\""- |
\ National
Collegeof

Ireland

Deep Learning Techniques for
Classification of Astronomical Objects

Configuration Manual

MSc Research Project
Programme

Yogiraj Subhash Dalvi
Student ID: 20205741

School of Computing

National College of Ireland

Supervisor: ~ Abubakr Siddig




‘-
National College of Ireland \ National

MSc Project Submission Sheet
School of Computing

Student Yogiraj Subhash Dalvi
Name:

Student ID: 20205741

Programme: MSc in Data Analytics Year: 2022
Module: Research Project
Lecturer: Abubakr Siddig

Submission 19t September 2022
Due Date:

Colleger
Ireland

Project Title: Deep Learning Techniques for Astronomical Object Classification

Word Count: 2258 Page Count: 23

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section.

Students are

required to use the Referencing Standard specified in the report template. To use other
authors’ written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Yogiraj Subhash Dalvi
Date: 19t September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):




Configuration Manual

Y ogiraj Subhash Dalvi

Student ID: 20205741

1 Introduction

This report is a component of the submission made by the student Yogiraj Subhash Dalvi for
the Master of Science degree in Data Analytics. It serves as the configuration manual for the
manual that describes how to implement Deep Learning Techniques for the classification of
astronomical objects. As Section 2 gives us the extra details of the thesis paper submitted,
section 3 goes into detail about the hardware that was utilized, and section 4 gives us
a discussion about the framework that was used to create the models. The steps to choose
and acquire the images which will be utilized are discussed in Section 5. The Python code
that was used to obtain and pre-process the SDSS pictures is walked through in Section 6.
Training of models is discussed in Section 7, which follows, and section 8 discusses the
outcomes that were obtained from the training.

2 Additional Details from Thesis Technical Report

The following is a list of supporting documentation that was discovered or researched as part
of the research effort; however, due to limitations in the document, it was not included in the
final thesis report.

2.1 Methodology

TensorFlow is a high-scale machine learning system. TensorFlow employs dataflow graphs
to describe computation, shared state, and mutations. It translates a dataflow graph over many
computers in a cluster and inside a machine across several processing devices, including
multicore CPUs, GPUs, and Tensor Processing Units (TPUs). This architecture allows the
application developer freedom, unlike earlier "parameter server" implementations.
TensorFlow lets developers try new training and optimization strategies. TensorFlow focuses
on training and inferring deep neural networks. Several Google services utilize TensorFlow
in production, and the open-source project is used for machine learning research. In this
publication, the TensorFlow dataflow model is explained. (TensorFlow, 2022) This study
implemented three pre-trained CNN models along with a base CNN model with adam
optimization and it was compared against the same models but, they were trained on the
ImageNet dataset.

2.2 Convolutional Neural Networks

Deep learning makes use of many kinds of neural networks, and one of those networks is
called a convolutional neural network. Because of the work done by CNN, image recognition
has made great progress in recent years. CNN’s are comprised of several layers, the most
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notable of which are the input layer, the output layer, and the hidden layers. The processing
and classification of images is helped along in some fashion by each of these levels in some
manner. Every layer is considered while calculating the hidden layers. Each one of these
layers contributes significantly to the overall functionality of the network.

2.3 Data Acquisition

Once we get all the FITS to file URLs after querying the SDSS archive server, all those files
were downloaded locally using the “shutil” library.

## Importing Necessary Modules
import requests # to get image from the web
import shutil # to save it Locally

for ix, thisrow in df.iterrows():

## Set up the image URL and filename

#image url = "https://cdn.pixabay.com/photo/2620/62/66/09/39/summer-4823612 960 720.jpg"
filename = str(ix) + ' ' + str(thisrow['class']) + '.jpg’
# Open the url image, set stream to True, this will return the stream content.
r = requests.get(thisrow.imglink, stream = True)

# Check if the image was retrieved successfully

if r.status code == 200:

# Set decode content value to True, otherwise the downloaded image file's size will be zero.
r.raw.decode_content = True

# Open a local file with wb ( write binary ) permission.
with open(filename,'wb') as f:
shutil.copyfileobj(r.raw, f)

print(‘'Image sucessfully Downloaded: ',filename)
else:

print(‘'Image Couldn\'t be retreived')

Fig 1: Saving SDSS files in .jpeg format to local drive after fetching FITS file URLs

After downloading images, they were segregated into three classes.

Galaxy Qso Star

Fig 2: Sample Images from SDSS Data Release 17

FITS files download location: http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/
SDSS JPEG files Download location: http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/



http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/getjpeg?ra=184.9983&dec=-0.8333&scale=0.05&height=512&width=512

2.4 Data Pre-Processing

After the data had been obtained in the fit format, it was then processed to minimize its size and convert it to
an image format so that it could be handled further down the line. This processing, along with the other
portions of the model's design, training, and testing, was carried out locally. It was decided to download the
FITS files and store them in individual sub-directories, one for each class. After that, the pictures were taken
from each FITS image, assembled into a plot, and then saved as a PNG file. Finally, the image was closed, and
the process was repeated with the subsequent image in the directory. Python was used to write this
procedure, and the Config Manual that was given along with this report has comprehensive information on the
various pieces of hardware and software that were deployed.

2.4.1 Image Augmentation

Image data augmentation is a method that entails developing changed variants of the images that are included
within a training dataset. These new versions of the images are then used in the training process. After then,
the updated copies are put to use for instructional reasons. This makes it feasible to artificially grow the size of
the dataset without the need to collect any more data throughout the process. There are different types of
augmentation techniques, such as:

Horizontal or vertical image flipping.

Choose clockwise or counterclockwise to rotate the image.
Rescaling pixels of the image

Randomly cropping an image

PwnNR

2.5 Data Extraction and Transformation

The SDSS Survey archive servers are the source of the data in this particular instance. The data that was
utilized may be found on the servers at dr17.sdss.org. DR17 referred to the 17th data release of information
based on the findings of the survey. All the data has already undergone preprocessing, during which any digital
noise or "poor" photos were eliminated. Before the data was made public, any images that had been
negatively influenced by bad weather circumstances or unfavorable atmospheric conditions were deleted.

