~

N\ National
College
Ireland

Waste Classification system using Transfer
Learning and Image Segmentation
Configuration Manual

MSc Research Project
Data Analytics

Kalpesh Dhande
Student ID: 20185821

School of Computing
National College of Ireland

Supervisor:  Mr.Jorge Basilio




National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Kalpesh Dhande
Student ID: 20185821
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Mr.Jorge Basilio
Submission Due Date: 15/08/2022
Project Title: Waste Classification system using Transfer Learning and Im-
age Segmentation Configuration Manual

Word Count: 917
Page Count: [14]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kalpesh Dhande

Date: 16th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):




Waste Classification system using Transfer Learning
and Image Segmentation Configuration Manual

Kalpesh Dhande
20185821

1 Overview

This is the setup guide for the research project ”Waste classification using Transfer learn-
ing and Image Segmentation.” I've provided a step-by-step instruction for running the
code in this. In this, I've also mentioned the system configuration and setup that I used
to run the code.

2 System Configuration

2.1 Hardware Requirement

The following system configuration is used for code development and code execution:
e Operating System: macOS Monterey
e Macbook Air M1
e Ram: 8GB
e HDD: 256GB SSD

2.2 Software Requirement

The following system setup is used for code development and code execution:
e Python Version 3.7
e Google Colab

e Overleaf

3 Steps To Environment Setup

In this part, I've described how to get started with Google Collaborate. To begin, go to
the official Google Colab website, as seen in figure [l The GPU must then be enabled,
as shown in figure



CO Making the most of your colab subscription

File Edit View Insert Runtime Tools Help

@ share £ (K

+ Code + Text # Copy to Drive Connect ~ # Editing

~ Making the most of your colab subscription

~ Faster GPUs

With Colab Pro, you have priority access to our fastest GPUs, and with Pro+ even more so. For example, you may get a T4 or P100 GPU at times
when most users of standard Colab receive a slower K80 GPU. You can see what GPU you've been assigned at any time by executing the
following cell.

If the execution result of running the code cell below is 'Not connected to a GPU', you can change the runtime by going to Runtime > Change
runtime type in the menu to enable a GPU accelerator, and then re-execute the code cell.
+ Code — + Text
[ 1 gpu_info = !
gpu_info = "\n'.join(gpu_info)
if gpu_info.find('failed') >= 0:
print('Not connected to a GPU')
else:
print(gpu_info)

In order to use a GPU with your notebook, select the Runtime > Change runtime type menu, and then set the hardware accelerator drop-down to
GPU.

>_]
~ More memory

Figure 1: Offical Google Colab page

Notebook settings

Hardware accelerator
GPU 5 @

To get the most out of Colab Pro, avoid using a GPU unless you

need one. Learn more

Runtime shape
High RAM 3

Background execution

Want your notebook to keep running even after you

close your browser? Upgrade to Colab Pro+

Omit code cell output when saving this notebook

Cancel Save

Figure 2: Enable GPU

4 Data Collection

I downloaded the dataset from the kaggle website. The collection is called ”Waste Clas-
sification Data,” and it is displayed in figure [3|



Waste Classification data
Create R i .
Data Code (57) Discussion (0) Metadata e Hew Notsbook = bt @ :

® Home

@ Competitions

Business Image Data Classification Energy Binary Classification
@ Datasets
<> Code Data Explorer
DATASET (2 directories) o> Version 1 (222.24 MB)
Discussions

- ~ [J DATASET
<1 Courses About this directory » 03 TEST

» [ TRAIN
v  More The root folder containing the Test and Train data

Summary

E E » O 25k files

TEST TRAIN
2 directories 2 directories

Figure 3: Waste Classification Dataset

5 Classification Model using Transfer Learning

5.1 Importing Libraries

While carrying out this experiment, I included a number of libraries, which I have listed
below.

e Tensorflow

e Keras

e Numpy

e Pandas

e Sklearn

e Matplotlib
e Seaborn

e glob

© import glob
import tensor as tensorflow
import pandas as pd
import numpy as np
as plt

from tqdn import tqdn

from i matrix

from 2 r inage import InageDataGenerator

from g atchNormaliz axPoo120, Con enate, Input
Toad_model

16 import 6
quential
import InputLa Flatten, BatchNormalization, Dropout, Act
import EarlyStopping, ModelCheckpoint
image import load_img, img_to_array
import DenseNet121
inport plot_nodel

rt, confusion_matrix

ions import
ls import

Figure 4: Imported Libraries



5.2 Uploading data to drive and Connecting to google Drive

The downloaded dataset must be uploaded to the same Google Drive account as the
Google colab. After uploading the data, the Google colab must be linked to the Google
Drive, as illustrated in Figure [5

