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Predictive Analysis on Drought in North America
using Deep Learning

Sadhvi Rajkumar Dubey
19199350

Abstract

The devastating effects of previous drought episodes around the world have
prompted considerable drought monitoring and forecast efforts. Various drought
information systems with various indicators have already been developed to provide
early drought warning. The United States Drought Monitor (USDM), which uses
numerous drought categories to classify drought severity and has been used to
evaluate and manage by a variety of users such as natural resource managers and
authorities, has played a critical part in drought monitoring. The development
of drought prediction using USDM drought categories will significantly improve
decision-making due to the numerous applications of USDM. This study presented a
cross region drought prediction using machine learning model as we can see different
climatic condition in different part of United states. To conduct this research
we have used USDM dataset which will provide us reliable data from 2000 to
present date. The results of USDM drought classification forecasts in the United
States show the system’s potential, which is projected to contribute to operational
early drought warning in the United States. In this paper we put forward a novel
cross region drought predicting model in which we will do comparative study using
statistical model and machine learning model which will intern provide us most
accurate drought prediction. This model can also be used for predicting drought
for any country. In comparison to ANN and KNN-based models, LSTM-based
models were able to capture the temporal and spatial properties of droughts over
the United States better in validation. KNN, which was used for the first time in
constructing drought models, performed badly as compared to LSTM and ANN-
based drought models.

1 Introduction

Since droughts are directly related to the availability of water, their changing character-
istics will have profound effects on water stress and food due to climate change. Droughts
and their possible occurrence in any geographic area underscore their catastrophic nature
among all natural hazards. Can Machine Learning be applied to predict drought
across different regions ?. The primary novelty of this research lies within the meth-
odology of this research, which is the combination of the dataset building methodology
and the models applied to the dataset. Traditional approach towards a drought predic-
tion model involves the usage of a public dataset which is restricted to a particular region
in the United States Of America, this technique is beneficial in predicting drought for a
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particular region as the model applied to the dataset is specific to that particular dataset.

The model used for one dataset in this case cannot be applied to datasets of the other
region as they have a different set of features and value range. Due to this, the model
that is trained for one particular region/state cannot be applied to another region/state
in The United States Of America.

In this research, the focus is to improve the entire model by introducing a dataset
building methodology as well as providing appropriate machine learning models for the
dataset. As a primary step, the dataset of several regions is combined based on the pub-
licly available data provided by the government authorities like NASA and NOAA. After
the data collected, certain specific regions are selected and combined in order to obtain
a more generalised dataset which is applicable throughout The United States. Secondly,
the ML models which have showed robust usage in the past have been applied to this
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dataset to find out the best model and parameter.This proposed structure can be used
to compile data from states of other countries and apply a common model to evaluate
the probability of drought. This will help in minimising the data discrepancies found in
region specific datasets by laying down a conventional approach towards this problem.

Many droughts have occurred in various parts of the world in the recent past. For
example, in East Africa (2010-2011), the drought in Texas (2012), drought in the Central
Great Plains of the United States (2012) and drought in California in the USA (2012-2015,
the Millennium Drought in Australia (1997-2010) ) and the Sahel drought (2012). These
major droughts have resulted in immense agricultural losses that have devastated water
supplies and crops. A series of severe droughts in US over the past decade, such as the
drought in the center of the US in 2012, has made clear the need. Drought early warning
to reduce the potential impact. Significant advances have been made in the past dec-
ade with various drought forecasting methods from a statistical and dynamic perspective.

Prediction of drought remains a challenge for climatologists and hydrologists due to
the complexity of its origin and the size of space-time. Statistical, dynamic, and hybrid
models are commonly used to predict drought. In statistical forecasting models, empir-
ical relationships between climate variables and observation-derived drought indicators
are used to predict drought. In contrast to statistical models, dynamic models are based
on physical interactions between land, sea and atmosphere. These interactions are math-
ematically represented and resolved in dynamic models to create drought simulations /
predictions. Hybrid models, on the other hand, are a combination of statistical and dy-
namic models. For example, multiple dynamic model forecasts can be combined using a
statistical framework that assigns weights to different dynamic model forecasts to derive
ensemble forecasts. Due to their simplicity and low computational cost, statistical models
are widely used to predict drought.