3. Hardware Specification

System: Gaming HP Laptop 15" Generation
Processor: Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz
Installed RAM:  16.0 GB (15.8 GB usable)

0s: Windows 10 Pro 64-bit edition

Graphics Card:  NVIDIA GeForce GTX1660 Ti ,6GB DDR6

4. Software used

This section provides a list of all apps that must be installed in order for the project to be successfully
executed, as well as screen images.

4.1 Applications Developed by Microsoft

The ordinary versions of Microsoft Office and the operating system that were utilized in this study do not come
with any installation instructions. Any extra components that were used are: Microsoft Excel, PowerPoint, and
Snipping Tool



4.2 Google Colab

The acronym "Colab" refers to the product that was developed by Google Research and is known as the
Colaboratory. Colab is an online platform that enables users to create and run any Python code directly in their
web browser. This platform is particularly useful for machine learning and data analysis.

1. Go to https://colab.research.google.com/

2. You need to sign up in colab to create an account in colab

© Welcome To Colaboratory —" m
File Edit View Insert Runime Tools Help
Eding =~ A

+Coke +Ted @ CopyloDrie Comect v AE
|-5 Table of contents ox !

Welcome to Colab!

If you're already familiar with Colab, check out this video to leamn about interactive tables, the executed code history view, and the command
palette.

Section

What is Colab?

Colab, or "Colaboratory’, allows you to write and execute Python in your browser, with
« Zero configuration required
« Access to GPUs free of charge
« Easy sharing

Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab to leam more, or
just get started below!

Fig 3. Google Colab Home Page

3. Login with your Gmail account credentials.

Google
Sign in
Use your Google Account

Email or phone

Forgot email?

MNot your computer? Use Guest mode 1o sign in privately.
Learn more

Create account MNext

Fig 4. Google Sign-In In Colaboratory
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https://colab.research.google.com/

4. Create a new notebook to start working in colab

( & Untitled0.ipynb

File Edit View Insert Runtime Tools Help

B Comment &% Share 83 o

+ Code + Text Connect v S Ediing A

cBH PN
a9

[}

Fig 5. New Python Notebook in Colab

5. There are three types of colab versions:

Choose the Colab plan that's right for you

Whether you're a student, a hobbyist, or a ML researcher, Colab has you covered

Restrictions apply, learn more here

Recommended

Colab Colab Pro Colab Pro+

Free of charge

Current plan €9.25 / month €42.25/ month

+~ No subscription required. « Faster GPUs ~ Background execution
Access to faster GPUs and TPUs means Notebooks keep executing even after
you spend less time waiting while your you close your browser.

code is running.
+ Faster GPUs

+ More memory Priority access to faster GPUs and
More RAM and more disk means more TPUs means you spend less time
room for your data. waiting while your code is running.

+  Longer runtimes + Even more memory
Longer running notebooks and fewer Significantly more memory than ever
idle timeouts mean you disconnect before.
less often.

+ Evenlonger runtimes
Gives you the longest running
notebooks in Colab so you are able to
get your work done.

Fig 6. Google Colab Plans

The another advantage og google colab is that majority of the python dependancies have already been
installed in it so, there would be no need to install any dependancies in it.




5. Downloading SDSS Images

Images were retrieved from the server that houses the SDSS archive. The format of the queries was
determined, in both instances, by the website that was being queried.

5.1 Querying SDSS Catalogue Archive Server using Python and SQL

The code to extract the images from SDSS (Sdss.org. Data Release 17, 2022) archive server is as follows.

5.1.1 Importing necessary libraries for Sciserver

# import Sciserver Libraries
import SciServer.CasJobs as CasJobs
#import SciServer.SkyServer as skys

import urllib.request
import os

# import utility Libraries

import pandas

import numpy as np

pandas.set option(‘display.max colwidth',None})
#import astropy

#from astropy.io import fits

#from astropy import wcs

#import skimage.io

#import matplotlib

from matplotlib import pyplot as plt

dataset = 'DR17’|

print(‘ok")

Fig 7. Importing Libraries for Sciserver Casjob
5.1.2 Extract Star Class images using SQL Query

ExecuteQuery() function was used to query Sciserver archive for Star Class FITS Files.

imgwidth = 512
imgheight = 512
imgscale = ©.024 # arcsec per pixel

Sql:"""

select top 3e42 s.objid, s.specobjid, s.class, p.ra, p.dec, p.u, p.g, p.r, p.i, p.z, p.run, p.rerun, p.camcol, p.field,
p.petror9@_r, REPLACE(dbo.fGetUrlFitsCFrame(s.fieldid, 'r'), 'http://das.sdss.org’,'/home/idies/workspace/sdss_das/das2"')
s fits_r

from specphoto s

join photoobj p on s.objid=p.objid where s.class = 'STAR'

df = CasJobs.executeQuery(sql, dataset)
df = df.set_index('objid")

df = df.assign(imglink = np.nan)

for ix, thisrow in df.iterrows():
df.loc[ix, 'imglink'] = ‘http://skyserver.sdss.org/{0:}/SkyServerWS/ImgCutout/getjpeg?ra={1:.4f}&dec={2:.4f}&scale={3:.2f}&h

# imgfilename = '{@:}.jpg".format(thisrow[ 'objid"'])

# imgfile = urllib.request.urlopen(imglink).read().decode()
# with open(imgfile, 'w') as f:

# f.write()

# print('done’)
# os.listdir()
df

Fig 8. SQL Query for retrieving STAR class FITS files



5.1.3 Saving STAR class image attributes in csv file

All information regarding STAR class images has been saved to a local drive via python data frame.

