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Abstract 

 

As there are an infinite number of deep space objects, it is crucial to differentiate those 

space objects such as stars, galaxies, or quasars in recent or upcoming deep astronomical 

surveys. This task becomes very difficult because of the tedious procedure for separation 

between edgy and expanded sources, which makes this classification problem a difficult task. 

After Machine Learning approaches, there has been a rise in the use of Deep Learning 

methodology for deep space object classification challenges because of its improved 

calibration. Deep learning models such as VGG16, ResNet50, and InceptionV3 were trained 

using images obtained from the Slone Deep Space Survey. In addition to these pre-built 

architectural models, we have also implemented a CNN classifier equipped with an adam 

optimization parameter to explore the behavior of CNN layers. Although this CNN classifier 

along with other pre-trained models employed in this study was able to extract new features 

and classify astronomical objects with an accuracy of 79% plus, our VGG16 model achieved 

a significantly good accuracy of 86.04%. 

 

Keywords—Deep Learning, VGG16, Pre-trained models, CNN, astronomical  

objects  

 
 

1 Introduction 
 

Image processing in deep learning takes place in many network layers hence, identifying 

input features and analyzing human-visible images is made possible by hidden layers of 

artificial neural networks. Many features of data can be extracted using convolutional neural 

networks. In recent years, many surveys have been carried out and the resulting data have 

been saved but, understanding all astronomical data is difficult and leads to knowledge loss. 

As astronomical imagery is captured during the survey, it takes a lot of effort to correctly 

identify an image. In the future, processing large amounts of data will be resilient and 

automated as certain types of machines can learn to solve different problems, including 

classification. The latest developments in machine learning are being used for a variety of 

tasks such as morphological classification, point source identification, QSO detection, star 

classification, novelty, and anomaly detection. Convolutional neural networks, known as 

CNNs, are becoming unwieldy in low-power environments as computing power continues to 
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increase. So usually, people don’t know how many layers or filters they need for each layer. 

Currently, CNN parameters are searched using either heuristics or grid search. Transfer 

learning is often used by CNN designers when developing new CNNs for new data. This 

involves adapting the network to specific types of data as one has the option to do a grid 

search or start with 8 to 64 filters at each level but, this might result in a huge redundant 

network. Many studies have shown that networks can be reduced in size and can remain 

reliable but, this task redundancy requires more time, money, and special training. (Garg et 

al. 2020). 

1.1 Motivation 
 

In 2007, astronomer Kevin Schawinski got approximately one million photos of galaxies to 

examine thanks to the Sloan Digital Sky Survey (SDSS). He believed the experiment might 

be completed in a more effective manner. To facilitate their work, they conceived of the 

notion of using armatures, which was made possible thanks to the assistance of Chris Lintott, 

a fellow at Oxford College as this resulted in the creation of the project known as Galaxy 

Zoo. People had the misconception that the work would take years to complete, but it was 

finished in only six months. The SDSS telescope began its operational life in the year 2000 

but, since that time, it has been conducting surveys of the night sky. 2019 saw the release of 

DR16 findings from the Slone survey (Ahumada et al. 2020). They added additional data to 

previously available data. Up to 2018, the SDSS has images of 1/3rd of the dark sky recorded 

in 5 different wide bands. 

 

 
 

Fig 1. Telescope data rate in Astronomy Imagery (Ahumada et al. 2020) 

 

Astronomy and cosmology are data-rich. As a result, more ambitious sky surveys have been 

made possible by large aperture digital cameras mounted on telescopes. Now, whole surveys 

may be gathered in only a single night if necessary. (Lai and Kong, 2020) Figure 1 depicts 

the amount of data collected by telescopes that are currently operational as well as those that 

will be constructed soon. These telescopes include the Very Large Telescope (VLT), the 
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Sloan Digital Sky Survey (SDSS), the Visible and Infrared Telescope for Astronomy 

(VISTA), the Large Synoptic Survey Telescope (LSST), and the Thirty Meter Telescope 

(TMT). Digital telescopes of today can collect data at the terabyte level in only one night but, 

Deep Space image models were a free resource for scientists. Real-world demands need new 

methods to interpret data as Data scientists assist astronomers to observe astronomical objects 

with limited resources. To help them in Classifying space objects, I learned about this 

classification problem out of technical interest. 

1.2 “Research Question and Objectives” 
 

The amount of time you can spend using a highly-priced telescope is limited. In addition to 

this, it is constrained by the conditions that exist in astronomy and the weather. Because 

scientists spend most of their time snapping images in deep space and picking out their 

subjects with great consideration, these experts have a thorough grasp of all that exists in the 

universe. This study discusses the challenge that astronomers face in the modern world, 

which is figuring out how to deal with the increasingly large quantity of data that is being 

obtained, as well as finding ways to enable future telescopes, as well as advancements in 

astronomical images, and the processing of increasing amounts of data.  