[ 1 from google.colab import drive

drive.mount('/content/drive’)

Figure 5: Connecting google drive to google colab

5.3 Reading , pre-processing and splitting the data
5.3.1 VGGI16

In this step, I first augmented the dataset with the configuration shown in figure [6] and
also split the training dataset in training and validation in an 8:2 ratio while augmenting
using the Imagedatagenerator, and then I imported the dataset using the glob library
and called the augmentation part to perform the augmentation as shown in figure [7]

° train_datagenerator = ImageDataGenerator(rescale = 1.0 / 255.0,
horizontal_flip = True,
vertical_flip = True,
zoom_range = 0.6,
rotation_range = 12,
validation_split = 0.2,)

valid_datagengenerator = ImageDataGenerator(rescale = 1.0 / 255.0,
validation_split = 0.2)

test_datagengenerator ImageDataGenerator(rescale = 1.0 / 255.0)

Figure 6: Data Augmentation And splitting the dataset



~ Importing Data

‘, train = train_datagenerator.flow_from_directory(directory = tent/drive/MyDrive/WasteData/TRAIN
target_size = (224,224),
shuffle = True,
class_mode = 'binary’,
batch_size = 64,
subset = 'training')

Found 18052 images belonging to 2 classes.

val = valid_datagengenerator.flow_from_directory(directory = '/content/drive/MyDrive/WasteData/TRAIN',
target_size = (224,224),
shuffle = True,
class_mode = 'binary
batch_size = 64,
subset = 'validation')

Found 4512 images belonging to 2 classes.

test = test_datagengenerator.flow_from_directory(directory /content ve/MyDrive/WasteData/TEST',
target_size = (224,224),
class_mode binary',
batch_size = 32,
shuffle = False)

Found 2513 images belonging to 2 classes.

Figure 7: Reading Dataset

5.3.2 DenseNetl121

In this phase, I used the glob library to import the dataset, divided the dataset in an 8:2
ratio as shown in figure

~ DenseNet 121

[ ] train_datagen_dense = ImageDataGenerator(validation_split =
valid_datagen_dense = ImageDataGenerator(validation_split =

test_datagen_dense = ImageDataGenerator()

train_dense = train_datagen_dense.flow_from_directory(directory /content/drive/MyDrive/WasteData/TRAIN',
target_size 224,224),
shuffle = True,
class_mode = 'binary’,
batch_size = 64,
subset = 'training')

Found 18052 images belonging to 2 classes.

val_dense = valid_datagen_dense.flow_from_directory(directory /content/drive/MyDrive/WasteData/TRAIN',
target_size
shuffle = True,
class_mode = 'binary’,
batch_size =
subset = 'validation')

Found 4512 images belonging to 2 classes.

test_dense = test_datagen_dense.flow_from_directory(directory = '/content/drive/MyDrive/WasteData/TEST',
target_size = ,224),
class_mode = 'binary’,
batch_size = 32,
shuffle = False)

Found 2513 images belonging to 2 classes.

Figure 8: Reading Dataset for densenet



5.4 Model Building, Training, Testing
5.4.1 VGGI16

First, as shown in Figure 9] import the VGG 16 model with the shape as (224,224,3),in-
clude_top as false and weights as imagenet and then freeze the layers as shown in Figure