The CSV has FITS file URLs as well.

df.to csv('Skyserver SQL2 10 2622 Star.csv')

Fig 9. Save image information to CSV file

objid specobjid class ra dec u [ r z un rerun camcol field petrord0_ifits_r imglink

1.24E+18 3.24E417 STAR 1849983 -0.83329 225168 15.86943 18.80936 18.42688 18.11434 752 301 2 277 1.886306 http://dr17.sdss.orgfsas/dr17/eboss/photoDbi/frames/301/752, http://skyserver.sdss.or
1.24E418 3.29E417 STAR 192.3106 -0.82372 18.37756 17.23364 17.1101 17.05626 17.0541 752 301 2 326 1.53062 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/752, http://skyserver.sdss.org
1.24E418 3.04E417 STAR 153.5742 -0.95261 20.10137 19.07438 18.67575 18.50837 18.51201 756 301 1 252 1.549077 http://dr17.sdss.org/sas/dr17/eboss/phatoObi/frames/301/756, http://skyserver.sdss.on
1.24E+18 3.07E+17 STAR 157.2287 -0.93279| 22.1809] 19.73117 18.30559 17.97781 17.27904 756 301 1 277 1.279921 http://dr17.sdss.0rg/sas/dr17/eboss/photoDbi/frames/301/756, http://skyserver.sdss.on
1.24E+18 3.07E+17 STAR 157.3973 -1.01320 10.48027 18.17562 17.64455 17.44124 17.33864 756 301 1 278 1.331083 hitp://dr17.sdss.0rg/sas/dr17/eboss/photoObi/frames/301/756, hitp://skyserver.sdss.org
1.24E+18 3.14E417 STAR 169.0822 -0.93856 19.79673 17.83767 16.80932 16.34618 15.86454 756 301 1 356 8.389127 hitp://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, hitp://skyserver.sdss.org
1.24E418 3.04E417 STAR 152.4737 -0.48151 19.63906 19.4021 19.45169 18.8509 18.25064 756 301 2 245 1250542 hitp://dr17.sdss.org/sas/dr17/eboss/photoObj/frames/301/756, http://skyserver.sdss.org
1.24E+18 3.07E+17 STAR 158.1805 -0.54545 10.89175 20.08175 20.32298 20.63002 20.788 756 301 2 283 1.370201 http://dr17.sdss.org/ 7/eboss/photoObi/f /301/756, http://sky sdss. o
1.24E418  3.1E417 STAR 160.9953 -0.47853 10.04517 17.87662 17.49664 17.37287 17.33316 756 301 2 302 1.377759 http://dr17.sdss.org/sas/dr17/eboss/photoObi/f /301/756, http://sky .5dss.or
1.24E+18 3.11E+17 STAR 162.9077 -0.49897 20.40022 17.78141 16.42986 15.84891 15.52807 756 301 2 314 1.51429 http://dr17.sdss.org/sas/dr17/eboss/phatoObj/frames/301/756 http://skyserver.sdss.org
1.24E+18 3.24E+17 STAR 185.6969 -0.47676 21.49655 19.27652 18.11208 17.63111 17.3677 756 301 2 467 1.377804 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.ory
1.24E+18 3.07E+17 STAR 157.6916 -0.07177 20.21635 18.00464 18.91041 18.89328 18.85704 756 301 3 280 1.337706 http://dr17.sdss.ora/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.or
1.24E+18 3.07E417 STAR 1581911 -0.07371 22.29553 18.45618 18.00819 17.24348 16.79843 756 301 E] 283 1.592383 http://dr17.sdss.orgfsas/dr17/eboss/photoObi/frames/301/756, http://skyserver. sdss.or
1.24E418 3.15E417 STAR 171.526 -0.11257 19.34245 18.44862 18.68546 18.87642 19.02608 756 301 3 372 1.212863 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.org
1.24E418 3E417 STAR 145.2928 0.376326 19.31302 18.13527 17.67289 17.49996 17.44187 756 301 L] 197 1.572772 http://dr17.s5dss.org/sas/dr17/eboss/photoObjfframes/301/756, http://skyserver.sdss.on
1.24E+18 3.0BE+17 STAR 157.9704 0.213096 18.71556 17.57673 17.38265 17.33843 17.32211 756 301 4 281 1.181168 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.org
1.24E+18  3.1E+17 STAR 161.6125 0.306345 17.84553 16.82906 16.75385 16.88843 16.94442 756 301 4 306 1.278103 http://dri7.sdss.ora/sas/dr17/eboss/phatoObi/frames/301/756, http://skyserver.sdss.on
1.24E+18  3E417 STAR 1452841 0.706298 20.36442 18.21354 17.38881 17.11562  17.32 756 301 5 187 1.646003 http://dr17.sdss.ora/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.or
L24E+418  3E417 STAR 146.4971 0.742417 18.74275 17.26978 16.62725 16.34429 16.21385 756 301 5 205 1.416634 http://dr17.sdss.orgfsas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.or
1.24E418 3.07E417 STAR 156.7058 0.65153 19.97817 19.88066 20.21217 20.42117 20.54344 756 301 5 273 1.239124 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.on
1.24E+18 3.07E+17 STAR 156.8952 0.796079 17.18925 15.98545 15.53578 15.36095 15.28022 756 301 5 274 1.280231 http://dr17.sdss.0rg/sas/dr17/eboss/photoDbi/frames/301/756, http://skyserver.sdss.on
1.24E+18 3.09E417 STAR 160.9488 0.752416 19.9629 18.31689 17.90659 17.43141 17.28793 756 301 5 301 1.362178 hitp://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, hitp://skyserver.sdss.org
1.24E+18 3.12E+17 STAR 165.8836 0.744894 20.73067 20.30761 20.47252 20.71087 20.52414 756 301 5 334 1.598131 hitp://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, hitp://skyserver.sdss.org
1.24E418 3.07E+17 STAR 158.0297 1.238775 21.13235 18.40486 17.20728 16.66124 16.30044 756 301 6 282 1.359443 hitp://dr17.sdss.org/sas/dr17/eboss/photoObj/frames/301/756, http://skyserver.sdss.org
1.24E418  3.1E417 STAR 160.9145 1.076262 19.52762 18.34265 18.41109 18.50452 18.4938 756 301 ] 301 1.312291 http://dr17.sdss.org/sas/dr17/eboss/photoObjfframes/301/756, http://skyserver. sdss.org
1.24E+18  3.1E+17 STAR 162.1785 1.199562 23.88854 22.50401 19.85314 17.30329 15.43482 756 301 6 310 1.727914 http://dr17.sdss.org/sas/dr17/eboss/photoObi/f /301/756, http://sky .sdss. o
1.24E+18 3.15E417 STAR 170.8474 1111108 21.30914 20.17535 19.8846 13.4 19.33467 756 301 6 367 1.63108 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.org
1.24E+18 3.29E+17 STAR 192.9384 1.224697 20.46688 19.53189 19.15761 19.00493 18.99938 756 301 6 515 1.600863 http://dr17.sdss.org/sas/dr17/eboss/photoObi/frames/301/756, http://skyserver.sdss.org

Fig 10. CSV File Attributes of Star Images

5.1.4 Downloading STAR class JPEG images

Using the FITS file URLs, the file is converted into .jpg format and saved in a local drive. The same process was
followed for Galaxy and Quasars images as well.