 

Question: “How can the finest techniques in deep learning for image classification (VGG16, 

InceptionV3, ResNet50, and CNN based on Adam Optimizer) be employed with the data 

augmentation technique for classifying images of astronomical objects to aid scientists in 

astronomical imagery?” 

 

The following is a list of the primary objectives of this study: 

 

1. Recognition of recent advancements in astronomical image classification through 

applications of Computer Vision. 

2. The use of image classification methods in deep learning for astronomical imaging 

of space. 

3. Assessment of applied models using evaluation metrics. 

4. Comparison between model performance and state-of-the-art models. 

 

 

2 Related Work 
 
 

Due to a lack of suitable equipment in the late 1990s, the task of seeing a space object in the 

sky was difficult but, as technology advanced, people were able to study both nearby and 

distant galaxies. Recently, computerized computer technologies allowed for the 

morphological analysis and classification of deep space objects. This study describes various 

studies that used machine learning and deep learning to attempt to solve problems 

by classifying astronomical images, identifying gaps, and making suggestions for further 

research.  
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2.1 Astronomical Imaging 

 

Astronomical image surveys collect spectroscopic or photometric data. Spectroscopic 

monitors photon wavelengths over hundreds of wavelengths to identify chemical substances 

like water. Photometry measures just a few broad-band filters using a CCD, resulting in less 

comprehensive data. There is always a trade-off between the spectroscopic's inability to 

detect faint or distant things and the expense of measuring fewer items in a single image. 

Faint objects are farther distant, allowing astronomers to view further back in time. This helps 

scientists to grasp the origins of life and our existence. Due to artifacts and other distortions, 

many of the produced images still need human modification and classification. The long 

exposures may cause digital noise, merging galaxies, or space dust which could cause 

difficulties for machine learning techniques. Astronomical data classification fell into two 

categories: conventional approaches, utilizing experts for needing many positive findings in 

astronomical imagery, or ML techniques, which seem to be a recent subject in this field. 

2.2 Machine Learning Techniques 
 

17 galaxies from astronomical photos were classified using Support Vector Machines (SVM). 

This work examined an automatic galaxy classification method that utilized sparse 

representation. Feature extraction employed 6 morphological elements: Elongation, Form 

Factor, Con-vestry, Bounding-rectangle-to-fill-factor, and Bounding-rectangle-to-rectangle-

perimeter. (Jenkinson et al. 2014) Bounding-rectangle-to-fill-factor, Elongation, Con-vestry 

Due to the early nature of the experiment, only the Elliptical, Simple Spiral, and Barred 

Spiral were studied. 14 galaxies were used to train and evaluate the SVM classifier as no 

mistakes were made in classifying galaxies. With more galaxies, this value may fall, resulting 

in more feature variety. (Toschi & Bodenschatz 2019) used a noise-removed image, efficient 

features, and a support vector machine to accurately classify galaxy images. The testing used 

57 Sloan Digital Sky Survey images as a Support Vector Machine was used to classify galaxy 

photographs based on 827 criteria. In two spiral and elliptic classes and three spiral, elliptic, 

and zinc-edged classes, accuracy was 96 and 94, respectively. The accuracy for classifying 

three classes of galaxy images was 97.1%, 97.8%, and 98.2%, and for three classes, it was 

94.71%, 95.2%, and 96.33%. 

 

(Xiao-Qing & Jin-Meng 2021) employed machine learning to classify stars, galaxies, and 

radio waves from LAMOST DR5 (QSOs). The magnitudes u, g, r, I z, J, and H were utilized 

to classify stars, galaxies, and QSOs. Using any of the four classifiers, it was observed that 

accuracy exceeded 95% in all situations. The Random Forest achieved the highest accuracy, 

while KNN placed third. The random forest model correctly predicted 98.9% of the star class 

data whereas 97.8% of predicted galaxy classifications were accurate. 88% of QSOs were 

properly predicted as well. (Martinazzo, Espadoto & Hirata 2021) recommended self-

supervised learning for astronomical image data, in which a large neural network is pre-

trained with unlabelled data and astronomical properties as output, which may be derived 

from the input photographs alone. This research shows that, even with little quantities of 

labeled training data, this pre-training boosts accuracy for downstream classification tasks, 

and that, in most circumstances, the results produced by using Transfer Learning based on 

ImageNet pre-training are better. 

 

(Machado et al. 2016) compared machine learning techniques for star/galaxy separation using 

photometric data from astronomy catalogs. In addition to the investigated classifiers, the Xero 

classifier was introduced, which classifies the dataset based on most classes while ignoring 
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the rest. Trials showed that most studied and explored solutions surpassed Zero in accuracy. 

It is assumed that a good classification algorithm should beat Zero’s accuracy. In this study, 

both NN and RF did well. Using Hadoop, the exploratory method was a data-centric real-time 

procedure as it included data selection through classifier performance analysis in one 

pipeline. The method and parallel implementation are crucial for large-scale data processing 

and demanding to compute for machine learning technique research. M81 globular cluster 

candidates were analyzed using methods to pick the most promising astronomical objects. 