9Bl

[]

vggl6_model = VGG16(input_shape=(224,224,3), 5
for layer in vggl6_model. layers:

include_top=False,

weights="imagenet") layer.trainable=False

(a) Defining Model (b) Freezing Layers

Figure 9: Pre trained VGG16

Figure depicts several additional architectural layers. Finally, compile the model
by setting the optimiser to adam with a learning rate of 0.001 and loss to binary cros-
sentropy, as illustrated in Figure

t1_vggl6_model=Sequential()

t1_vggl6_model.add(vggl6_model)
t1_vggl6_model.add(Dropout(0.3))

t1_vgg16_model.add(Flatten())
t1_vggl6_model.add(BatchNormalization())
t1_vggl6_model.add(Dense(1024,kernel_initializer='he_uniform'))
t1_vggl6_model.add(BatchNormalization())
t1_vggl6_model.add(Activation('relu’))
t1_vggl6_model.add(Dropout(0.2))
t1_vggl6_model.add(Dense(512,kernel_initializer="'he_uniform'))
t1_vggl6_model.add(BatchNormalization())
t1_vggl6_model.add(Activation('relu’))
t1_vggl6_model.add(Dropout(0.1))
t1_vggl6_model.add(Dense(1,activation="'sigmoid’))

(a) Added layers to VGG16

adam_opt = tensorflow.keras.optimizers.Adam(1r=0.001)

t1_vggl6_model.compile(optimizer=adam_opt,

loss='binary_crossentropy',
metrics=[tensorflow.keras.metrics.AUC(name = 'auc')],

)

(b) Compiling VGG16 Model

Figure 10: Pre trained VGG16



As demonstrated in figure [I1a], callbacks must be defined for early stopping in the
event of model overfitting or the model is not improving, as well as checkpoints to store
the best weights, and the model must be trained for 20 epochs, as shown in figure [ITb]

filepath = '/content/drive/MyDrive/VGG16Class/best_weights.hdf5

earlystopping = EarlyStopping(monitor = 'val_auc',
mode = 'max’' ,
patience = 5,
verbose = 1)

checkpoint ModelCheckpoint (filepath,
monitor = 'val_auc',
mode="max',
save_best_only=True,
verbose = 1)

callback_list [earlystopping, checkpoint]

(a) Callbacks for VGG16

t1_vggl6_model_fit=t1_vggl6_model.fit(train,
steps_per_epoch = len(train),
validation_data=val,

validation_steps = len(val),
epochs = 20,

callbacks = callback_list,
verbose = 1)

(b) Training VGG16 Model

Figure 11: Callbacks and Training of VGG16

The developed model is next evaluated, as shown in Figure [12| First, calculated the
auc and loss for the test data using evaluate function , then generate the confusion matrix
using confusion matrix function of sklearn library, then create the classification report to
assess the accuracy precision and recall, and lastly test on a single picture from the test
dataset.



loss, AUC = tl_vggl6_model.evaluate(test)
print("Test dataset AUC: %f and Loss: %f" % (AUC, loss))

t1_vgg_model_pred = t1_vggl6_model.predict(test)
t1_vgg_model_pred_list = [int(i > .5) for i in t1_vgg_model_pred]

import seaborn as sns
df_cm = pd.DataFrame(
confusion_matrix(tl_vgg_model_pred_list,test_y), index=['Organic’, ‘Recyclable'], columns=['Organic’, '‘Recyclable'],

)
sns.heatmap(df_cm, annot=True, fmt='g', cmap='Blues')
plt.ylabel('Predicted label')
plt.xlabel('True label')

print(classification_report(tl_vgg_model_pred_list,test_y ,target_names=['Organic', 'Recyclable']))

test_image = load_img('/content/drive/MyDrive/Test Image /Bananaimage.jpeg', target_size=(224,224))
test_image = img_to_array(test_image)

test_image = test_image / 255

imshow(test_image)

plt.axis('off"')

test_image = np.expand_dims(test_image,axis=0)

prediction = t1_vggl6_model.predict(test_image)

if prediction[0] [0] > @.5:

print("Object in the image is Recycalable waste')
else:

print("Object in the image is Organic waste')

Figure 12: VGG16 Evaluation

5.5 DenseNetl121

Import the DenseNet121 model with the shape (224,224,3), include top as false, pooling
as average and weights as imagenet, as shown in figure [13a] and then freeze the layers as

shown in figure [I3b]

[ 1 for layer in densenetl2l_pretrained.layers:
layer.trainable=False

° densenet121_pretrained = densenet.DenseNet121(include_top=False,weights="'imagenet’,
input_shape=(224,224,3),pooling="avg')

(a) Defining Model DenseNet121 (b) Freezing Layers DenseNet121

Figure 13: Pre trained DenseNet121

Figure shows various additional architectural layers. Finally, compile the model
by setting the optimiser to adam and the loss to binary crossentropy, as shown in figure