## Importing Necessary Modules
import requests # to get image from the web
import shutil # to save it locally

for ix, thisrow in df.iterrows():

## Set up the image URL and filename

#image_url = "https://cdn.pixabay.com/photo/2626/62/06/09/39/summer-4823612_966_720.jpg"
filename = str(ix) + ' ' + str(thisrow['class']) + '.jpg’
# Open the url image, set stream to True, this will return the stream content.
r = requests.get(thisrow.imglink, stream = True)

# Check if the image was retrieved successfully
f r.status code == 200:

[

r.raw.decode_content = True

# Open a local file with wb ( write binary ) permission.
with open(filename,'wb') as f:
shutil.copyfileobj(r.raw, f)

print('Image sucessfully Downloaded: ',filename)
else:
print('Image Couldn\'t be retreived')

# Set decode content value to True, otherwise the downloaded image file's size will be zero.

Fig 11. Code Snippet for downloading images in .jpg format
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hdu.info()
ilename: d:\project\masters\frame-u-005194-2-8645.fits
lo. Name Ver Type Cards Dimensions Format
® PRIMARY PrimaryHDU 9 (2048, 1489) float32
1 ImageHDU E (2048,) float32
2 BinTableHDU 2 1R x 3C [49152E, 2@48E, 1489E]
BinTableHDU i~ 1R x 31C [3, 3A, 3, A, D, D, 23, 3, D, D, D, D, D, D, D, D, D,
, b, D,D,D,D,D, D, D, D, D, D, E, E]

|
2

il
1
il
1

Fig 12. General structure of FITS Files

6. Model Training

The following bundle contains all the models that were used throughout the training process for the different
datasets. The VGG16, InceptionV3, ResNet50, VGG16, and base CNN model with adam optimization were used
in this project's coverage of the models.

On the first run for each model, the learned weights from the model as it was trained using Image Net images
were retrieved. The format that was followed by each model was the same. As we are implemeting pre-
trained models, it was important to download weights for each model.

Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/vgel6/vgel6_weights_tf_dim_ordering_tf_kernels_notop.h5
58892288/58889256 [ ] - @s Qus/step
589004808/58889256 [ ] - @s Bus/step

Fig 13. Weights Downloading

6.1 Provision of necessary Python libraries

All of the models shared the same code and library components, as shown in Figure 14.

# Importing Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
%matplotlib inline

import cv2

import os

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import tensorflow as tf

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.layers import Dense, Dropeout, BatchNormalizaticn
from tensorflow.keras.models import Model

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.preprocessing import image

from keras.callbacks import ModelCheckpoint, EarlyStopping

from keras.layers import Dense, Activation, Flatten

from keras.layers.convolutional import Conv2D, MaxPooling2D

from tensorflow.keras.optimizers import Adam

from keras import models, layers, optimizers

import seaborn as sns

from keras.callbacks import History

from sklearn.metrics import classification_report, confusion_matrix
from pyparsing.core import trace_parse_action

import seaborn as sns

from sklearn.metrics import confusion_matrix

Fig 14. Provision of Python Libraries
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The google drive was mounted in colab so that SDSS images can be accessible for model training.

#Mounting Google Drive in Colab

from google.colab import drivq
drive.mount('/content/drive')

Fig 15. Mounting Google Drive in Colab

The working directory where sdss images are stored, was set for model training.

#5et Working directory for Input Images

path "/fcontent/drive/MyDrive/Thesis /5055 Images/Imageshew"

data = tf.keras.preprocessing.image dataset from directory(path)

Fig 16. Working directory

6.2 Change the notebook setting in Google colab

We changed the settings of python notebook in colab so that it would help model to train faster. The hardware
accelerator needs tbe change into GPU processing and Runtime Shape needs to change into High-RAM.

Notebook settings

Hardware accelerator

GPU ~ @

To get the most out of Colab Pro, avoid using a GPU unless you

need one. Learn more

Runtime shape
High-RAM -~

[] Background execution

Want your notebook to keep running even after you

close your browser? Upgrade to Colab Pro+
[C] Omit code cell output when saving this notebook

Cancel Save

Fig 15. Notebook settings in Colab



6.3 Image Augmentation

The training, validation and Testing dataset were generated using image augmentation

techniques.

train_datagen

)

rescale

)

test_datagen

rescale

#Using ImageDataGenerator Function for Pre-processing

ImageDataGenerator(
rescale = 1./255,
rotation_range
width_shift_range
height shift_range
horizontal _flip = True,
vertical flip
fill mode='nearest’

validation_datagen

ImageDataGenerator(

20,

9.2,

-
8.2,

True,

= ImageDataGenerator(
1./255

1./255

Fig 16. Image Augmentation on SDSS Images

6.4 Model Modification

The basic model was brought in; however, the topmost layer was not. After that, the models were made
untrainable to locate the layers that had previously been trained; these layers were able to extract features
from images. The models have had four extra layers added to them, and they are now configured to be

trainable.

#Adding new layers to VG016

Dense(512, activation="relu")(headModel)
Dense(3, activation="softmax")({headModel)

head FC model on top of the base model (this will become the actual model we will train)

headModel = vgg.output

headModel = Flatten(name="flatten")(headModel)
headModel =

headModel = Dropout(8.5) (headModel)

headModel =

# place the

model = Model{inputs=vgg.input, outputs=headModel)

Fig 17. Adding new layers to the base model
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The model was compiled using compile() function

# Compile the model

model.compile(loss="categorical crossentropy’,
optimizer="adam",
metrics=["acc'])

Fig 18. Model Compilation

The models were executed while using the function called fit()

# Train the VGG16 model

es = EarlyStopping(monitor=‘val_loss', mode="min", verbose=1, patience=18)
mc = ModelCheckpoint('VGEG16 Classifier.h5', monitor='val_acc', mode="max", verbose=1, save_best_only=True)

history = model.fit(
train_generator,
steps_per_epoch=15@ ,
epochs=18,
validation_data=validation_generator,
validation_steps=validation_generator.samples//batch_size,
verbose=1,
callbacks = [es, mc],)

Fig 19. Model Execution

Once the model training is completed, training-validation plots were plotted to review the results.