The main role of Machine learning algorithms in hydrological weather applications is
for extreme Natural calamities like Floods and droughts lead to a massive human and
economic loss. Machine learning algorithms and models have proven to provide accurate
information regarding the time frame and scale of a natural disaster. As the frequency of
climate change has increased in the past couple of decades, a more dynamic hydrological
weather prediction model is required to give real time and robust information. As the
processing powers of CPUs and GPUs have increased by several folds over the last few
decades, the real time application of machine learning models is possible. Although after
several years of study in this domain, it can be established that there is no one super-
ior method but there are several methods with their separate applications in the field
of hydrological weather predictions. As ML models can predict mathematical values by
learning from past data, they can be used to predict numerical parameters such as tem-
perature(T), Humidity,Atmospheric pressure and precipitation levels. Using these values,
a lot of meteorological predictions can be made to improve response towards dynamic
weather patterns.

Machine learning (ML) algorithms are a hard and fast of commands that permit a
gadget to routinely research from historic facts and enhance it with out the want for
sizable programming. Using distinctive ML algorithms, we expand fashions that may
mimic the linear and non-linear interactions among predictors in numerous hydrological
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weather applications, consisting of: Precipitation forecasts Precipitation runoff model-
ing (Yaseen et al., 2015), temperature and warmth wave forecasts (Khan et al., 2019c),
drought forecasts. ML algorithms consisting of kNearest Neighbors (KNN), Artificial
Neural Network (ANN), Extreme Learning Machine (ELM), Random Forests (RF), Sup-
port Vector Machine (SVM), Relevance Vector Machine (RVM), Genetic Programming
(GP) Widely used to version complicated interactions among distinctive predictors.

The rationality for selection of the ANN, LSTM and KNN models is because of the
draught prediction problem can be classified on a broader scale as a classification problem
as it will predict whether the region will face drought conditions or not. The general idea
of this study is to identify the most effective model that will suit the dataset in order
to set a standard procedure to predict drought using the dataset methodology which is
closely based on the Standardised Precipitation and Evapotranspiration Index (SPEI).
In the past several studies that have been carried out, the most efficient techniques have
turned out to be amongst ANN,LSTM and KNN. Among the three listed techniques,
KNN is considered to be one of the oldest ML algorithms and it has been used to predict
various statistical and forecasting models. LSTM based models are able to better capture
the temporal and spatial characteristics.As this research makes an attempt at establish-
ing a well-structured technique in order to develop a cross-regional drought prediction
model, the ideal approach would be to establish baselines using the proven techniques of
the past and combining them with the methodology proposed in this project.

2 Related Work

A series of severe droughts in the U.S. in the past decade, such as 2012 central U.S.
drought, has highlighted the necessity of early drought warning to reduce the potential
impacts. A wide array of regional and global drought information systems has been
developed to aid drought early warning(Khan et al. (2020)).

2.1 Drought forecasting system

It can be said that the meteorological drought will be the first step towards a chain re-
action.. Although various researchers have advocated to further categorize droughts into
different drought types, like(Mishra and Desai (2006)) suggested to include groundwater
drought(Begueŕıa et al. (2014)) urged to include environmental droughts and (Li et al.
(2019)). This challenge becomes more complicated as it is dependent on who is defining
it and what metric is being used for by definition to measure it (?). Therefore, drought
indicators and indices have been developed, which would provide a general idea about
droughts (Sreekesh et al. (2019)). For meteorological droughts, several researchers have
defined drought indices based on different variables, and (Yihdego et al. (2019)) provide
an extensive list of various drought indices based on drought type. Standard Precipitation
Index (SPI) is one of the most used (Hayes et al. (2011)) drought index, one that is argu-
ably the most popular and accepted drought index developed by (McKee et al. (1993)).
Compared to other drought indices, it has multiple advantages, like consistent spatial
interpretation, less computationally complex, which makes it suitable for prediction and
risk analysis (Anshuka et al. (2019)). It is possible to forecast a meteorological drought
based on either rainfall or drought indicators (Zhao et al. (2017)). Drought occurrences
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are affected by atmospheric circulation patterns or telecommunications (Ganguli and
Reddy (2014)). The inclusion of climatic indices to improve forecasting has received con-
flicting results; in addition, it is well established that future droughts would be affected
by climate change. Researchers (Salem et al. (2018))reported that adding climatic indices
improves forecasts, whereas (Mariotti et al. (2013)) recorded minimal improvements.

