

Deep Learning Techniques for

Classification of Astronomical Objects

Configuration Manual

MSc Research Project

Programme

Yogiraj Subhash Dalvi

Student ID: 20205741

School of Computing

National College of Ireland

Supervisor: Abubakr Siddig

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Yogiraj Subhash Dalvi

Student ID:

20205741

Programme:

MSc in Data Analytics

Year:

2022

Module:

Research Project

Lecturer:

Abubakr Siddig

Submission

Due Date:

19th September 2022

Project Title:

Deep Learning Techniques for Astronomical Object Classification

Word Count:

2258 Page Count: 23

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

authors’ written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Yogiraj Subhash Dalvi

Date:

19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Yogiraj Subhash Dalvi

Student ID: 20205741

1 Introduction

This report is a component of the submission made by the student Yogiraj Subhash Dalvi for

the Master of Science degree in Data Analytics. It serves as the configuration manual for the

manual that describes how to implement Deep Learning Techniques for the classification of

astronomical objects. As Section 2 gives us the extra details of the thesis paper submitted,

section 3 goes into detail about the hardware that was utilized, and section 4 gives us

a discussion about the framework that was used to create the models. The steps to choose

and acquire the images which will be utilized are discussed in Section 5. The Python code

that was used to obtain and pre-process the SDSS pictures is walked through in Section 6.

Training of models is discussed in Section 7, which follows, and section 8 discusses the

outcomes that were obtained from the training.

2 Additional Details from Thesis Technical Report

The following is a list of supporting documentation that was discovered or researched as part

of the research effort; however, due to limitations in the document, it was not included in the

final thesis report.

2.1 Methodology

TensorFlow is a high-scale machine learning system. TensorFlow employs dataflow graphs

to describe computation, shared state, and mutations. It translates a dataflow graph over many

computers in a cluster and inside a machine across several processing devices, including

multicore CPUs, GPUs, and Tensor Processing Units (TPUs). This architecture allows the

application developer freedom, unlike earlier "parameter server" implementations.

TensorFlow lets developers try new training and optimization strategies. TensorFlow focuses

on training and inferring deep neural networks. Several Google services utilize TensorFlow

in production, and the open-source project is used for machine learning research. In this

publication, the TensorFlow dataflow model is explained. (TensorFlow, 2022) This study

implemented three pre-trained CNN models along with a base CNN model with adam

optimization and it was compared against the same models but, they were trained on the

ImageNet dataset.

2.2 Convolutional Neural Networks

Deep learning makes use of many kinds of neural networks, and one of those networks is

called a convolutional neural network. Because of the work done by CNN, image recognition

has made great progress in recent years. CNN’s are comprised of several layers, the most

2

notable of which are the input layer, the output layer, and the hidden layers. The processing

and classification of images is helped along in some fashion by each of these levels in some

manner. Every layer is considered while calculating the hidden layers. Each one of these

layers contributes significantly to the overall functionality of the network.

2.3 Data Acquisition

Once we get all the FITS to file URLs after querying the SDSS archive server, all those files

were downloaded locally using the “shutil” library.

Fig 1: Saving SDSS files in .jpeg format to local drive after fetching FITS file URLs

After downloading images, they were segregated into three classes.

Fig 2: Sample Images from SDSS Data Release 17

FITS files download location: http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/
SDSS JPEG files Download location: http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/

http://skyserver.sdss.org/DR17/SkyServerWS/ImgCutout/getjpeg?ra=184.9983&dec=-0.8333&scale=0.05&height=512&width=512

3

2.4 Data Pre-Processing

After the data had been obtained in the fit format, it was then processed to minimize its size and convert it to
an image format so that it could be handled further down the line. This processing, along with the other
portions of the model's design, training, and testing, was carried out locally. It was decided to download the
FITS files and store them in individual sub-directories, one for each class. After that, the pictures were taken
from each FITS image, assembled into a plot, and then saved as a PNG file. Finally, the image was closed, and
the process was repeated with the subsequent image in the directory. Python was used to write this
procedure, and the Config Manual that was given along with this report has comprehensive information on the
various pieces of hardware and software that were deployed.