#Plot for Training and Validation Accuracy - VGG16

train_acc = history.history[ acc']
val acc = history.history['val_acc']

train_loss = history.history['loss']

val_loss = history. history["val_loss'] #Plot for Training and Validstion Loss Function - VGG16
epochs = range(1, len(train_acc) + 1)
plt.plot(epochs, train loss, 'b*-', label = ‘Training loss')
plt.plot(epochs, train_acc, 'b*-', label = 'Training accuracy') | | plt.plot(epochs, val loss, 'r', label = 'Validation loss')
plt.plot(epochs, val_acc, 'r', label = 'Validation accuracy') plt.title('Training and validation loss')
plt.title('Training and validation accuracy') plt. legend()

plt.legend()

plt.figure() plt. shou()

Fig 20. Plots for Training-Validation Accuracies and Loss function for the models

6.5 Model Fine-Tuning

The method of fine-tuning involves taking a model that has previously been trained for one specific job and
then tweaking or otherwise modifying the model to have it execute a second task that is like the first.
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In this scenario, the parameters of our already trained model were tuned meaning the few parameters of our
model were unfreezed so that it can learn some new specific features which might help us in this classification
task.

# Fine Tuning of vaGGle Model
# We chose to freeze first 15 layers of the model and rest of the layers will be trainable

for layer in vgg.layers[15:]:
layer.trainable = True

Fig 21. Tuning of VGG16 Model

Now, the model had to be trained again.

# Train the VG616 model

g5
mc

EarlyStopping(monitor="val_loss', mode="min", verbose=1, patience=13)
ModelCheckpoint ("VGG16e Classifier.h5', monitor="wal_scc’', mode="max', verbose=1, save_best_only=True)

history = model.fit(
train_generator,
steps_per_epoch=15& ,
epochs=18,
validation_data=validation_generator,
validation_steps=validation_generator.samples//batch_size,
verbose=1,
callbacks = [es, mc],)

Fig 22. Model training after fine-tuning

Again, we had to plot training-validation plots.

#Plot for Training and Validation Accuracy - VGG16 : After Fine-Tuning

train_acc = vggld_tuning.history[ 'acc']
val_acc = vgglé_tuning.history['val acc']

train loss = vggl6 tuning.history["loss’] #Plot for Training and Validation Loss Function - VGG16
val_loss = vgglé_tuning.history['val loss']

epachs = range(1, len(train acc) + 1) plt.plot(epochs, train_loss, 'b*-', label = 'Training loss')
plt.plot(epochs, val loss, 'r', label = 'Validation loss')

1t.plot(epochs, train_acc, 'b*-', label = 'Traini acy' 0O . 0
pLt.plot(epochs e S e ) plt.title('Training and validation loss')
plt.plot(epochs, val acc, 'r', label = 'Validation accuracy')

plt.title('Training and validation accuracy’) plt'l‘:-'gend{)

plt.legend()
plt. shou()

plt.figure()

Fig 23. Training-Validation Plots after Fine-Tuning
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7. Evaluation and Results

The following is a complete record of the results, which were missing from the report on the project. Every
model was put through its paces, and the accuracy of the models was used to evaluate how well they
performed.

7.1 VGG16 Model

# Results of VaGle after Fine-tuning

training_accuracy_ vggle = vgelté tuning.history['acc'][-1]
training_loss_wvggle vggle _tuning.history['loss'][-1]

validation_accuracy wgglh = vggle_tuning.history['val acc'][-1]

validation loss wvgglé vggleé tuning.history['val loss'][-1]

print("Training Accuracy VGG1é& :", training_accuracy vggle )

print({"Training Loss VWGGle :", training_loss_wggle)
print({"validation Accuracy VGG1Ee :", wvalidation_accuracy_wgglg)

print("Validation Loss VGG16 1", walidation_loss_wgglé)

Training Accuracy VGGlE : @.8R75330281257629
Training Loss VGGlEe : ©.35223162174224554

Validation Accuracy VGGlEe : @.5604018969734192
Validation Loss VGEG16 v @.3818811774253845

Fig 24. Accuracies of VGG16

Epoch 1/18
158/158 [ ] - 695 455ms/step - loss: 8.5315 - acc: 8.7433 - val_loss: 0.4481 - val_acc: 0.8292
Epoch 2/1@
150/15@ [ ] - 675 443ms/step - loss: 8.5277 - acc: 0.7382 - val loss: 9.4233 - val acc: 0.8504
Epoch 3/18
158/150 [ ] - 675 448ms/step - loss: 8.5250 - acc: 8.7648 - val_loss: 0.4224 - val_acc: 0.8482
Epoch 4/18
158/158 [ ] - 675 447ms/step - loss: 8.4983 - acc: 8.7971 - val_loss: @.4522 - val_acc: 8.8259
Epoch 5/1@
150/15@ [ ] - 675 448ms/step - loss: 0.4606 - acc: 0.8361 - val_loss: 9.4415 - val acc: 8.8471
Epoch 6/18@
158/150 [ ] - 675 448ms/step - loss: 8.4495 - acc: 8.8371 - val_loss: @.4865 - val_acc: 0.8527
Epoch 7/18
150/158 [ ] - 675 448ms/step - loss: 0.4228 - acc: 0.8437 - val_loss: 9.3918 - val_acc: 0.8605
Epoch 8/18@
150/15@ [ ] - 68s 45@ms/step - loss: 0.4231 - acc: 0.8483 - val_loss: 9.4285 - val_acc: 0.8304
Epoch §/18
150/158 [ ] - 68s 45@ms/step - loss: @.4828 - acc: 8.8523 - val_loss: @.3899 - val_acc: 8.8527
Epoch 10/12
150/158 [ ] - 67s 449ms/step - loss: 0.3782 - acc: 0.8587 - val_loss: 9.3815 - val_acc: 8.8560

