~

"'—-
\ National
College

Ireland

Configuration Manual
MSc Research Project
Data Analytics

Sadhvi Dubey
Student ID: 19199350

School of Computing
National College of Ireland

Supervisor: Dr. Vladimir Milosavljevic

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sadhvi Dubey
Student ID: 19199350
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Vladimir Milosavljevic
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 504
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sadhvi Dubey

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sadhvi Dubey
19199350

1 Introduction

This document content list of step required execute the code used to build this research
project.This project is build using coding language Python and to run the code we have
used Anaconda Jupyter Notebook. In this project python version 3.6 is used hence the
relevant version is needed. ((Sukumaran and Holder; 2010)).

2 System Requirement

Below section provides the hardware and software requirement to execute the files asso-
ciated with the project.

2.1 System Hardware Specification

Below are the list of hardware specification of the system used in this research project
Processor: MAC M1 Processor

Storage:1'TB HDD

RAM: 16 GB

Operating System(OS): Mac OS

2.2 System Software Specification

In this project we have used following software:

1. Install Anaconda(Jupyter notebook environment)
2. Python version 3.6

3. Microsoft Excel

4. Tableau

3 Environment setup

We need to first Install Anaconda and launch juypter Notebook.

{) ANACONDA NAVIGATOR

A Home

Applications on | base (root)

LHIEIT WILI yOuUl Ledill.

WP Environments

° X Launch
N Learning
an Community 2
. ®

Jupyter
S’

[]
Notebook
ANACONDA
6.1.4
Back up your Web-based, interactive computing notebook
environments in environment. Edit and run human-readable

Nucleus for e docs while describing the data analysis.

Join Now

Launch

Easilv back up. port. and

Figure 1: Data Collection

Data Source :

rrent Map Maps Data Summary About Conditions & Outlooks En Espaiiol NADM

Drought Severity and Coverage Index

Home > Data > Data Download > Drought Severity and Coverage Index

Download Drought Severity and Coverage Index data for all U.S. Drought Monitor categories for each week of the selected time period
and location. Spatial scale choices include national, state, county and urban areas, and many more. If you have further questions please
e-mail Brian Fuchs.

You can also access these statistics through the USDM REST services.

Start Date: Spatial Scale: Output Format:

End Date: (state v [csv v m
Location

Select All | Clear All
@ Alabama Florida ®@Louisiana @ Nebraska @ Oklahoma @ Utah
@ Alaska @ Georgia @ Maine @Nevada @ Oregon @Vermont
@ Arizona Hawaii Maryland New Hampshire Pennsylvania @ Virginia
@ Arkansas Idaho Massachusetts New Jersey Rhode Island @ Washington
@ California lllinois @ Michigan @ New Mexico @ South Carolina @ West Virginia
® Colorado Indiana @ Minnesota @ New York @ South Dakota @ Wisconsin
@ Connecticut lowa @ Mississippi @ North Carolina @ Tennessee @ Wyoming
Delaware Kansas Missouri North Dakota @ Texas Puerto Rico
District of Columbia Kentucky Montana Ohio

Figure 2: Data Collection

Import Libraries

° import pandas as pd
import tensorflow as tf
import numpy as np
import keras
from keras.layers import Input, Dense, Embedding, Conv2D, MaxPool2D
from keras.layers import Reshape, Flatten, Dropout, Concatenate
from keras.callbacks import ModelCheckpoint
from keras.optimizers import Adam
from keras.models import Model
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
import datetime
import time
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
import scipy.sparse as sp
from scipy.sparse import wvstack
from scipy import sparse
from scipy.sparse.linalg import spsolve
from subprocess import check_output
from sklearn import metrics

Figure 3: Import Python Libraries

3.1 Data Import and Data Pre-processing

Importing and Cleaning Data

We'll take the polygons of US counties from the bokeh library, and we'll import the dataset from the USDM. Let's look at the USDM data.

from bokeh.sampledata.us_counties import data as counties
drought=pd.read_csv("C:/document/Droughts/us-droughts.csv.zip",compression="zip", encoding='latinl')
drought.head()

Figure 4: Mount Data and Data Processing

4 Predictive Model

The below piece of code is used to compare the ML Models in the initial analysis in order
to define a baseline for the California datasest.