45l



o t1_densenetl121_model=Sequential()
tl_densenet121_model.add(densenet121_pretrained)
t1_densenet121_model.add(Flatten())
t1l_densenetl21_model.add(BatchNormalization())
t1_densenet121_model.add(Dense(128,kernel_initializer='he_uniform'))

t1_densenetl21l_model.add(Activation('relu'))
tl_densenetl21_model.add(BatchNormalization())
t1_densenetl21_model.add(Dense(64,kernel_initializer='he_uniform'))
t1_densenetl121_model.add(Activation('relu'))
t1_densenet121_model.add(Dense(1,activation="sigmoid'))

(a) Added layers to DenseNet121

t1_densenet121_model.compile(optimizer="'adam',
loss="'binary_crossentropy',
fnetrics=[tensorflow.keras.metrics.AUC(name = 'auc')])

(b) Compiling DenseNet121 Model

Figure 14: modified architecture of model and compiling the DenseNet121 model

As demonstrated in figure [I5a], callbacks must be defined for early stopping in the
event of model overfitting or the model is not improving, as well as checkpoints to store
the best weights, and the model must be trained for 20 epochs, as shown in figure [I5b]

earlystopping = EarlyStopping(monitor = 'val_auc’,
mode = 'max’' ,
patience = 5,
verbose = 1)

checkpoint = ModelCheckpoint (filepath,
monitor = 'val_auc',
mode='max',
save_best_only=True,
verbose = 1)

callback_list = [earlystopping, checkpoint]

(a) Callbacks for DenseNet121

° t1_densenet121_model_fit = t1_densenet121_model.fit(train_dense,
steps_per_epoch = len(train_dense),
validation_data=val_dense,

validation_steps = len(val_dense),
epochs = 20,

callbacks = callback_list,

verbose = 1)

(b) Training DenseNet121 Model

Figure 15: Callbacks and Training of DenseNet121

The constructed model is next evaluated, as illustrated in Figure To begin, com-
pute the auc and loss for the test data using the evaluate function, then produce the
confusion matrix using the confusion matrix function of the sklearn package, then create
the classification report to analyze the accuracy precision and recall, and finally test on



a single image from the test dataset.

[ 1 loss, AUC = tl_densenet121_model.evaluate(test_dense)
print("Test dataset AUC: %f and Loss: %f" % (AUC,loss))

t1_densenet121_model_pred = t1_densenet121_model.predict(test_dense)
t1_densenet121_model_pred_list = [int(i > .5) for i in t1_densenet121_model_pred]

import seaborn as sns
df_cm = pd.DataFrame(
confusion_matrix(t1_densenet121_model_pred_list,test_dense.classes), index=['Organic’, 'Recyclable']l, columns=['Organic', 'Recyclable'],

)
sns.heatmap(df_cm, annot=True, fmt='g', cmap='Blues')
plt.ylabel('Predicted label')
plt.xlabel('True label')

print(classification_report(tl_densenet121_model_pred_list,test_dense.classes, target_names=['Organic', 'Recyclable']))

test_image = load_img('/content/drive/MyDrive/Test Image /Bananaimage.jpeg', target_size=(224,224))
test_image = img_to_array(test_image)

test_image = test_image / 255

imshow(test_image)

plt.axis('off"')

test_image = np.expand_dims(test_image,axis=0)

prediction = t1_densenet121_model.predict(test_image)

if prediction[0] [0] > 0.5:

print(“Object in the image is Recycalable waste")
else:

print("Object in the image is Organic waste")

Figure 16: DenseNet121 Evaluation

6 Image Segmentation

6.1 Data Collection and Anotation

First, I extracted several photos of banana from the original collection. Then I used the
website APEER.com to annotate these banana photos. It is a free and open website that
anybody can use to annotate their dataset, which I have then separated into training,
testing, and validation data for both photos and annotated images that are binary mask.