Fig 25. Epoch Run of VGG16
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#Plot for

train_acc
val_acc =

Training and Validation Accuracy - VG616 : After Fine-Tuning

= vgegle _tuning.history['acc’]
vggle_tuning.history[ 'val_acc']

train_loss = vgglé_tuning.history['loss']

val_loss = wgglé tuning.history['wval_loss']

epochs = range(l, len(train_acc) + 1)

plt.plot{epochs, train_acc, 'b*-', label = "Training accuracy')

plt.plot(epochs, val_acc, 'r', label = 'Validation accuracy’)
plt.title( Training and validation accuracy")
plt.legend()

plt.figure()

<Figure size 432x288 with @ Axes:

Training and validation accuracy

0.86 1

0.84 4

0.82

0.80

0.78

=+~ Taining accuracy
—— Validation accuracy

2 ] B B 10

<Figure size 432x288 with @ Axes:

Fig 26. Training-Validation Accuracy Plot - VGG16

#P1

plt
plt
plt
plt

plt

0.52 1
0.50 1
0.48

0.46 -
0.44 4
0.42

0.40 1
0.38 4

ot for Training and Validation Loss Function - VGG16

.plot(epochs, train_loss, 'b*-', label = 'Training loss')

.plot(epochs, val loss, 'r", label = "Validation loss')
.title( 'Training and validation loss')
legend()

+show()

Training and validation loss

=& Taining loss
—— Validation loss

Fig 27. Training-Validation Loss Function Plot - VGG16
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# Generating Confusion Matrix - VGG16

Y_pred_vgg = model.predict(validation_generator, validation_generator.samples // batch_size+l)
¥Y_pred_veg = np.argmax(Y_pred_vgg, axis=1)

print('Confusion Matrix')

ax= plt.subplot()

conf_matrix_wvgg = confusion_matrix(validation_generator.classes, Y_pred_vgg)
sns.heatmap(conf_matrix vgg, annot=True, ax = ax, fmt="d"); #annot="True to annotate cells
cm_vgg = np.array2string(conf_matrix_vgg)

#print(conf_matrix_vgg)

# labels, title and ticks

ax.set_xlabel('Predicted labels');
ax.set_ylabel('True labels®);

ax.set_title( Confusion Matrix');
ax.xaxis.set_ticklabels(['Galaxy', "Qs0°, 'Star']);
ax.yaxis.set_ticklabels(['Galaxy', "Qs0°, 'Star']);

Confusion Matrix

Confusion Matrix

- 250

Galaxy

- 200

150

Tue labels
o5

Star

Galaxy as0 Star
Predicted labels

Fig 28: Confusion Matrix - VGG16

7.2 InceptionV3 Model

## Results of InceptionV¥3 after Fine-tuning

training_accuracy_inception = inceptionv3 tuning.history['accuracy'][-1]
training_loss_inception = inceptionv3_tuning.history['loss"][-1]
validation_asccuracy_inception = inceptionv3_tuning.history['val_accuracy'][-1]
validation_loss_inception = inceptionv3 tuning.history['wval_loss'][-1]

print{("Training Accuracy InceptionV3 » training_accuracy_inception )}

print{"Training Loss InceptionV3 :", training_loss_inception)

print{"validation Accuracy InceptionV3 :", wvalidation_accuracy_inception)

nr

print{"Validation Loss InceptionV3 :", walidation_loss_inception)

Training Accuracy InceptionV3 ! 9.8465420683752136
Training Loss InceptionV3 : @.421545329253587244
Validation Accuracy InceptionV3 : ©.8392857313156128
Validation Loss InceptionVd : @.42876554894447327

Fig 29. Accuracies of InceptionV3
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Epoch 1/18

230/238 [ ] - 995 432ms/step - loss: 0.4196 - accuracy: @.8386 - val_loss: @.4247 - val_accuracy: 9.8337
Epoch 2/18
230/230 [ ] - 995 431ms/step - loss: 8.427@ - accuracy: 9.8394 - val loss: 8.4345 - val_accuracy: 8.5326
Epoch 3/18
230/238 [ ] - 99s 43@ms/step - loss: 0.4241 - accuracy: ©.8412 - val_loss: 9.4421 - val_accuracy: 8.827@
Epoch 4/18
230/230 [ ] - 995 432ms/step - loss: @.4857 - accuracy: @.8486 - val_loss: 9.4157 - val_accuracy: 9.8304
Epoch 5/18
230/238 [ ] - 995 429ms/step - loss: 8.4158 - accuracy: @.8418 - val_loss: @.3944 - val_accuracy: 9.8493
Epoch 6/18
230/230 [ ] - 1e@s 433ms/step - loss: @.4116 - accuracy: @.8448 - val loss: @,3783 - val_accuracy: @.8482
Epoch 7/18
23e/238 [ ] - 995 431ms/step - loss: ©.4882 - accuracy: 0.8441 - val_loss: 9.4208 - val_accuracy: 0.8460
Epoch 8/18
230/230 | ] - 995 43Ims/step - loss: @.4189 - accuracy: 8.8435 - val loss: 8.4332 - val accuracy: 0.8504
Epoch 9/18
23e/238 [ ] - 995 429ms/step - loss: 0.4836 - accuracy: 0.8471 - val_loss: @.4323 - val_accuracy: 0.8337
Epoch 12/18
230/230 | ] - 995 438ms/step - loss: 0.4015 - accuracy: 8.8485 - val loss: 8.4208 - val accuracy: 8.8393
Fig 30. Epoch Run of InceptionV3

#Plot for Training and Validation Accuracy - InceptionVv3

train_acc = inceptionv3 _tuning.history[ "acc®]

val acc = inceptionv3_tuning.history[ 'wval_acc”]

train_loss = inceptionv3_tuning.history[ "loss"]

val loss = inceptionv?_tuning.history[ "wval loss']

epochs = range(l, len{train_acc) + 1)

plt.plot(epochs, train_acc, 'b*-"'", label = "Training accuracy')

plt.plet(epochs, wal_acc, "r', label = "walidation accuracy”)

plt.title " Training and walidation accuracy")
plt.legend(}

plt.figure()