(Chuntama et al., 2021). Using a clustering approach, this study eliminated human 

classifications and improved labeled data quality. This study shows that data may be sorted 

into 12 clusters, each of which can be broken into six groups of similar astronomical objects. 

Using these six data sets, the classification models enhanced their prediction accuracy 

wherein Multilayer Perceptron enhanced accuracy from 67.1% to 91.59. WIZARD and 

Random Forest had 90.96% and 90.57% accuracy, respectively. The research shows that the 

model can classify objects with astronomical properties. This model can't discriminate 

globular contenders from background galaxies since they're so similar. 
 

(Makhija et al., 2019) used photometric data from the GALEX and SDSS observatories to 

compare quasars and stars. Despite having similar shapes, the two objects are completely 

distinct and far apart. These objects with spectroscopic data served as our training set, and 

photometric sources may benefit from a database of samples classified using our classifiers. 

This work proposes using a GAN-based classifier to handle classification. Researchers found 

that the classifiers' accuracy varied from 91% to 100%, which is satisfactory as classifiers 

may classify samples without spectroscopic labels. (Wang et al., 2019) developed a machine 

learning model using NIST's Galaxy and Mass Assembly (GAMA) datasets. In addition to 

the morphological data in SersicCatVIKING and SersicCatUKIDSS, users have access to 

GaussFitSimple's spectroscopic characteristics, and MagPhys' physical properties, and 

Lambdar's photometric observations. Five galaxy catalogs were analyzed using Random 

Forests and GMLVQ, a prototype-based classifier. After reviewing a huge number of 

additional galaxy features, this research concludes that the visual-based classification 

technique used to name the galaxy sample isn't supported by the data. However, previous 

investigations using a lower-dimensional dataset achieved the same result. 

 

RR Lyrae, a notable Milky Way star, was classified by (Singh et al., 2018) using machine 

learning. Lyrae stars have 0.1-hour daily pulse durations. In this study, variable and non-

variable stars were separated using five different supervised learning methodologies which 

include classification techniques such as the decision tree, support vector machine, logistic 

regression, Naive Bayes, and AINN. Logistic Regression has the highest accuracy of all 

techniques, 99.49%. As more space junk is colliding, endangering satellites and space 

missions in astronomy, it is very important to identify and classify space debris objects to 

protect space assets. (Khalil et al. 2019) used eight machine learning models to recognize 

real-world light curves of space objects as they identified space object light curves. FATS, 

feet, and UPSILON exhibit light curves as feature collections (Automated Classification for 

Periodic Variable Stars Using Machine Learning). 3.98:96.02 for debris classes and other 

RSOs affects classification performance. As a result, ADASYN, SMOTE, Borderline-

SMOTE, and SVM-SMOTE were rigorously tested. The accuracy, precision, and recall of six 

distinct classifiers (decision trees, linear discriminant functions, Naive Bayes, SVM, k-NN, 

and three Ensemble classifiers) were compared. SVM on the FATS feature set produces the 

most accurate results using Borderline-SMOTE. These findings are 99.1% accurate, 100% 

precise, and 97.2% recall. SVM-SMOTE and/or Borderline-SMOTE oversampling may 
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provide high classifier results. In this study, all feature sets and oversampling methods were 

affected. 

 

(Chuntama et al., 2020) classified the astronomical objects seen in M81 into the following 

five categories: stars, spherical galaxies, elongated galaxies, globular clusters, and fuzzy 

objects (fuzzy objects). Images obtained from CFTs were processed by the author. Following 

the visualization of a portion of the data, seven supervised learning techniques were applied 

to the remaining information. These algorithms included Logistic Regression, SVM, 

Multiclass Classifier, WiSARD, and Random Forest. For the purposes of building and 

evaluating classification models, Weka was utilized using the M81 datasets. To evaluate the 

accuracy of multiclass classification models, 10-fold cross-validation was used. On a total of 

eight confusion matrices, accuracy, precision, recall, and F-measures were measured and 

computed. Random Forest outperformed the other six multiclass classification models with 

an accuracy score of 81.2%, a precision score of 81.0%, a recall score of 81.2%, and an F-

measure of 80.6%.  

 

(Guzman et al., 2018) published a 15-experiment automatic stellar star classification 

approach in Astronomy Astrophysics. This research showed that with proper setup, Classifier 

Systems may achieve excellent classification accuracy. To increase classification, several 

factors were evaluated. Calculating the suggested parameters uses Chebyshev Coefficients, 

Fourier, Wavelet, and Comb Moments. This work includes the design of Stellar Spectral 

Classification utilizing the Harvard System, using five and seven classes, and the capture of 

the spectral image. This article describes a strategy for classifying stars using astronomy 

images. The SVM classifier classified 5 of 7 classes with 88.1% accuracy. K-NN had the 

highest accuracy, 90.32 percent when considering the seven spectral classes. (Du Buisson, et 

al., 2015) used SDSS photos to study supernovas and image artifacts. Humans still remove 

noise and artifacts from images. Using 8 Eigen image features (PCA of single-epoch g, r, and 

I difference images), 96% recall was obtained. Random forests, k-nearest neighbor, and 

Skynet (Graff et al. 2014) ANN algorithms outperformed naive Bayes and kernel SVMs. 

