classify them as '@’ (fake)
y_labels = np.zeros((n_samples, 1))

return the computed arrays
return [X_fake, y_lat], y_labels

Figure 15 : Generating Fake samples

4. We trained our cgan model till epochs=10.

] # train the model
def train (discriminator, generator, cgan, batch_size = 128, epochs = 18) :
count = @

half batch = int(batch_size/2)
batch_per_epoch = int(X.shape[@]/batch_size)

d_real = []
d_fake = []
g=11]

for i in range(epochs) :
for j in range(batch_per_epoch) :

real
[X_real, y_real], y_labels_real = generate_real_samples(half_batch)
loss on real
dl_loss, _ = discriminateor.train_on_batch([X_real, y_real], y_labels_real)
fake
[X_fake, y fake], y_labels fake = generate_fake_ samples(generator,
half batch)
loss on fake
d2_loss, _ = discriminator.train_on_batch([X_fake, y_fake], y labels fake)

Figure 16: Training the model

5. We defined a function to plot the graph showing the fake samples, real data and
loss function with the generated data.

cgan

200 — d_real
—— d fake
—— CGAN loss

0 5000 10000 15000 20000 25000

Figure 17: Data produced by CGAN

5 Modelling

We used three different models in this research. We first defined a dictionary to hold all the
models so that it would be easy to just call the model by passing their function names.

l. Isolation Forest

Isolation Forest and Random Forest packages
from sklearn.ensemble import IsolationForest, RandomForestClassifier

Let's define the IsolationForest Model
def IsF (X, y, ratio) :

train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 8.3, random_state = 1)

define the model
model = IsolationForest(n_estimators = 28, contamination = ratio, random_state = 1)

train the model
model.fit(X_train, y_train)

predict on the test set
predictions = model.predict(X_test)

Convert the predictions according to problem profile
predictions[predictions 11 =8
predictions[predictions -1] =1

evaluate the accuracy and classification report
print('IsF : ' + str(accuracy_score(y_test, predictions)))
print(classification_report(y_test, predictions))

assign this to models_dict
models_dict['IsF'] = model

Figure 18: Isolation Forest

We start this model by importing the required libraries. We have used IsF() function
for Isolation Forest to define the model, train the model and predict the model. We have
divided the dataset into train and test as seen in Figure 18. We have used 20 estimators
in this model and the value of the ratio is defined when this model is called. We have
also declared accuracy and classification report function inside this method of the
model.

. Multi-Layer Perceptron

Let's define the Multilayer Perceptron

def MLP (X, y, param) :

train test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 8.3, random_state = 1)

hyper-parameters

nodes = param[nodes’]

lrate = param[lrate’]

toler = param[' toler’]

batch = param['batch_size']

define the model

model = MLPClassifier(hidden_layer_sizes = (nodes,), tol = toler, batch_size = batch, learning_rate_init = lrate

verbose = @, random_state = 1)

train the model
model.fit(X_train, y_train)

predict on the test set

predictions = model.predict(X_test)

evaluate the accuracy and classification report
print('MLP : ' + str(accuracy_score(y_test, predictions))

print(classification_report(y_test, predictions))

assign this to models_dict

models_dict['MLP'] = model

Figure 19: Multi-Layer Perceptron

Multi-Layer Perceptron is also defined in the similar manner. We have used MLP() function
for Multi-Layer Perceptron. We have defined the function by passing X, Y and the param
object, the value of this object will be defined when this function MLP() will be called.

. Random Forest

Let's define the Random Forest Classifier Model

def RFR (X, y, split) :

train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 1)

define the model
model = RandomForestClassifier(n_estimators = 188, criterion = "gini’, min_samples_split = split, random_state = 1)

train the model
model.fit(X_train, y_train)

predict on the test set

predictions = model.predict(X_test)

evaluate the accuracy and classification report
print('RFR : ° + str(accuracy_score(y_test, predictions)))

print(classification_report(y_test, predictions))

assign this to models_dict
models_dict['RFR"] = model

Figure 20: Random Forest

10

We defined Random Forest Classifier inside a function called RFR(), where we defined the
model, train the model ,predict the model and evaluate the model. The split value is defined
when the model is called before any class imbalance technique.

6 Evaluation

6.1 Experiment 1: Applying SMOTE

@9 # Now divide train dataframe into "X’ and 'y~
X = np.array(train.drop(['Class’], axis = 1))
¥ = np.array(train['Class'])

Oversample on this set
oversample = SMOTE(sampling_strategy = 8.4, random_state = 1, k_neighbors = 5)

Get new feature matrix and class vector
X_over, y_over = oversample.fit_resample(X, y)
[1 # Assigning important parameters for the models

For Isolation Forest Model
ratio = float(y_over[y_over == 1].shape[@]/y_over.shape[8])

For Multi Layer Perceptron

param = {
“nodes” : 178,
"lrate’ : @.80085,
"tol 0.8eee1,
"batch_size' : 100
}
For Random Forest Classifier
split = 2
#For ADA
obj=1

Figure 21: Applying SMOTE
1. We applied the SMOTE technique and passed the parameters into the models to train

them first on the data and then test them.
2. To test the performance of all the three classifiers, we plot the AUPRC curve.

Area Under the Precision-Recall Curve (AUPRC)

10
08
o
]
-4
v 06
=
=
a
(=]
a
E 04
02 ROC curve of Isolation Forest (area = 0.83)
== ROC curve of Muiti Layer Preceptron (area = 0.72)
,/' = ROC curve of Random Forest (area = 0.63)
0.0 ¥

- T T T
00 02 04 06 08 10
False Positive Rate

Figure 22: AUPRC graph after SMOTE

Isolation Forest performs the best as seen in figure 22.

11

6.2 Applying CT-GAN

[1 # parameters

For Isolation Forest Model
ratio = float(y_gan[y_gan == 1].shape[@]/y_gan.shape[8])

For Multi Layer Perceptron

param = {
‘nodes’ : 5280,
‘lrate’ : 1,
"toler’ : @.081,
‘batch_size® : 280

}

For Random Forest Classifier
split = 2

#For ADA
obj=1

Figure 22: Applying CT-GAN

We applied the CT-GAN model to the three classifiers, by passing the Y_GAN variable to
the model functions. On analyzing the AUPRC graph, again Isolation Forest outperforms
other two models.

Area Under the Precision-Recall Curve (AUPRC) after CT-GAN
10

08

0.6

04

Tue Positive Rate

ROC curve of Isolation Forest (area = 0.86)
= ROC curve of Multi Layer Preceptron (area = 0.73)
= ROC curve of Random Forest (area = 0.50)

02

0.0 - T T T T
0.0 0.2 04 0.6 08 10
False Positive Rate

Figure 23: AUPRC graph after CT-GAN

7 Conclusion

In a thorough description, every step of the project's implementation is described. To make
the code more readable, all Python code is written with the suitable comments.

References

Forough J.,Momtazi(2021).Sequential credit card fraud detection: A deep neural network and
probabilistic graphical model approach.

Benchaji, 1., Douzi, S., El Ouahidi, B. et al (2021). Enhanced credit card fraud detection based
on attention mechanism and LSTM deep model. J Big Data 8, 15.

12