<Figure size 432x288 with @ Axes>
Training and walidation accuracy

0.880 -
—a— Taining accuracy
0.875 {4 —— WValidation accuracy
0870
0865
D.asl

0.855

0850

0.845

D840

2 4 & B 10
<Figure size 432x288 with @ Axes:>

Fig 31. Training-Validation Accuracy Plot — InceptionV3
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#Plot for Training and Validation Loss Function - InceptionV3
plt.plot(epochs, train_loss, 'b*-', label = "Training los
plt.plot(epochs, wval_loss, 'r', label = 'Validation loss'
plt.title('Training and wvalidation loss')

plt.legend()

=)
)

plt.show()

Training and validation loss

—&— Taining loss

— Validation loss

0.38 1

0.37 4

0.36 1

0.35 4

0.33

Fig 32. Training-Validation Loss Function Plot — InceptionV3

import seaborn as sns

# Generating Confusion Matrix - InceptionV3

¥_pred_inception = model.predict(validation_generator, validation_generator.samples // batch_size+l)
Y_pred_inception = np.argmax(¥Y_pred_inception, axis=1)

print(’Confusion Matrix')

ax= plt.subplot()

conf_matrix_inception = confusion_matrix(validation_generator.classes, Y_pred_inception)
sns.heatmap(conf_matrix_inception, annot=True, ax = ax, fmt="d"); #annot=True to| annotate cells
cm_vgg = np.array2string(conf_matrix_inceptien)

#print(conf_matrix_vgg)

# labels, title and ticks

ax.set_xlabel('Predicted labels');
ax.set_ylabel('True labels');
ax.set_title('Confusion Matrix');

ax.xaxis.set ticklabels(['Galaxy', 'QSD', 'Star']);
ax.yaxis.set_ticklabels(['Galaxy', 'QsD’, 'Star']);

Confusion Matrix
Confusion Matrix

z
5 0
3
- 200
3
2 -
2 2 150
¥
-
- 100
3 -5

Galaxy as0 Star
Predicted labels

Fig 33. Confusion Matrix — InceptionV3
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7.3 ResNet50 Model

## Results of ResNet5@ after Fine-tuning

training_accuracy_resnet = resnet_tuning.history['accuracy'][-1]
training_loss_resnet = resnet_tuning.history['loss'][-1]
validation_accuracy_resnet = resnet_tuning.history['val_accuracy'][-1]
validation_loss_resnet = resnet_tuning.history['val_loss'][-1]
print("Training Accuracy ResNet5@ :", training_accuracy_resnet )
print("Training Loss ResNet5@ :", training_loss_resnet)
print(“validation Accuracy ResNet5® :", wvalidation_accuracy_resnet)
print("validation Loss ResNet5@| :", validation_loss_resnet))

Training Accuracy ResNet5@ * 0,.81721A548587799

Training Loss ResNet5@ : B.5089188347892761
Validation Accuracy ResMetS@ : @.7979910969734192
Validation Loss ResNet5@ ! ©.6832733750343323

Fig 34. Accuracies of ResNet50

#PLlot for Training and Validation Accuracy - ResNet5@ - After Tuning

train_acc = resnet_tuning.history["accuracy’]
val acc = resnet_tuning.history['val accuracy']
train_loss = resnet_tuning.history[ 'loss']

val loss = resnet tuning.history['val loss']

epochs = range(1, len(train_acc) + 1)

plt.plot(epochs, train_acc, 'b*-', label = 'Training accuracy')
plt.plot(epochs, val acc, 'r', label = 'validation accuracy"')
plt.title('Training and validation accuracy')

plt.legend()

plt.figure()

<Figure size 432x288 with ©® Axes>

Training and validation accuracy

0.820 1
0.815 1

—+— Taining accuracy
0.810 —— Validation accuracy
0.805 1
0.800 -

Fig 35: Training-Validation Accuracy Plot - ResNet50
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Epoch 1/10
230/238 [

Epoch 2/1@
230/230 [

114s 485ms/step

Epoch 3/10
230/230 [

] - 181ls 43%ms/step

Epoch 4/18
230/230 [

Epoch 5/18

230/230 [
Epoch 6/10

230/238 [
Epoch 7/18

230/230 [
Epoch 8/10

230/230 [
Epoch 9/10

230/238 [
Epoch 18/18
230/238 [

] - 1els 437ms/step
] - lees 435ms/step
] - 1@@s 435ms/step
] - 1@@s 437ms/step
] - lees 435ms/step
] - lees 435ms/step
] - 1@@s 436ms/step

] - 1@@s 433ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss

loss

@.5002

@.5@35

@.5817

@.5049

@.5a19

@.4982

@.5839

@.50828

1 B.4962

1 B.5889

accuracy:

accuracy:

accuracy.

accuracy.

accuracy:

accuracy:

accuracy.

accuracy.

accuracy:

accuracy:

8.8187

8.8191

8.8221

@.8209

8.8160

8.8182

8.8223

@.8174

8.8191

8.8172

val loss:
val loss:
val_loss:
val_loss:
val loss:
val loss:
val_loss:
val_loss:
val loss:

val loss:

B.8833

8.6833

B.6833

B.6833

8.6833

8.6833

B.6833

B.6833

8.6833

8.6833

val accuracy:
val accuracy:
val_accuracy:
val_accuracy:
val accuracy:
val accuracy:
val_accuracy:
val_accuracy:
val accuracy:

val accuracy:

7980

7930

. 7980

. 7980

7930

7930

. 7980

. 7980

7930

7930

Fig 36: Epoch Run of ResNet50

#Plot for Training and Validation Loss Function - ResNet5@ - After Tuning

plt.plot(epochs, train_loss,

'b*-", label = 'Training loss’)

plt.plot(epochs, val_loss, 'r', label = '"Validation loss')

plt.title('Training and validation loss')
plt.legend()

plt.show()

Training and validation loss

0.675 A

0650 4

0.625 1

0.600 +

0575

0.550 1
0.525 1

0.500 r-"‘—*""‘“"——f-""_“'--./"*

—i— Taining loss
— Validation loss

Fig 37. Training-Validation Loss Function Plot — ResNet50
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import seaborn as sns
# Generating Confusion Matrix - ResNetSe