2.3 Image Classification and Deep Learning 
 

Computer vision and signal processing leverage deep machine learning. This research 

classified images using deep learning classifiers like Convolutional Neural Networks (CNN). 

CNN allows a machine to learn complicated visual features from its depiction, minimizing 

human knowledge. (Khalifa et al. 2018) utilized three categories to classify galaxies which 

are irregular, spiral, and elliptical. While classifying these galaxies, their properties were 

considered.  An eight-layer convolutional neural network architecture was used in this study. 

This approach includes a feature extraction layer with 96 convolutional filters as well as two 

classification layers that are entirely interconnected. The architecture was subsequently 

improved with the aid of 4238 additional images used as training data. Image enhancement 

techniques such as rotation, reflection, cropping, and Gaussian noise, to name a few, were 

used in the training data to increase image quality. Deep Galaxy V2 is an effort to overcome 

the overfitting problem by introducing an augmentation process to the training data. The 

purpose of this method is to decrease the probability that the model will overfit. 

 

(Ren et al. 2016) present a model of convolutional neural network initialization for image 

classification based on principle component analysis. This paper advises employing principal 

component analysis to get eigenvectors and initialize convolutional kernels without 

supervision. Gradient diffusion is less of an issue with adequate starting parameters since 
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they include image information. All this research suggests it's possible to enhance 

classification accuracy while limiting iterations, optimizations, and training time. (Patil et al. 

2021) studied how residual neural networks (ResNet-18, ResNet34, ResNet50, and 

ResNet152) recognize galaxies. This research shows that ResNet-152 outperforms other 

residual networks and helps determine galaxy classification trustworthiness. Adding residual 

networks improved the model's accuracy. ResNet152 outperformed the other two models. 

Reset models outperformed other models on the dataset. 

 

Convolutional neural networks have won several competitions in recent years as it works 

great on Image recognition. Edward used ConvNets to classify stars and galaxies based on 

reduced, calibrated pixel values. This research utilized data from the Sloan Digital Sky 

Survey and the Canada-France-Hawaii Telescope Lensing Survey to illustrate ConvNets' 

efficacy. (Huertas-Company et al., 2021) provided a summary of the historic and current 

impacts of using machine learning to predict galaxies' sizes and forms. Supervised CNN-

based classifications were accurate for identifying huge samples of galaxies, according to this 

study. Transfer learning methodologies or even generated datasets may be a beneficial 

alternative to extensively labeled datasets in many instances, such as image recognition. 

Numerical simulations and deep neural networks may be utilized to examine physically 

driven classifications. Despite being successful, supervised learning can't discover new 

things. This research examined unattended and supervised medical techniques. Large imaging 

surveys may be used to identify and examine outliers and compare observed and simulated 

galaxy populations. 

 

(Mohamed Selim et al., 2022) presented a modular strategy for automatically detecting a 

galaxy's optical canter, area, and classification. A test on 1000 galaxies from EFIGI proved 

the research's validity. Sharpness is adjusted to rectify faint galaxies, then the noise is 

removed as the approach proceeds by examining galaxies' visual centers. The visual canter is 

used to find sections of galaxies that provide classification information wherein galaxy 

brightness fluctuations are used to classify galaxies. The classification of galaxies is 97.2% 

accurate and takes 0.37 seconds per galaxy on average. Galaxies may be hard to discern 

because of their darkness, vivid background stars, and image noise. An innovative, modular 

approach suggested by (Essa et al., 2022) uses raw brightness data to estimate a galaxy's 

visual canter, region, and classification. First, a new selective brightness threshold is 

employed to make galaxy visual centers easier to detect with brilliant background stars. This 

is the second way to identify galactic regions. A new approach to identifying galaxies 

considers how their brightness changes over time. The researcher tried this approach on 1000 

EFIGI galaxies which yielded good results. In 0.37 seconds, 97.2 percent of galaxies were 

analyzed. High success rates and fast processing times showed that the work was executed 

efficiently. 

 

2.4 Identified Gaps 
 

Telescopes produce more data than people can manually analyze. Traditional techniques of 

classifying objects, such as Machine Learning techniques, have a purpose, but they can't keep 

up with the volumes of data or added complexity as deep space survey technology evolves. 