AboutUs  Platform

Automate your image analysis

and free up your time for more research

A Scalable Solution

Start Free Trial

Figure 17: APEER for Annotating image

6.2 Importing Libraries
I used a variety of libraries throughout this experiment, which I've mentioned here.

o Tensorflow

10



e Keras

Pylab

e Numpy

Matplotlib

glob

© import PIL
from PIL import Image

import matplotlib.pyplot as plt
from keras.preprocessing import image|

import numpy as np

smatplotlib inline

from pylab import %

import tensorflow as tf

from tensorflow import keras

from tensorflow,keras.models import Model

from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, MaxPooling2d, Concatenate, UpSampling2d, Cropping2d
from tensorflow.keras import backend as K

from tensorflow,keras.preprocessing. image import ImageDataGenerator

from tensorflow, keras,optimizers import Adam

from tensorflow,keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint, TensorBoard
from tensorflow.keras.preprocessing.image import load_img, img_to_array

Figure 18: Importing Libraries for Image Segmentation

6.3 Loading Data and Data pre-processing

First, define augmentation for the data as shown in figure then load the dataset with
flow and send this data for augmentation as shown in figure [I9b]

data_gen_general = dict(rescale=1./255,
rotation_range=90.,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
horizontal_flip=True,

vertical_flip=True,
shear_range=0.2,
brightness_range=(0.5, 1.0),
validation_split=0.2
)
image_datagen_general = ImageDataGenerator (xxdata_gen_general)
mask_datagen_general = ImageDataGenerator(#kdata_gen_general)

(a) Augmenting data for Image Segmentation  (b) Loading data for image segmentation

Figure 19: Data Preparation for UNET

11



6.4 Model Building, Training, and evaluation

Begin by building the UNET class, from which three functions were created: a conv
block, a decoder block, and create model function. The first conv block is used to create
the Unet architecture’s encoder and bridge, while the second decoder block is used to
create the UNET’s decoders. In generate models, I built an array of filters for which
the encoder will be created for each filter and the final encoder will work as a bridge,
and then filter decoders will be designed in reverse order. Figure [21| depicts the model’s
construction.

© class UNet:

def __init_ ( - =None) :
self.img_shape = (img_dim, img_dim, 3)

def conv_block( b X0, ] =True):
conv = Conv2D(filters=filters, kernel_size=(3,3), padding='same', activation='relu’, kernel_initializer='he_uniform')(x)
res = Conv2D(filters=filters, kernel_size=(3,3), padding='same', activation='relu’, kernel_initializer='he_uniform') (conv)
if pool:
out = MaxPooling2D()(res)
return out, res
else:
return res

decoder_block( y %, b DR

x = UpSampling2D() (x)

conv = Conv2D(filters=filters, kernel_size=(2,2), padding='same') (x)

cropping_size = res.get_shape().as_list ()[4l - conv.get_shape().as_list() [1]

crop = Cropping2D(cropping=cropping_size//2) (res)

merged = Concatenate() ([conv, cropl)

conv_op_1 = Conv2D(filters=filters, kernel_size=(3,3), padding='same', activation='relu')(merged)
out = Conv2D(filters=filters, kernel_size=(3,3), padding='same', activation='relu')(conv_op_1)
return out

def create_model(

(a) UNET Model Building 1

def create_model( ) E
img = Input(shape=self.img_shape)
filters = [64, 128, 256, 512, 1024]
X = img
residuals = []
pool = True
""" Encoder """
for fil in filters:
if fil == 1024:
pool = False
if pool == True:
x, res = self.conv_block(x, fil, pool=pool)

residuals.append(res)
else:

self.conv_block(x, fil, pool=pool)

counter =
""" Decoder
for fil in reversed(filters[:-1]):

x = self.decoder_block(x, residuals[counter], fil)

counter = counter - 1
" Qutput "M
out = Conv2D(filters=1, kernel_size=(1,1), padding='same', activation='sigmoid')(x)
model = Model(inputs=img, outputs=out)
return model

(b) UNET Model Building 2

Figure 20: UNET Model Building
The model was then compiled using the optimizer as Adam, loss as binary crossen-
tropy, and metrics as accuracy, as shown in figure 2Tal and callbacks and early stopping
were defined as shown in figure 215}

12



earlystopping = EarlyStopping(monitor='val_loss',
patience=8,
verbose=1,
min_delta=le-4)

checkpoint ModelCheckpoint (monitor="val_loss',

filepath=filepath,
save_best_only=True,
save_weights_only=True)

model.compile(optimizer=Adam(1le-4), loss='binary_crossentropy’,
metrics=['accuracy ])| callback_list = [earlystopping, checkpoint]