¥_pred_resnet = model.predict(validation_generator, validation_generator.samples // batch_size+l1)
Y_pred_resnet = np.argmax(Y_pred_resnet, axis=1)

print{"Confusion Matrix')

ax= plt.subplot()

conf_matrix_resnet = confusion_matrix(validation_generator.classes, Y_pred_resnet)
sns.heatmap(conf_matrix_resnet, annot=True, ax = ax, fmt="d"}; #annot=True to annotate cells
cm_vgg = np.array2string(conf_matrix_resnet)

#print(conf_matrix_vgg)

# labels, title and ticks

ax.set_xlabel('Predicted labels');
ax.set_ylabel({ 'True labels');
ax.set_title('Confusion Matrix");
ax.xaxis.set_ticklabels(['Galaxy', 'QS0', 'Star']);
ax.yaxis.set_ticklabels(['Galaxy', 'QS0’, 'Star']);

Confusion Matrix
Confusion Matrix

-
& - 50
3

= 200

@

£

Eg 150

)

=

-

100
k- - 50

Caalaxy 50 Skar
Bradictad lahaic

Fig. 38 Confusion Matrix — ResNet50

7.4 CNN with Adam Optimizer

## Results of CHNN (Adamj|after Fine-tuning

training_accuracy_cnn = history.histery['acc'][-1]
training_less_cnn = history.history['loss"][-1]
history.history['

val acc'][-1]
history.history['val loss'][-1]

validation_accuracy cnn

validation loss_cnn
print("Training Accuracy CHNN with adam cptimizer :", training_accuracy_cnn )
print("Training Loss CNN with adam optimizer :", training_loss_cnn)

print(“"Validation Accuracy CNMN with adam optimizer :™, validation_accuracy cnn)
print(“"Validation Loss CNN with adam optimizer

'y walidation_loss_cnn)

Training Accuracy CHMN with adam ocptimizer : @.B84B80425477827893
Training Loss CNN with adam optimizer : ©.3961517810821533
Validation Accuracy CNN with adam optimizer : ©.7957589038265388
Validation Loss CNMN with adam optimizer : @.567@728087425232

Fig 39. Accuracies of CNN (Adam)
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Epoch 1/18
238/230 [==
Epoch 2/1@
23@/230 [==
Epoch 3/1@
238/230 [==
Epoch 4/1@
238/238 [==
Epoch 5/1@
230/230 [==
Epoch 6/1@
238/230 [==
Epoch 7/1@
230/230 [==
Epoch 8/1@
238/230 [==
Epoch 9/1@
238/238 [==
Epoch 18/1@
238/230 [==

===] - 1145 435ms/step - loss: @.391@ - acc: @.855@ - val loss: @.453@

===] - 113s 48@ms/step - loss: @.3956 - acc: @.8534 - val loss: @.4755

===] - 1135 491ms/step - loss: @.3914 - acc: @.8524 - val loss: @.4862

===] - 113s 4%@ms/step - loss: @.3861 - acc: @.8591 - val loss: @.4781

===] - 1135 491ms/step - loss: @.3817 - acc: @.8542 - val_loss: @.5292

===] - 1135 48%ms/step - loss: @.3789 - acc: @.8530 - val loss: @.4441

===] - 113z 439ms/step - loss: @.3746 - acc: 8.8564 - val_loss: @.4854

===] - 1135 491ms/step - loss: @.3782 - acc: @.86@5 - val loss: @.4348

===] - 1125 48%ms/step - loss: @.3673 - acc: 9.86@5 - val_loss: @.4489

===] - 1135 49@ms/step - loss: @.361@ - acc: @.8613 - val_loss: @.4177

val acc:
val acc:
val acc:
val acc:
val_acc:
val acc:
val_acc:
val acc:
val_acc:

val_acc:

8382

5038

5348

8382

L7946

8415

8214

5348

8438

.8616

Fig 40. Epoch Run of CNN (Adam)

#Plot for Training and Validation Accuracy - CNN{Adam) - After Tuning

train_acec = history.history['acc']

val acc = history.history[ val_acc']
train_loss = history.history['loss"]
val_loss = history.history['val_loss']

epochs = range(l, len(train_acc) + 1)

plt.plot(epochs, train_acc, 'b*-', label = 'Training accuracy')
plt.plot(epochs, wval_acc, °"r', label = 'Validation accuracy’)
plt.title('Training and walidation accuracy')

plt.legend()

plt.figure()

<Figure size 432x285 with @ Axes>
Training and validation accuracy

084 4

082 {

0.80

078

0.76

0.74

== Faining accuracy
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072 1

2 4 6 B 10
<Figure size 432x288 with @ Axes>»

Fig 41. Training-Validation Accuracy Plot — CNN (Adam)

21




#Plot for Training and Validation Loss Function - CNM{Adam) - After Tuning
plt.plet(epochs, train_loss, 'b*-', label = 'Training loss")
plt.plet(epochs, val _loss, 'r', label = 'Validation loss’
plt.title{'Training and validation loss")

plt.legend(}

)

plt.show()

Training and validation loss

—&= Training loss
065 1 — Validation loss

0.55
0.50
0.45 4

0.40 1

Fig 42. Training-Validation Loss Function Plot — CNN (Adam)

# Generating Confusion Matrix - CHNN

¥_pred_cnn = model.predict(validation_generator, validation_generator.samples // batch_size+1)
Y¥_pred_cnn = np.argmax(Y_pred_cnn, axis=1)

print( Confusion Matrix')

ax= plt.subplot()

conf_matrix_cnn = confusion_matrix(validation_generator.classes, Y_pred_cnn)

sns.heatmap (conf_matrix_cnn, annot=True, ax = ax, fmt="d"); #annot=True to annotate cells
cm_cnn = np.array2string(conf_matrix_cnn)

#print(conf_matrix_vgg)

# labels, title and ticks
ax.set_xlabel('Predicted labels');
ax.set_ylabel( 'True labels'};
ax.set_title( Confusion Matrix');

Confusion Matrix

Confusion Matnx

Fue labels

1 2
Predicted labels

-

Fig. 43 Confusion Matrix — CNN (Adam)
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