While neural networks aren't new, they are a relatively recent addition to 

astronomers' toolkits. However, the intricacy of developing models and classifying necessary 

to train a model has only lately been publicly accessible. The following section shows that 

Deep Learning methods like ConvNets can be used to identify astronomical objects like 
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Stars, Galaxies, Quasars, etc. TensorFlow, an open-source machine learning platform for 

computer vision recognition applications, which now supports Keras, a python-based open-

source neural network toolbox for deploying deep learning models. Upon its latest upgrades, 

it is clearly providing an opportunity to our use for using it in astronomical imagery to 

classify objects. 

 

3 Research Methodology 
 

While working on this project, several different approaches to data analysis were 

investigated, such as KDD, CRISP-DM, and SEMMA. After giving a thought to it, it was 

concluded that the best course of action would be to stick with the KDD approach since the 

individual was already knowledgeable about it. In addition, KDD is centered on the process 

of deriving knowledge from data within the setting of huge databases, which has been one of 

the key base points for this study. Hence, KDD was adapted for use in astronomical imagery. 

3.1 KDD Methodology for Astronomy 
 

The project's research was carried out in a methodical and professional way by adhering to 

the KDD Methodology. Each of the following subsections examines how the project 

performed each of the phases within this technique, as specified in mentioned, as well as how 

each step was customized to meet the requirements of the research being conducted for this 

project. The first thing that needed to be done was to acquire knowledge of the topic at hand, 

assess the level of previous information, and determine the objectives for this study. This 

topic is discussed in the next sections, where a critical analysis of this research is presented. 

 

 
 

Fig 2. KDD process for Astronomical Object Classification 
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3.1.1 Data Selection 
 

FITS is the name of the format that is most often used for the gathering of astronomical data. 

With the help of the Flexible Image Convey System, one can convey not only data but also 

image data (FITS). On the other hand, photographs used in astronomy are often captured in 

grayscale with several filters in place to pick up various wavelengths. After then, these 

images may be put together to provide a full spectrum image of the thing under question. 

 

 
 

Fig 3. SDSS Imaging Camera (Sdss.org., 2022) 

 

The above figure shows an imaging camera that may follow five filters: ultraviolet (UV), 

green (g), red (both visible and infrared), and infrared. When carrying out a CAS job on the 

SDSS Catalogue Archive Server, an online SQL query was executed to fetch data. To get 

started, we utilized the data from the archive to locate all the objects and then, classify them 

according to their Right Ascension and Declination (RA and DEC) which includes 

classifying them as either galaxy (like our own Milky Way) or stars or quasars (like Sun). 

The dataset for this study includes images from Data Release 17 (Sdss.org, 2022.). 

3.1.2 Data Pre-Processing and Transformation 

 
Following the division of the objects into 3 separate classes, a query was executed on SDSS 

to determine the number of instances of each object class. The 3000 objects from the CAS 

job were selected to represent each SDSS category. This equated to five filters being applied 

to each FITS image for over 9000 images.  The images were then randomly divided into 

training datasets and testing datasets. This was to ensure that each FITS image could utilize 

all available filters. The "cut-out" jpegs from the FITS files were then retrieved locally via a 

web API request that was made to the SD17 JPEG web service. All the images were resized 

to 224 by 224 pixels, and after that, the training images were augmented by rotating, shifting, 

shearing, and flipping the images to create some more data for training. The imaging data has 

been rescaled from [0,255] to [0,1] to normalize the input for processing. 
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3.1.3 Data Mining 
 

Data mining extracts valuable data from unstructured data. The objects were identified by 

classification from catalog files and extracted into acceptable forms for modeling. It includes 

data analysis to find trend lines, data collecting, and occasionally data processing into data 

warehousing systems.  To mine the data and extract properties for the purpose of classifying 

astronomical objects, convolutional neural networks were used. In this study, the following 

neural network architectures were utilized: VGG16, InceptionV3, ResNet50, and CNN based 

on Adam Optimizer. The method of learning consisted of loading the training weights for the 

models that had been trained using ImageNet, removing the topmost layer, and adding new 

layers to adapt the models to new image classes. 

3.1.4 Data Evaluation 
 

For the evaluation of this project, the four important metrics have been considered which are: 

Accuracy, Precision, Recall, and Confusion Matrix. Accuracy is how many right predictions 

a model has produced. The confusion matrix y model measures the number of correctly and 

incorrectly predicted test records. The confusion matrix shows which classes are correctly 

anticipated and which are incorrectly forecasted, as well as the types of errors made. 

Precision displays how many predictions were accurate. Recall shows how many positive 

instances our model properly predicted. This project evaluated whether computer vision and 

classification methods might help identify and classify astronomical imagery. The recorded 

results are presented in the next evaluation section. 

 

4 Design Specification 
 

Computer vision has advanced significantly over the last few years, outside of cloud and 

mainframe computing environments, however, its ability to scale has been challenging to 

achieve because of its complex design and many connected weights. However, Deep 

Learning techniques and convolutional neural networks have helped to change this scenario. 

Now, we will try to understand the process flow for this study. 