2.4.1 Image Augmentation

Image data augmentation is a method that entails developing changed variants of the images that are included
within a training dataset. These new versions of the images are then used in the training process. After then,
the updated copies are put to use for instructional reasons. This makes it feasible to artificially grow the size of
the dataset without the need to collect any more data throughout the process. There are different types of
augmentation techniques, such as:

1. Horizontal or vertical image flipping.
2. Choose clockwise or counterclockwise to rotate the image.
3. Rescaling pixels of the image
4. Randomly cropping an image

2.5 Data Extraction and Transformation

The SDSS Survey archive servers are the source of the data in this particular instance. The data that was
utilized may be found on the servers at dr17.sdss.org. DR17 referred to the 17th data release of information
based on the findings of the survey. All the data has already undergone preprocessing, during which any digital
noise or "poor" photos were eliminated. Before the data was made public, any images that had been
negatively influenced by bad weather circumstances or unfavorable atmospheric conditions were deleted.

3. Hardware Specification

System: Gaming HP Laptop 15th Generation
Processor: Intel(R) Core (TM) i5-10300H CPU @ 2.50GHz
Installed RAM: 16.0 GB (15.8 GB usable)
OS: Windows 10 Pro 64-bit edition

Graphics Card: NVIDIA GeForce GTX1660 Ti ,6GB DDR6

4. Software used

This section provides a list of all apps that must be installed in order for the project to be successfully
executed, as well as screen images.

4.1 Applications Developed by Microsoft

The ordinary versions of Microsoft Office and the operating system that were utilized in this study do not come
with any installation instructions. Any extra components that were used are: Microsoft Excel, PowerPoint, and
Snipping Tool

4

4.2 Google Colab

The acronym "Colab" refers to the product that was developed by Google Research and is known as the
Colaboratory. Colab is an online platform that enables users to create and run any Python code directly in their
web browser. This platform is particularly useful for machine learning and data analysis.

1. Go to https://colab.research.google.com/

2. You need to sign up in colab to create an account in colab

 Fig 3. Google Colab Home Page

3. Login with your Gmail account credentials.

 Fig 4. Google Sign-In In Colaboratory

https://colab.research.google.com/

5

4. Create a new notebook to start working in colab

 Fig 5. New Python Notebook in Colab

5. There are three types of colab versions:

Fig 6. Google Colab Plans

The another advantage og google colab is that majority of the python dependancies have already been
installed in it so, there would be no need to install any dependancies in it.

6

5. Downloading SDSS Images

Images were retrieved from the server that houses the SDSS archive. The format of the queries was
determined, in both instances, by the website that was being queried.

5.1 Querying SDSS Catalogue Archive Server using Python and SQL

The code to extract the images from SDSS (Sdss.org. Data Release 17, 2022) archive server is as follows.

5.1.1 Importing necessary libraries for Sciserver

Fig 7. Importing Libraries for Sciserver Casjob

5.1.2 Extract Star Class images using SQL Query

ExecuteQuery() function was used to query Sciserver archive for Star Class FITS Files.

 Fig 8. SQL Query for retrieving STAR class FITS files

7

5.1.3 Saving STAR class image attributes in csv file

All information regarding STAR class images has been saved to a local drive via python data frame.

Fig 9. Save image information to CSV file

The CSV has FITS file URLs as well.

Fig 10. CSV File Attributes of Star Images

5.1.4 Downloading STAR class JPEG images

Using the FITS file URLs, the file is converted into .jpg format and saved in a local drive. The same process was
followed for Galaxy and Quasars images as well.

Fig 11. Code Snippet for downloading images in .jpg format

8

Fig 12. General structure of FITS Files

6. Model Training

The following bundle contains all the models that were used throughout the training process for the different
datasets. The VGG16, InceptionV3, ResNet50, VGG16, and base CNN model with adam optimization were used
in this project's coverage of the models.