(a) UNET Model Compiling (b) UNET Callbacks

Figure 21: UNET Model Compilation and Defining Callbacks

The model was then trained on the training and validation datasets using images and
masks for 10 epochs as shown in figure [22al and it was evaluated by sending the test data
to modelevaluate as shown in figure 22h]

unet_history = model.fit(train_generator,
steps_per_epoch=135,
epochs=10,
validation_data=validation_generator,
validation_steps=16,
callbacks=callback_list, loss, accuracy = model.evaluate(test_generator, steps=15)
print("Test dataset Loss: %f and accuracy: %f" % (loss,accuracy))

(a) UNET Model Training (b) UNET Model Testing

Figure 22: UNET Model Training and Testing

Finally, as shown in Figure[23] I tested the model by constructing the predicted mask
using the predict function.

test_image = load_img('/content/drive/MyDrive/TestInageForClassificationAndSegmentation/Bananaimage. jpeg’, target_size=

mask_test = model.predict(test_image[np.newaxis, :1)
plt.subplot(1, 2, 1)

plt. imshow(test_image)

plt.title("Original Image")

plt.subplot(1,
plt. imshow(m:
plt.title("Predicted

Figure 23: UNET Prediction

13



7 Other Software

Overleaf, a web-based application, was utilized for report writing and configuration

manual writing.

67

68 Initially, I used the AUC and Loss of the validation and training data to
validate the model. The AUC for training data does not change much at the
end of the graph in figure \ref{fig:denseneti2lauc}, and the loss for
training similarly does not significantly change, as can be seen in figure
\ref{fig:densenetl21loss}. The Training AUC in Figure
\ref{fig:densenetl2llossandauc} is 0.9830, whereas the Validation AUC is
0.9612, demonstrating that the model created is a good model because the AUC
is significantly higher. The validation loss is greater than the training
loss, as seen in \ref{fig:densenet121lossandauc}, suggesting that the
resultant model 1is not i . If 1 compare this model with the

model which i have devloped i can say that on basis of observation till now
the DenseNetl121 performed better than the VGG16 model.

69

70~ \begin{figure}[!ht]

71~ \begin{subfigure}{.5\textwidth}

72 \centering

73 \includegraphics[width=1.0\linewidth]{MSc Research Project Report
Template/figures/Dense AUC.png}

74 \caption{Training vs Validation Area Under Curve for Densenetl2l }

75 \label{fig:densenetl2lauc}

76 \end{subfigure}%
77 ~ \begin{subfigure}{.5\textwidth}

78 \centering

79 \includegraphics[width=1.0\linewidth]{MSc Research Project Report
Template/figures/Dense Loss.png}

80 \caption{Training vs Validation Loss for Densenet121}

81 \label{fig:densenetl21loss}
82 \end{subfigure}

(a) Confusion Matrix For VGG16

Figure 6: Confusion Matrix and Obtained score from CM for VGG16 model

6.2 Densenetl121 pre-trained Model

Initially, T used the AUC and Loss of the validation and training data to validate the
model. The AUC for training data does not change much at the end of the graph in
figure [7d, and the loss for training similarly does not significantly change, as can be seen
in figure 7B. The Training AUC in Figure [7d is 0.9830, whereas the Validation AUC
is 0.9612, demonstrating that the model created is a good model because the AUC is
significantly higher. The validation loss is greater than the training loss, as seen in [7d,

16

suggesting that the resultant model is not overfitted. If i compare this model with the
VGG16 model which i have devloped i can say that on basis of observation till now the
DenseNet121 performed better than the VGG16 model.

ol Auc

Modl Loss

(a) Training vs Validation Area Under Curve for,

Densenet121 (b) Training vs Validation Loss for Densenet121

(¢) Training vs Validation Loss and AUC for Densenet121

Figure 24: Overleaf

14



	Overview
	System Configuration
	Hardware Requirement
	Software Requirement

	Steps To Environment Setup
	Data Collection
	Classification Model using Transfer Learning
	Importing Libraries
	 Uploading data to drive and Connecting to google Drive 
	Reading , pre-processing and splitting the data
	VGG16
	DenseNet121

	Model Building, Training, Testing
	VGG16

	DenseNet121

	Image Segmentation
	Data Collection and Anotation
	Importing Libraries
	Loading Data and Data pre-processing
	Model Building, Training, and evaluation

	Other Software