KNeighborsClassifier

Train an KNeighborsClassifier model

define an KNeighborsClassifier model and fit on xtrain and ytrain
knn_classifier = KNeighborsClassifier()
knn_classifier.fit(xtrain,ytrain)

predict with the help of trained KNeighborsClassifier model
y_pred_knn = knn _classifier.predict(xtest)

view various evaluation matrices

print("accuracy score:", accuracy_ score(ytest,y pred knn))
print("fl score:", fl score(ytest,y pred_knn,average = 'micro'))
print(classification_report(ytest,y pred knn))

accuracy_score: 0.8143254155524094
f1 score: 0.8143254155524094

precision recall fl-score support

0 0.83 0.85 0.84 10731

1 0.80 0.77 0.78 8340

accuracy 0.81 19071
macro avg 0.81 0.81 0.81 19071
weighted avg 0.81 0.81 0.81 19071

Figure 5: Applied KNN

5 Predictive Model

Comparing ML Model

Train a RandomForestClassifier model

define a RandomForestClassifier model and fit on xtrain and ytrain
randomf_classifier2 = RandomForestClassifier(n_estimators = 500, random_ state = 42)
randomf classifier2.fit(xtrain,ytrain)

predict with the help of trained KNeighborsClassifier model
y _pred randomf2 = randomf classifier2.predict(xtest)

view various evaluation matrices

print("accuracy score:", accuracy score(ytest,y pred randomf2))
print("fl_score:", fl_score(ytest,y pred randomf2,average = 'micro'))
print(classification_report(ytest,y pred randomf2))

accuracy_score: 0.8463111530596193
fl_score: 0.8463111530596193

precision recall fl-score support

0 0.84 0.90 0.87 10731

1 0.85 0.78 0.82 8340

accuracy 0.85 19071
macro avg 0.85 0.84 0.84 19071
weighted avg 0.85 0.85 0.85 19071

Figure 6: Applied Random Forest

drought_features = X_norm.columns

feature importances = randomf classifier2.feature_importances_

indices = np.argsort(feature_importances)[-18:] # all 18 features

plt.title('Feature Importances')

plt.barh(range(len(indices)), feature_importances[indices], color='r', align='center')
plt.yticks(range(len(indices)), [drought_features[i] for i in indices])
plt.xlabel('Relative Importance')

plt.show()

Feature Importances

PRECTOT
T2M_RANGE

T Qv2M

PS

T2ZMDEW
WS10M RANGE
TZMWET
W550M RANGE
AX

M
WS10M MAX
T2M_MIN

000 002 0.04 0.06 0.08 0.10
Relative Importance

Figure 7: Relative Important Features

We have imported necessary libraries for execution of LSTM with Inception v3 and
DenseNet121 as shown below.

Logistic Regression

0, max_iter=15000, solver='saga',penalty='elasticnet',11_ratio=1) #0.]
0, max_iter=10000, solver='liblinear’,penalty='11") 0.711289392270987:

In [13]: # LogReg _clf = LogisticRegression(random state
LogReg_clf = LogisticRegression(random state

Train a Logistic Regression model
define an logistic regression model and fit on xtrain and ytrain

LogReg_classifier = LogisticRegression(random state = 0, max_iter=500, solver='lbfgs',penalty='none') # 0.712495411881¢
LogReg_classifier.fit(xtrain, ytrain)

predict with the help of trained logistic regression model
y_pred_lr = LogReg_classifier.predict(xtest)

In [14]: # view various evaluation matrices
print("accuracy_score:", accuracy_score(ytest,y_pred_lr))
print("£1_score:", f1_score(ytest,y pred lr,average = 'micro'))
print(classification_report(ytest,y pred lr))

accuracy_score: 0.6820827434324367
£f1_score: 0.6820827434324367

precision recall fl-score support

0 0.68 0.82 0.74 10731

1 0.69 0.50 0.58 8340

accuracy 0.68 19071
macro avg 0.68 0.66 0.66 19071
weighted avg 0.68 0.68 0.67 19071