 

 
 

Fig 4. Process Flow for Astronomical object classification 
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4.1 Base Architecture for Convolutional Neural Networks 

 

Convolutional Neural Network is one of the types of neural network which is used in Deep 

Learning. Image recognition has taken a significant leap forward thanks to CNN's work. 

CNNs include many layers, including an input layer, an output layer, and hidden layers. 

These layers all contribute to the processing and classification of images in some way. All 

layers are included in the hidden layers. Each of these layers plays an important part in the 

overall network. 

 

 
 

  Fig 5. An architecture of Convolutional Neural Network (Mdpi 2022) 

 

 

4.2 TensorFlow 

 
An open-source framework for machine learning was developed by the Google Brain Team 

and given the name TensorFlow. Because of a team of engineers and resources provided by 

both the TensorFlow group and Google, using TensorFlow is now within the reach of most 

individuals who do not have a solid understanding of the mathematics that underlies the 

operation of ANNs. (TensorFlow., 2022) As a result of the various degrees of abstraction 

provided by the framework, users are free to focus on the implementation rather than the code 

that underpins the functions. The support was provided for a significant number of computer 

languages, the most notable of which being Python. 

 

4.3 Data Acquisition 

 
The Sloan Digital Sky Survey (Sdss.org., 2022.) is an imaging space research project that 

collects data on the night sky by using a 2.5-meter wide-angle telescope at the Apache Point 

Observatory in New Mexico. This observatory is in the United States. On a regular basis, the 

dataset is made accessible to the public. The dataset for this study contains information from 

DR17. (Sdss.org. Data Release 17., 2022) The information was collected with the help of 

SDSS catalog servers by means of a python script that retrieved image data through an online 

SQL interface. When retrieving the data using a SQL query, the galaxy, star, and Quasar 

classes were taken into consideration. To download the image files, another Python script 

was executed, and this time it used the URLs of the FITS files as its input. The files that were 

downloaded were sorted according to the class to which each image belonged. 
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4.4 Data Processing and Modelling 
 

A Python script was used to process the FITS files to extract the images and save them as 

individualc.jpg files, one for each filter. All JPEG images were retrieved with the help of a 

customized script that was made available as an API to the data servers of that website. After 

some time, they were saved locally from the personal space that SDSS computing allots to 

each of us after creating an account in it. 

 

4.5 Presentation of Data 

 
The results of the models have been shown in the form of five different evaluation metrics: 

Accuracy, Precision, F1 Score, and Classification Report. The training accuracy, validation 

accuracy, Training loss function, and Validation loss function have been considered while 

considering the overall model’s performance. To measure how well or poorly the model is 

working, the loss function is used. 
 

5 Implementation of CNN Classification Models 
 

The following section shows how the KDD process has been implemented in this study. 

 

5.1 Data Selection 

 
On the SDSS Catalogue Archive Server, also known as CAS, a SQL query was executed, 

which resulted in an output that was in CSV format. This provided a listing of all attributes 

that were afterward applied to the process of identifying the necessary FITS files and the 

JPEG file that was downloaded from the SDSS server. An example of the output is 

included as well as the techniques that were used to compile the results of the query into 

URLs that permitted image selection and download. Another Python script was run, and this 

time it took as its input the URLs of the FITS files. This allowed the image files to be 

downloaded successfully. The downloaded files were organized into classes that 

corresponded to the kind of images that were being retrieved. 

 

 
 

Fig 5. Sample Images from SDSS Data Release 17 
 

5.2 Data Pre-Processing 

 
After the images were separated into three distinct classes, a query was run on SDSS to 

fetch the images for each object class. The 3000 images that were part of the CAS job were 

chosen to be representative of each SDSS object class. This meant that each FITS image had 
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five filters applied to it. After that, the images were sorted into training datasets and testing 

datasets. This was done to ensure that each FITS image could make use of all the filters that 

were accessible. Following that, the cut-out jpegs from the FITS files were downloaded 

locally by making a web API request to the SD17 JPEG web service. Below table 1 shows 

the total files downloaded for each class. It includes file type and Image source information 

as well. 
Table 1: File Count by each class 

 

 
 

Each image file was given a name that corresponded to the class that it was placed in so that 

it could be identified more easily in the future. After the FITS files had been downloaded, the 

URLs were removed from the pathway, and the file itself was the only thing that remained. 

This was done so that the files could be managed more easily in the future. 

 

5.2.1 Image Augmentation 
 

Image data augmentation is a technique that modifies the original images that are included in 

a training dataset to produce new versions of those images. This makes it possible to 

artificially expand the size of the dataset without the need to acquire any more data in the 

process. The capacity of fit models to generalize what they have learnt to apply to new 

images may be improved through augmentation approaches, which allow for the creation of 

different versions of the images. Training deep learning neural network models on more data 

may result in more proficient models and training these models can increase their capacity to 

generalize what they have learnt to apply to new images. There is a vast range of image 

processing available, including the following: 

 

Image Flipping: This will result in the image being flipped either horizontally or vertically. 