On the first run for each model, the learned weights from the model as it was trained using Image Net images
were retrieved. The format that was followed by each model was the same. As we are implemeting pre-
trained models, it was important to download weights for each model.

Fig 13. Weights Downloading

6.1 Provision of necessary Python libraries

All of the models shared the same code and library components, as shown in Figure 14.

Fig 14. Provision of Python Libraries

9

The google drive was mounted in colab so that SDSS images can be accessible for model training.

Fig 15. Mounting Google Drive in Colab

The working directory where sdss images are stored, was set for model training.

Fig 16. Working directory

6.2 Change the notebook setting in Google colab

We changed the settings of python notebook in colab so that it would help model to train faster. The hardware
accelerator needs tbe change into GPU processing and Runtime Shape needs to change into High-RAM.

Fig 15. Notebook settings in Colab

10

6.3 Image Augmentation

The training, validation and Testing dataset were generated using image augmentation

techniques.

Fig 16. Image Augmentation on SDSS Images

6.4 Model Modification

The basic model was brought in; however, the topmost layer was not. After that, the models were made
untrainable to locate the layers that had previously been trained; these layers were able to extract features
from images. The models have had four extra layers added to them, and they are now configured to be
trainable.

Fig 17. Adding new layers to the base model

11

The model was compiled using compile() function

Fig 18. Model Compilation

The models were executed while using the function called fit()

Fig 19. Model Execution

Once the model training is completed, training-validation plots were plotted to review the results.

Fig 20. Plots for Training-Validation Accuracies and Loss function for the models

6.5 Model Fine-Tuning

The method of fine-tuning involves taking a model that has previously been trained for one specific job and
then tweaking or otherwise modifying the model to have it execute a second task that is like the first.

12

In this scenario, the parameters of our already trained model were tuned meaning the few parameters of our
model were unfreezed so that it can learn some new specific features which might help us in this classification
task.

Fig 21. Tuning of VGG16 Model

Now, the model had to be trained again.

Fig 22. Model training after fine-tuning

Again, we had to plot training-validation plots.

Fig 23. Training-Validation Plots after Fine-Tuning

13

7. Evaluation and Results

The following is a complete record of the results, which were missing from the report on the project. Every
model was put through its paces, and the accuracy of the models was used to evaluate how well they
performed.

7.1 VGG16 Model

Fig 24. Accuracies of VGG16

Fig 25. Epoch Run of VGG16

14

Fig 26. Training-Validation Accuracy Plot - VGG16

Fig 27. Training-Validation Loss Function Plot - VGG16

15

Fig 28: Confusion Matrix - VGG16

7.2 InceptionV3 Model

Fig 29. Accuracies of InceptionV3

16

Fig 30. Epoch Run of InceptionV3

Fig 31. Training-Validation Accuracy Plot – InceptionV3

17

Fig 32. Training-Validation Loss Function Plot – InceptionV3

Fig 33. Confusion Matrix – InceptionV3

18

7.3 ResNet50 Model

 Fig 34. Accuracies of ResNet50

 Fig 35: Training-Validation Accuracy Plot - ResNet50

19

Fig 36: Epoch Run of ResNet50

Fig 37. Training-Validation Loss Function Plot – ResNet50

20

Fig. 38 Confusion Matrix – ResNet50

7.4 CNN with Adam Optimizer

Fig 39. Accuracies of CNN (Adam)

21

Fig 40. Epoch Run of CNN (Adam)

Fig 41. Training-Validation Accuracy Plot – CNN (Adam)

22

Fig 42. Training-Validation Loss Function Plot – CNN (Adam)

Fig. 43 Confusion Matrix – CNN (Adam)

23

References

Sdss.org. 2022. Data Release 17 | SDSS. Available at: <https://www.sdss.org/dr17/>

https://www.sdss.org/dr17/

