
Waste Classification system using Transfer
Learning and Image Segmentation

Configuration Manual

MSc Research Project

Data Analytics

Kalpesh Dhande
Student ID: 20185821

School of Computing

National College of Ireland

Supervisor: Mr.Jorge Basilio

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Kalpesh Dhande

Student ID: 20185821

Programme: Data Analytics

Year: 2022

Module: MSc Research Project

Supervisor: Mr.Jorge Basilio

Submission Due Date: 15/08/2022

Project Title: Waste Classification system using Transfer Learning and Im-
age Segmentation Configuration Manual

Word Count: 917

Page Count: 14

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Kalpesh Dhande

Date: 16th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Waste Classification system using Transfer Learning
and Image Segmentation Configuration Manual

Kalpesh Dhande
20185821

1 Overview

This is the setup guide for the research project ”Waste classification using Transfer learn-
ing and Image Segmentation.” I’ve provided a step-by-step instruction for running the
code in this. In this, I’ve also mentioned the system configuration and setup that I used
to run the code.

2 System Configuration

2.1 Hardware Requirement

The following system configuration is used for code development and code execution:

• Operating System: macOS Monterey

• Macbook Air M1

• Ram: 8GB

• HDD: 256GB SSD

2.2 Software Requirement

The following system setup is used for code development and code execution:

• Python Version 3.7

• Google Colab

• Overleaf

3 Steps To Environment Setup

In this part, I’ve described how to get started with Google Collaborate. To begin, go to
the official Google Colab website, as seen in figure 1. The GPU must then be enabled,
as shown in figure 2

1



Figure 1: Offical Google Colab page

Figure 2: Enable GPU

4 Data Collection

I downloaded the dataset from the kaggle website. The collection is called ”Waste Clas-
sification Data,” and it is displayed in figure 3.

2



Figure 3: Waste Classification Dataset

5 Classification Model using Transfer Learning

5.1 Importing Libraries

While carrying out this experiment, I included a number of libraries, which I have listed
below.

• Tensorflow

• Keras

• Numpy

• Pandas

• Sklearn

• Matplotlib

• Seaborn

• glob

Figure 4: Imported Libraries

3



5.2 Uploading data to drive and Connecting to google Drive

The downloaded dataset must be uploaded to the same Google Drive account as the
Google colab. After uploading the data, the Google colab must be linked to the Google
Drive, as illustrated in Figure 5.

Figure 5: Connecting google drive to google colab

5.3 Reading , pre-processing and splitting the data

5.3.1 VGG16

In this step, I first augmented the dataset with the configuration shown in figure 6 and
also split the training dataset in training and validation in an 8:2 ratio while augmenting
using the Imagedatagenerator, and then I imported the dataset using the glob library
and called the augmentation part to perform the augmentation as shown in figure 7.

Figure 6: Data Augmentation And splitting the dataset

4



Figure 7: Reading Dataset

5.3.2 DenseNet121

In this phase, I used the glob library to import the dataset, divided the dataset in an 8:2
ratio as shown in figure 8

Figure 8: Reading Dataset for densenet

5



5.4 Model Building, Training, Testing

5.4.1 VGG16

First, as shown in Figure 9a, import the VGG 16 model with the shape as (224,224,3),in-
clude top as false and weights as imagenet and then freeze the layers as shown in Figure
9b.

(a) Defining Model (b) Freezing Layers

Figure 9: Pre trained VGG16

Figure 10a depicts several additional architectural layers. Finally, compile the model
by setting the optimiser to adam with a learning rate of 0.001 and loss to binary cros-
sentropy, as illustrated in Figure 10b.

(a) Added layers to VGG16

(b) Compiling VGG16 Model

Figure 10: Pre trained VGG16

6



As demonstrated in figure 11a, callbacks must be defined for early stopping in the
event of model overfitting or the model is not improving, as well as checkpoints to store
the best weights, and the model must be trained for 20 epochs, as shown in figure 11b.

(a) Callbacks for VGG16

(b) Training VGG16 Model

Figure 11: Callbacks and Training of VGG16

The developed model is next evaluated, as shown in Figure 12. First, calculated the
auc and loss for the test data using evaluate function , then generate the confusion matrix
using confusion matrix function of sklearn library, then create the classification report to
assess the accuracy precision and recall, and lastly test on a single picture from the test
dataset.