Figure 8: Logistic Regression

In []: import torch
from torch import nn
from sklearn.metrics import £1_score, mean_absolute_error

class DroughtNetLSTM(nn.Module):
def _init_ (
self,
output_size,
num_input_features,
hidden_dim,
n_layers,
f£Enn_layers,
drop_prob,
static_dim=0,

super (DroughtNetLSTM, self)._init_ ()
self.output_size = output_size
self.n_layers = n_layers
self.hidden_dim = hidden_dim

self.lstm = nn.LSTH(
num_input_features,
hidden_dim,
n_layers,
dropout=drop_prob,
batch_first=True,

)

self.dropout = nn.Dropout (drop_prob)

self.fflayers =

for i in range(ffnn_layers - 1):
if 4 == 0:

self.fflayers.append(nn.Linear (hidden_dim + static_dim, hidden_dim))

else:

self.fflayers.append(nn.Linear (hidden_dim, hidden_dim))

self.fflayers = nn.ModuleList(self.fflayers)

self.final = nn.Linear(hidden_dim, output_size)

def forward(self, x, hidden, static=None):
batch_size = x.size(0)
X = x.to(dtype=torch.float32)
if static is not None:
static = static.to(dtype=torch.float32)
1stm_out, hidden = self.lstm(x, hidden)
1stm out = lstm out[:, -1, :]
out = self.dropout (lstm out)
for i in range(len(self.fflayers)):
if i == 0 and static is not Nome:
out = self.fflayers[i](torch.cat((out, static), 1))
else:
out = self.fflayers(i](out)

out = self.final(out)
out = out.view(batch_size, -1)
return out, hidden

def init_hidden(self, batch size):
weight = next(self.parameters()).data

hidden =
weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device),
weight.new(self.n_layers, batch_size, self.hidden_dim).zero_().to(device),

)
return hidden

Figure 9: Applied LSTM

5.1 Plotting Map
Using below code we have plotted map, To run this code it might take 5-7min. The
color palette changes from blue to red which makes visualization clear to understand the

drought affected region.

‘ha','ak','pr','qu’','mp’', 'as’', 'vi

In [117]: #1
counties_drought_continental=counties drought[-counties_drought["state"].isin(['hi’,
#2
counties_drought dict=counties_drought_continental.to_dict("index")
counties_drought_list = [dict(county)for cid, county in counties_drought_dict.items()]
#3
dates_list=[]
for year in range(2010,2020):
for month in range(1,13):
if month<10:
month="0"+str (month)
date=str(year)+"-"+str(month)
dates_list.append(date)
Now we plot the thing! If you run this yourself it might take 20 seconds. The rainbow color palette goes from blue to red which makes it a nice visualization
tool for drought. We'll plot January, 2010 first.
In [118]: cbar tick labels=[(0, 'Not in drought'),(1,'Abnormally dry conditions'),(2,'Moderate Drought'),(3,'Severe Drought'), (4,
['lons', 'lats'], vdims=hv.Dimension(dates_list[1], range=(0, 5)), label:

polygons = hv.Polygons(counties_drought list,
polygons.options(logz=False, xaxis=None, yaxis=None, cbar_ ticks=cbar_tick_labels,
show_grid=False, show_ frame=False, colorbar=True, color_ index=dates list[1],

fig _size=500, edgecolor='black', cmap=list(rainbow))

Figure 10: US continent

References

Sukumaran, J. and Holder, M. T. (2010). Dendropy: a python library for phylogenetic
computing, Bioinformatics 26(12): 1569-1571.

	Introduction
	System Requirement
	System Hardware Specification
	System Software Specification

	Environment setup
	 Data Import and Data Pre-processing

	Predictive Model
	Predictive Model
	Plotting Map