 

Image Rotating: This will allow the image to rotate by a certain angle, either clockwise or 

counterclockwise, depending on the direction you choose. 

 

Rescaling: The rescale value 1./255 will convert the pixels that are in the range [0,255] will 

be converted to the range [0,1] for processing. This can be also considered Input 

Normalization. 

 

Image Cropping: In this process, a part of the image is selected at the random for cropping. 

 

5.3 Data Mining 

 
The CNN data mining process starts with the extraction of features. Following that is a 

flattening layer, followed by an adjustable number of ReLU layers, and finally, a SoftMax 

layer. Finding the convolutional and ReLu layers requires more imagination than hard 

scientific work According to the findings of (Ma, Dang, and Li 2014) study, the number of 

hidden layers used for image identification is determined not by science but rather by a 

process of trial and error. ImageNet (ImageNet., 2022) is an image database structured by the 



14 
 

 

WordNet hierarchy, with thousands of images for each node. The Keras application has 

several deep learning models embedded in it. They all produced model performance results in 

comparison to the ImageNet dataset (Table 2), in which accuracies correspond to the model's 

results in comparison to that dataset. 

 
Table 2: Keras Application Models Accuracy on ImageNet dataset (Team, K., 2022) 

 

 
 

In our methodology, we have used some of the models from the above table as a top layer of 

our CNN models, which classified images when trained against the ImageNet dataset, were 

removed in our models, instead, the weights of ImageNet were implied and all the layers of 

the model were frozen, meaning initial patrameters were untrainable, then the new layers 

were added to classify our new astronomical images. 
 

5.3.1 Fine-Tuning of CNN Models: 

 

Transfer learning includes aspects such as fine-tuning as one of its important components. 

This technique involves unfreezing parts of the top layers of a model that had been frozen in 

the past and then jointly training the new top layer, which is used to classify our astronomical 

image datasets, together with the remaining layers of the frozen model. We are doing this 

because the top-level feature maps can only be extracted by the very final layers of the base 

model, whereas the initial convolution layers can only extract the most fundamental features 

such as edges, vertical lines, horizontal lines, etc. This fine-tuning of the top feature 

representation in the model enables us to make them more specific for the classification 

problem that we are attempting to solve.   Even when using identical settings for all the 

hyperparameters such as learning rate, batch size, etc., using various random seeds might 

provide very different outcomes. The problem is considerably more obvious, particularly 

when using the huge variations of Transfer learning on little datasets, which is where it really 

stands out. 
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6 Evaluation and Discussion 
 

This section examines the results of all the models that were examined, compares their 

performance with the images from SDSS and then evaluates their results to the performance 

of models that are state of the art.  

6.1 VGG16 Model 
 

This model was constructed by (Simonyan and Zisserman, 2014) which aimed to study the 

accuracy of CNN’s on massive image datasets. Their study looked at the potential that the 

accuracy of the CNN may be improved by using convolutional filters that were extremely 

tiny (3x3) and by increasing the number of weighted layers that were included inside the 

CNN itself. This model overall performed well on astronomical image classification.  

 

 

 
 

Fig 6. Classification Report and Plots for VGG16 Model (After Fine-Tuning) 
 

Figure 6 shows the classification report and Training-Validation plots for the VGG16 model. 

It achieved 86.04% accuracy in the classification of SDSS imagery. The F1 scores in the 

classification report show that the galaxy images shared more success in classification than 

that Stars and Quasars. Towards the conclusion of the 10 epochs, there was a drop in 

validation accuracy, which may be something that needs to be examined in further study. The 

loss function for both training and validation followed a downward trend as it is reaching 

towards 10 epochs. The training and validation loss function almost reached zero at the end 

of the 10 epochs. 

 

6.2 InceptionV3 Model 
 

On the ImageNet dataset, the image recognition model known as Inception v3 achieved an 

accuracy of 77.09 percent. The model is a synthesis of the findings of many researchers over 

an extended period. It is based on the original work that was written by (Szegedy et al. 

2016) titled "Rethinking the Inception Architecture for Computer Vision." Figure 7 shows the 

classification report and Training-Validation plots of the InceptionV3 model on our SDSS 

imagery. It achieved 83.92% accuracy in the classification of SDSS imagery. The galaxy 

image classification was more successful than the image classification of Stars and Quasars. 

Yet, the processing done on the SDSS images showed a solid increasing trend in the 

accuracy, and the model has not attained a 0 loss. 
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Fig 7. Classification Report and Training-Validation plots for InceptionV3 Model (After Fine-Tuning) 

 

As a finding, there was the further possibility to enhance this result with more training that 

was observed. The model demonstrates the ability to continue learning with more epochs, and 

it is a candidate for future study and development to obtain a higher level of precision.  