A minimum of 30 years of data is required to understand any drought characteristics.
Accurate drought forecasting relies on the length of the available time series, the timescale
of the drought index, and the timescale of the model used. This review article explored the
capabilities of different drought forecasting models to forecast at different SPI timelines
and lead times (forecast range) (Begueŕıa et al. (2014)). Study results showed that one to
three months are the best lead time for SPI forecasting. Nonetheless, the determination
of SPI timescale is subject to the goals and the dry spell type being examined, alongside
the neighborhood highlights, for example, catchment or region type, land-use changes
of the review region (Zhao et al. (2017)), with some recommending longer time scales
to be utilized and the other proposing the inverse. Their concentrate likewise proposed
that SPI at longer time scales are better anticipated as the qualities are smoother and
underlines the need to test diverse time scales prior to coordinating it in dry spell the
board. Consequently, the current review gauges SPI12 at a lead season of 90 days(Mishra
and Desai (2006)).

2.2 Using Machine learning Model drought Forecasting

Because drought is multidimensional, modellers are frequently stumped as to which vari-
ables to consider. The incorporation of temporal lag components of climatic variables as
predictors in the model was a crucial result for enhancing drought predictions. Several
studies have shown that using climatic factors improves the forecasting of drought in-
dices or drought variables. This is especially important for drought studies in Australia,
where the relationship between climate drivers and rainfall is the strongest in the world.
Because a single measure cannot capture all of the diverse climatic elements, numerous
indices are used to evaluate the changes. As a result, numerous indices have been pro-
posed in the literature, and we will use climatic factors throughout this study (pressure
indices and SST indices) (Hunt et al. (2018)).
Drought forecasting can be accomplished using statistical, physical, and data-driven
methods. The physical-based research entails sophisticated models with multiple vari-
ables and a lot of processing power, which is rather difficult. Data-driven models, such as
machine learning models, are significantly less intricate than physical-based models and
use far less computational resources (Chaudhari et al. (2021)). Although physical-based
models have shown equivalent forecasting outcomes, data-driven models are shown to
be more effective and can occasionally reach even greater accuracy than physical mod-
els. Machine learning (ML) approaches have been used to anticipate droughts and have
proven to be particularly successful among data-driven models. Several studies have been
undertaken to anticipate drought for various parts of the globe at various lead times using
various drought indicators (Ganguli and Reddy (2014))
ML models, on the other hand, subject to the curse of dimensional and over fitting be-
cause numerous such factors effect distinct lag times. The deep learning model, on the
other hand, is a novel concept that opens up new avenues for boosting predicting capab-
ilities. Several famous academics have said and demonstrated that deep learning would
eventually outperform machine learning predicting capabilities and provide a new ap-
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proach to regression problems. Over-fitting and dimensional problems can be addressed
with LSTMs, where the forget gate determines the amount of data that can flow through.
Although LSTM has been employed in a variety of sectors, including banking, meteor-
ological studies, and environmental factors, it is still in its infancy when it comes to
forecasting drought indicators and variables. Apart from the desire to anticipate with
longer lead times, the interpretation of results in terms of the delays of the variables used
to forecast drought is rarely done in drought research. Despite data-driven models’ super-
ior performance, evaluating the models and examining the correlations between variables
and forecasting predictions, as well as the interrelationships among the variables, is a key
difficulty. As a result, the current work aims to create a robust and explainable fore-
casting model, as well as evaluate the results, in order to better understand how LSTM
employs variables to anticipate droughts.

3 Methodology

This section will discuss the techniques used in the implementation of this research,
ranging from dataset curating to Data processing. In addition to this, an explanation of
the machine learning models applied in the research has been discussed in this section.

3.1 Dataset Curation Methodology:

The dataset in this study is a combination of 180 daily meteorological observations along
with the meta-data(to help in plotting) of the locations for a total of 3,108 counties in
the United States. This combination of data helps in creating a location-agnostic fore-
casting model for drought. The input features in this dataset are sourced from mainly
the USDM(United States Drought Monitor) Database and also from the NASA climate
repository. Observations from previous droughts are also included in the dataset in order
to test the models and convey appropriate results.

The USDM data contains drought categories which are in the ranges as shown in the
figure below and these categories are renamed according to the correlation in the data
provided by NASA. In case of the meteorological data, the model is provided with over 180
observations which leads up to the desired prediction and previous year measurements.
The variable is replaced with SPI/SPEI, and for the region which are manually created
labels are not available. Additionally, information of season is included in this using sine
and cosine. As drought is seasonal, the phenomenon is generalized across season to aid
the input.