7



Figure 12: VGG16 Evaluation

5.5 DenseNet121

Import the DenseNet121 model with the shape (224,224,3), include top as false, pooling
as average and weights as imagenet, as shown in figure 13a, and then freeze the layers as
shown in figure 13b.

(a) Defining Model DenseNet121 (b) Freezing Layers DenseNet121

Figure 13: Pre trained DenseNet121

Figure 14a shows various additional architectural layers. Finally, compile the model
by setting the optimiser to adam and the loss to binary crossentropy, as shown in figure
14b.

8



(a) Added layers to DenseNet121

(b) Compiling DenseNet121 Model

Figure 14: modified architecture of model and compiling the DenseNet121 model

As demonstrated in figure 15a, callbacks must be defined for early stopping in the
event of model overfitting or the model is not improving, as well as checkpoints to store
the best weights, and the model must be trained for 20 epochs, as shown in figure 15b.

(a) Callbacks for DenseNet121

(b) Training DenseNet121 Model

Figure 15: Callbacks and Training of DenseNet121

The constructed model is next evaluated, as illustrated in Figure 16. To begin, com-
pute the auc and loss for the test data using the evaluate function, then produce the
confusion matrix using the confusion matrix function of the sklearn package, then create
the classification report to analyze the accuracy precision and recall, and finally test on

9



a single image from the test dataset.

Figure 16: DenseNet121 Evaluation

6 Image Segmentation

6.1 Data Collection and Anotation

First, I extracted several photos of banana from the original collection. Then I used the
website APEER.com to annotate these banana photos. It is a free and open website that
anybody can use to annotate their dataset, which I have then separated into training,
testing, and validation data for both photos and annotated images that are binary mask.

Figure 17: APEER for Annotating image

6.2 Importing Libraries

I used a variety of libraries throughout this experiment, which I’ve mentioned here.

• Tensorflow

10



• Keras

• Pylab

• Numpy

• Matplotlib

• glob

Figure 18: Importing Libraries for Image Segmentation

6.3 Loading Data and Data pre-processing

First, define augmentation for the data as shown in figure 19a, then load the dataset with
flow and send this data for augmentation as shown in figure 19b.

(a) Augmenting data for Image Segmentation (b) Loading data for image segmentation

Figure 19: Data Preparation for UNET

11



6.4 Model Building, Training, and evaluation

Begin by building the UNET class, from which three functions were created: a conv
block, a decoder block, and create model function. The first conv block is used to create
the Unet architecture’s encoder and bridge, while the second decoder block is used to
create the UNET’s decoders. In generate models, I built an array of filters for which
the encoder will be created for each filter and the final encoder will work as a bridge,
and then filter decoders will be designed in reverse order. Figure 21 depicts the model’s
construction.

(a) UNET Model Building 1

(b) UNET Model Building 2

Figure 20: UNET Model Building

The model was then compiled using the optimizer as Adam, loss as binary crossen-
tropy, and metrics as accuracy, as shown in figure 21a, and callbacks and early stopping
were defined as shown in figure 21b.

12



(a) UNET Model Compiling (b) UNET Callbacks

Figure 21: UNET Model Compilation and Defining Callbacks

The model was then trained on the training and validation datasets using images and
masks for 10 epochs as shown in figure 22a, and it was evaluated by sending the test data
to modelevaluate as shown in figure 22b.

(a) UNET Model Training (b) UNET Model Testing

Figure 22: UNET Model Training and Testing

Finally, as shown in Figure 23, I tested the model by constructing the predicted mask
using the predict function.

Figure 23: UNET Prediction

13



7 Other Software

Overleaf, a web-based application, was utilized for report writing and configuration
manual writing.

Figure 24: Overleaf

14


	Overview
	System Configuration
	Hardware Requirement
	Software Requirement

	Steps To Environment Setup
	Data Collection
	Classification Model using Transfer Learning
	Importing Libraries
	 Uploading data to drive and Connecting to google Drive 
	Reading , pre-processing and splitting the data
	VGG16
	DenseNet121

	Model Building, Training, Testing
	VGG16

	DenseNet121

	Image Segmentation
	Data Collection and Anotation
	Importing Libraries
	Loading Data and Data pre-processing
	Model Building, Training, and evaluation

	Other Software