6.3 ResNet50 Model 
 

The ResNet506 model, which was developed by (He et al. 2016), consists of layers that are 

broken up into blocks and includes over 23,000,000 trainable parameters. The deterioration 

and the disappearing gradient problem were two of the challenges that were associated with 

extremely deep learning, and it is credited that ResNet50 was able to overcome these 

challenges. When it came to processing SDSS files, the model also performed at a level 

comparable to that of other models. The fact that it included an extra one million parameters 

that could be tuned as part of the training did not result in a substantial increase in the 

outcomes. 

 

 
 

Fig8. Classification Report and Training-Validation plots for ResNet50 Model (After Fine-Tuning) 
 

Figure 8 shows the classification report and Training-Validation plots of the ResNet50 model 

on our SDSS imagery. It achieved 79.79% accuracy in the classification of SDSS imagery. 

The model demonstrates the capability of continuing to improve with more epochs, and it is 

potential for future work and for attaining a higher level of precision. The F1 score valued for 

Quasars came out low compared to other classes. The validation accuracy and loss function 

part of the ResNet50 model did not improve at all between 10 epochs, could be a part where 

input data might need to be increased hence, needs thorough investigation for in future work. 

It did not demonstrate the same capability as InceptionV3 to keep honing its learning and 

become better at its task. 
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6.4 Base Convolutional Neural Network with adam optimizer 

 

This model uses identity mapping and an Adam optimizer to learn interrelations and extract 

image features. (Wang et al., 2022) Four identity mappings enable deep layers to directly 

learn data from subsurface layers, reducing gradient vanishing caused by network depth. A 

novel Adam optimizer with a power-exponential learning rate is presented to regulate CNN 

iteration direction and step size. CNN model is trained using an exponential Adam optimizer 

to speed up its optimization. The power-exponential learning rate controls iteration direction 

and step size to fast achieve the ideal solution. 

 

 
 

Fig 9. Classification Report and Training-Validation plots for CNN with adam optimizer (After FineTuning) 

 

Figure 9 shows the classification report and Training-Validation plots of the base CNN model 

with adam optimizer. It achieved 79.57% accuracy on SDSS space object classification. The 

training accuracy of this model followed an upward trend however, validation accuracy kept 

fluctuating by the end of epochs. Like other pre-trained models, galaxy-class classification 

for this model achieved a better F1 score than Quasar and Star classes.  
 

6.5 Review of Implemented Models 

 

All the models had the exact same modifications carried out to them, such as the removal of 

the final output layer that was going to be used to display the outcomes of the classification 

performed using the ImageNet images and the insertion of the same number of extra layers in 

each model. This enables a direct comparison of apples to apples in terms of the performance 

of the various models. When it comes to the amount of time it took to process, size did matter 

with this training. 

 

The datasets that were used in this study are separated into three different classes, and 

training and validation images in the count from 3,000 to 5,000 were applied to the models. 

However, the ImageNet dataset was used in the past to train the models that were 

implemented here. This is a dataset consisting of 14.5 million photos that have been classified 

into little over 21,500 categories. We are considering these model accuracies against 

ImageNet dataset as our baseline accuracy for comparison. The below table discusses the 

results of all implemented models with respect to training, validation accuracies and other 

factors. All the models were fed with the pre-trained parameters that were obtained from the 

training on the ImageNet dataset. This allowed models to have information about extracting 

image features. These findings are equivalent to those that were obtained by ImageNet's 

training, which can be seen in Table 3. 
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Table 3. Performance Review of Implemented Models 

 

 
 

 

In comparison with the other four pre-trained CNN architectures that have been built, it is 

obvious that VGG16 performed exceptionally well. 
 

 

7 Conclusion and Future Work 
 

The objective of this project was to study the performances of different Pre-trained CNN 

architectures for astronomical object classification and to determine if they could be 

implemented in this field to help scientists classify objects in astronomical imagery.  

 

This study has implemented four different architectures of CNN models however, it has been 

observed that VGG16 achieved higher training and validation accuracies than other pre-

trained CNN models. Another important thing to observe in this study is that the Stars and 

Quasars classes achieved fewer F1 scores compared to the Galaxy class. This could be an 

interesting task in future work. However, this could be because Stars and Quasars have some 

similar features in nature. 

 

The GPU-based TensorFlow processing helped at some points to lower training times. Pre-

trained layers of CNN architectures allowed google colab to process data quickly. 10 epochs 

were implemented on each model’s performance to create a baseline for comparison. 

 

This study addressed the classification of three classes only but, as an improvement, it should 

include more than three classes as there could be thousands of different astronomical objects 

as well, such as supernovas. It could be also interesting to see if we can introduce Image 

Segmentation techniques in this classification task as SDSS FITS files covers too much area 

and have too many objects for classification in a single FITS file. Also, TensorFlow’s high 

processing GPU power might help astronomers to detect and classify objects through live 

video streaming of astronomical objects. 
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