Figure 1: Categories
Figure 2: Dataset Curation Methodology.

The dataset encompasses all of the US and each location is indicated with a location
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indicator,which helps in summarising each location as a combination of parameters from
the Harmonized world Soil Database. This dataset is a collection of slope,elevation of
each terrain and aspect of the zones.On top of that, it contains the land use of each
location.(for example: Canal fed water cultivation or rain fed water cultivation). This
location information in terms of soil properties, can enable models to generalize a vast
portion of land.

Training data from end portion of are thus helps with another portion of area. The
drought vectors in the USDM data is replaced with the SPI/SPEI as well as meteor-
ological vectors to further inculcate temporal data. The location vector in this case is
adjusted further by adding binned latitude/ longitude vectors which helps in indicating
geographical location of each area. As this dataset is curated from the data available for
The United states of America, similar methodology can be applied for another country
in the world for which data is available.

3.2 Selection of Climate zones in the Mainland USA:

Mainland USA spans over a coastal boundary of close to 20,000 Km along with vast vari-
ety of vegetation and human factors. The figure below illustrates the climatic zones
that are present in Mainland US. These zones include Southwest,Gulf Coast/Lower
Mississippi Valley/South Atlantic states,Southern Plains/Lower Midwest/Middle East
Coast,Northern Great Plains/North-Central/Great Lakes/New England,Pacific Northw-
est.

Figure 3: Climatic Zones in the US Mainland

This research does not include the regions of Alaska,Hawaii,Caribbean territories,Pacific
territories as the geographical are covered by them is diminished in comparison to Main-
land USA. There are 5 climatic zones which are taken into consideration which have a
significant impact on the economy and climatic health of the nation.Apart from these 5
climate zones, certain zones are observed to have extreme climatic conditions. One of
these zones is the western coast of The United States, which includes the state of Cali-
fornia. The state of California is highly prone to droughts throughout the decade which
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leads to economic loss and human rehabilitation. The figures below shows the effect of
drought in California as categorised by the USDM convention.

Figure 4: Climatic Zones in the State of California.

It can be observed that California faces severe drought in the all the 5 spectrum of the
drought monitor classes. Due to this extreme behaviours of the west coast of The United
States of America, it creates an opportunity to use this as a test case in this research.

3.3 Selection of potential predictors:

Potential predictors have been extracted from the probable predictors and correlations
between SPEI and PCs which have been derived from the USDM and climate data ini-
tially.

Table 1: SPI and USDM category Comparison

Animal SPI Description
D0 -0.5 to -0.7 Abnormally Dry
D1 -0.8 to -1.2 Moderate Drought
D2 -1.3 to -1.5 Severe Drought
D3 -1.6 to -1.9 Extreme Drought
D4 -2.0 or less Exceptional Drought

The top 1% of the principle components of each probable predictor were identified
as potential predictors for drought. These predictors were additional filtered based upon
the SPI and USDM category correlation as shown above.
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4 Design Specification

This section discusses the design philosophy of the models that are used in the research
and how parameters have been tuned in order to achieve best possible results.

4.1 LSTM Model Architecture/Design:

A LSTM model architecture is a special type of Recurrent Neural Network along with
a gradient based learning algorithm and it was initially proposed to overcome the error
back-flow problems which were faced in traditional RNNs(Sepp and Jürgen, 1997). As
shown in the figure below, it is organised as a chain structure and the core of the model
lies in the state of the neural networks units which are placed in a series fashion.

Figure 5: LSTM model architecture

This is transmitted back in a chain structure and flows back into the system. LSTM
makes use of three gated controls to operate the cell, these gates control the Cell State(Ct)
and the output of the cell (ht). These gates control the flow of information in the cell and
help in avoiding bottlenecks in the models. A gate is similar in structure to a NN layer
or a series of matrices that contain different individual weights that carry out do point
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multiplication operations.The primary step in this gating mechanism is to make sure the
information is forgotten from the sate of the NN unit. Consider the state of the unit to
be in Ct−1, the previous output ht−1 will be read and the new input xt will be taken into
consideration.

gft = σ(Wf .(ht−1) + gf )

One of the drawbacks of the LSTM model is its inability to process historic data points
and to inculcate them wit the current input. Due to this drawback the performance of
the LSTM model reduces when the amount of data available is less in number.

Here, σ is the sigmoidal function. In this research, a 5 layer deep neural network has
been built in order to increase the yield of the network. The input in this network are
the encoded sequences x1, ... xn and the Location data is being fed to the FFNN which
yields out a 5 stage output which are in correlation to the drought categories defined
earlier.

4.2 Transformer Model Architecture/Design:

The architecture of the transformer model is as shown in the figure above. The funda-
mental of this model is to consume the previously generated output in order to perform
operations which help in generating the next symbol.

Figure 6: Illustration of passing encoded
sequences x1, ... xn (combination of met-
eorological and drought data) along with
location vector of FFNN- Feed forward
neural network. Figure 7: Illustration of the Transformer

model along with [REG] token

The transformer model is an improvement on the already existing LSTM model as it
adds a multilayered feedback loop in to the system which uses the output of the current
step as the input of the next step thereby generating a self propagating loop.In this case,
the model is auto-regressive in each step along with a stack of N=5 identical layers. The
above diagram represents a self attention mechanism which deferentially weighs the input
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data. In the case of this research, this approach is helpful as it makes use of the curated
dataset in order to generate an extra set of data points which is used a a test and reference
for the current layer and helps with increasing the performance of the overall model. The
efficiency of the model is further

5 Implementation

This section gives an overview of the implementation phase of this research in a systematic
manner and flow. The first section discusses the Data processing and exploration and the
later section discusses the Baselines models applied to assess this data and to generate a
comparison.

5.1 Data Exploration and Data Processing

This section explores how data is being explored and processed in this research. In order
to establish the usage of the methodology used in this research, it is primarily important
to state the relation between the droughts and meteorological data.

Figure 8: Correlation for Input Features Figure 9: Correlation-Prediction Features

As per this The diagram below shows the correlation between the droughts and met-
eorological data. On the left the figure shows that the features that are selected are well
correlated with the data curated.
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Figure 10: Correlation for Input Features Figure 11: Correlation-Prediction Features

The below diagram shows the availability of data for the entire United states Of
America and the Mainland US. This is plotted as per the longitudinal and latitude data
available in the dataset.

Figure 12: Data point availability in the En-
tire USA

Figure 13: Data point availability in Main-
land USA

The figure shows that the density of data points available for the the Central part
and Eastern part is more than the data points available for the Western coast of the
Mainland.

5.2 Baseline Models(Traditional models currently used for re-
gion specific prediction):

The baseline models used for this research are implemented for data with long lead time
which is necessary for real world application for generating early warning systems and
risk management strategies.The below figure shows the architecture of the baseline model
which considers multiple training and testing inputs from the sources and apply a very
traditional approach of LSTM and transformer. As a part of this research, this model is
applied to the data available for the state of California. This step is performed in order
to set baseline and to support the hypothesis of this research.
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Figure 14: Baseline model to California Figure 15: Result Overview

This architecture does not support the dynamicity involved with the dataset of this
research as it does not encoder layers in order to deal with the outliers. On the other
hand, these types of models work very well for drought prediction of a region specific
dataset.As seen from the above results, the drought prediction model applied to the state
of California yield good results. In the next step, this model is applied to other states
in order to test the cross-region hypothesis proposed in this paper. The image above
showcases 4 rows of results out of which three are for the states of Iowa,Montana and
Oklahoma. The predicted output for these three states is not as accurate as that of
California. The primary reason for this is the region specificity of the model. The model
tested here is a region specific model which as been tuned to predict drought in the
Californian climatic conditions.

Table 2: Baseline LSTM model results for the State of California
State Epoch Results(Average)

MAE F1

1 California 0.653 62.4

2 California 0.571 68.3

5 California 0.493 70.7

Iowa 0.095 90.3

All Montana 0.323 55.8

Oklahoma 0.181 75.8

The above table shows the performance of the model worsens when it is applied to a
different climatic zone. The values of MAE and F1 score in the above table shows that
the methodology applied for the model used to predict drought in California does not
perform well after being applied to the other states which are in different climatic zones.
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6 Evaluation and Results

This section provides an evaluation of the results obtained based on certain factors. In
addition to the results, this section also contains graphical representation of the results
plotted on the United States Geographical maps. The table shows the Performance for
occurrences of a draught conditions.

Table 3: Performance Table for Occurrences
True not (X) True label (X)

Predicted label (X) False Positive (FP) True Positive (FP)

Predicted not (X) True Negative (TN) False Negative (FN)

The output predictions of the models applied in the section below are plotted on the
map based on these occurrences which detect the outcome of the model based on the
above scale.

6.1 Evaluation Criteria and parameters:

This section discusses the measures used for evaluating the performance of the model.
There are two major quantities which are used to evaluate ML models pertaining to
the drought prediction domain. The two measures are MAE and F1 score and they are
discussed in the sections below:

6.1.1 Mean Absolute Error(MAE):

The below equation represents how the Mean Absolute Error is calculated. Where, ŷ is
the forecasted value of the drought features and yi is the original value of the drought
features. N is the total number of samples in the dataset.

MAE =
N∑
i=1

|ŷi − yi|
N

6.1.2 F1 score:

F1 score is measure using which the accuracy of any machine learning model is decided.
F1 score is calculated as per the below equations. Mathematically, the F1 score is a
harmonic mean of the parameters if the ML model. As per the equation, the parameters
here are the precision and recall of the system.

F1Score = 2
PrecisionXRecall

Precision+Recall

Furthermore, this equation can be broken down into the number of False posit-
ives,False Negatives, True positives and True negative as shown below:

F1Score =
tp

tp+ 0.5(fp+ fn)
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It be deduced that, precision is the measure of the true positives as compared to the
true outputs of the model. Similarly, recall is the measure of sensitivity of the model
which is the true positives upon the total of false positives and false negatives in the
model.

6.2 Hyperparameter Experiments:

The two models that are applied (I.e. LSTM and transformer model)to the curated
dataset is broken down into 4 segments, which are Seasonal Encoding,Location Identi-
fier,Iat/Ion and previous year combination.The below table summarizes the parameters
of the LSTM and transformer model used in cross region prediction. Both the models
have a batch size of 128 along with a hidden size of 512.

Table 4: Hyperparameter Experiments - Model Setup

Hyperparam Transformer LSTM

Number of Layers 4 2

Hidden Size 512 512

Batch Size 128 128

FFNN inner hidden size 4096 N/A

Attention Heads 2 N/A

Initial Projection Size 256 N/A

Dropout Probability 0.1 0.1

Weight Decay 0.01 0.01

Each of the models is then assessed based on the impact of each feature and this is
done by retaining the model with other features except the one under observation.

Table 5: LSTM and Transformer model results for Curated Dataset
Models Week 1 Week 2 Week 3

MAE F1 MAE F1 MAE F1

LSTM 0.178 81.2 0.233 73.3 0.285 64.9

+Seasonal Encoding 0.137 82.2 0.237 71.4 0.266 61.9

+Location Indentifier 0.140 81.7 0.237 74.3 0.243 62.9

+Iat/Ion 0.137 81.2 0.237 72.3 0.255 63.9

+prev. year combination 0.113 81.2 0.242 73.3 0.265 64.9

Transformer 0.158 68.0 0.215 62.9 0.265 60.1

+Seasonal Encoding 0.178 88.2 0.237 71.3 0.295 69.9

+Location Indentifier 0.178 79.2 0.237 74.3 0.285 65.9

+Iat/Ion 0.178 81.2 0.237 72.3 0.265 68.9

+prev. year combination 0.178 81.2 0.237 71.6 0.275 67.9
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The below table summarizes these models along with their feature isolated results.
The impact of each of the individual layer is studied and it is identified that the Location
Identifier and Seasonal Encoder have the maximum impact on the models. From future
work perspective, the individual layers can be tended to. For this research the dataset is
curated in order to remove the effect of bias in the model.

6.3 LSTM and Transformer Model for Mainland US

For the curated dataset, LSTM and Transformer models have been implemented in order
to form a generalized approach towards detecting draught in any region for which data
is available. The reason for doing this is to create robust models as a part of future
work.In case of LSTM, there is no significant movements in all features but there are some
noticeable observations and improvements in Seasonal Information by 2.5%.Similarly,
there is an improvement of 7.6% for Location Information and an improvement of
9.5% for latitude/longitudinal values. There is an improvement of 16.7% after including
meteorological data from the transformer model. After combining the

Table 6: LSTM and Transformer model results for Curated Dataset
Models Week 1 Week 2 Week 3 Week 4

MAE F1 MAE F1 MAE F1 MAE F1

LSTM 0.178 81.2 0.237 72.3 0.265 63.9 0.326 59.6

Transformer 0.158 67.0 0.215 62.9 0.265 60.1 0.331 56.2

Model Avg Ensemble 0.135 83.6 0.198 72.7 0.258 65.1 0.326 58.4

The success rate of LSTM has been well documented for predicting drought for a
particular region. The map below shows the output of the model plotted to predict
drought in the month of June and December. The figure on the left is the predictions
the month of June and the figure on the right is for the month of December 2020. As
observed that the model has performed well in predicting cross-region zones.

Figure 16: US Mainland - LSTM model prediction
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The graphical presentation of the application of Transformer model is plotted below
on the map. The predictions observed in the map are far more accurate than the models
applied for individual regions.

Figure 17: US Mainland - Transformer model prediction

As per the aforementioned research objective, the primary objective is to develop a
ML model that is capable enough to predict the probability of drought in a variety of
region instead of being a region specific model.This is demonstrated by the two maps as
shown in the above figures as the models are capable of handling cross - region data as
well as

6.4 Regional Application of the Model:

The below map shows the representation of the selected states on The United States Map
for testing the model. The states Iowa,Montana and Oklahoma classify as cross-region
states as they span over different climatic and weather zones. The

Figure 18: California Figure 19: Iowa,Montana and Oklahoma

The table below shows the performance of the applied models on a Local and National
level in order to compare the performance of the traditional ML models which are region
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specific and the model that is applied in this research which has the aim to be a cross-
regional model.

Table 7: LSTM and Transformer model results for Curated Dataset
Training Data Evaluation Data Results

MAE F1

Iowa Iowa 0.101 88.4

Montana Montana 0.354 53.3

Oklahoma Oklahoma 0.213 70.7

Iowa 0.095 90.3

All Montana 0.323 55.8

Oklahoma 0.181 75.8

After training the model on the above mentioned states it is observed that the model
which is trained on data from all the states has an improved performance as
compared to the model which his state-specific in nature. The extent of this
improvement is as large as 4.6 %.This is a significant improvement over the state-
specific and traditional models.

7 Discussion and Application

In order to demonstrate the significance of this research, an application approach has been
discussed in this section. The predictions provided by the model to predict drought can
be used in number of ways ranging from Advance warnings to the people of that region
and advanced rehabilitation if necessary. One such application is the correlation between
draught and forest fires in The United States. The below map shows the correlation
between drought and wildfires in the Mainland Unites States.

Figure 20: Droughts for Year 2015 Figure 21: Wildfires for Year 2015

The above figure shows the Drought-Wildfire Plot on the map for the year 2015.The
below figure shows the Drought-Wildfire Plot on the map for the year 2016.
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Figure 22: Droughts for Year 2016 Figure 23: Wildfires for Year 2016

The primary issue faced because of using 180 days of data to model a seasonal effect
was the absence of more data points in the training and testing set. This was taken care
of by trying several data value pairs and distributing these 180 days of data into two
parts ranging from a couple of weeks to a couple of months.As this dataset is a combina-
tion of data from multiple sources, the drought season vectors and meteorological data is
combined and passed as a sequential inputs to the model. This encoding of the inputs is
then used as an input to the single-layer feed forward neural network . This FFNN takes
into consideration the location vector and the final output of this network is 6 weeks of
drought predictions.By taking this approach, the 180 days of data can be accurately used
to predict drought over the period of 6 weeks and testing the model with the help of 18
weeks of data.

By observing the nature of correlation, it can be concluded that there is close relation
between the drought prone regions and the regions with wild fire occurrences. Similarly,
these predictions can be used on a much more smaller scale which runs the simulation on
a county to predict futures wild fires and deploy government resources responsibly.

8 Conclusion and Future Work

The models that are developed in this research are aimed at predicting drought prone
regions in order to avoid catastrophic events, human and financial loss. The LSTM and
transformer models used in this research efficiently predict the drought prone regions in
the Mainland USA as compared to the traditional models implemented in for a geographic
and climate specific approach.

Future work can be conducted in the domain of meteorological and location data.
The impact of the individual components can be surveyed based upon their weights in
the data collection. In addition, a similar methodology can be used in preparing datasets
for countries other than The United States Of America. This can be done by collecting
NOAA(National Oceanic and Atmospheric Administration) data as well as data available
from global drought indicators.
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