

Configuration Manual

MSc Research Project Data Analytics 2021-2022

Kajol Daiya Student ID: x19216831

School of Computing National College of Ireland

Supervisor:

Hicham Rifai

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: Student ID:	Kajol Daiya x19216831	
Programme:	MSc Data Analytics	Year: 2021-2022
Module:	Research Project	
Lecturer: Submission Due Date: Project Title:	Hicham Rafai 31.01.22 Instance Segmentation for Detecting Dental X-rays using Detectron2	l Caries in Panoramic

Word Count:

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Kajol Daiya

Date: 31.01.2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Page Count: 13

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Kajol Daiya Student ID: x19216831

1. Introduction

This document's objective is to outline the stages involved in developing the project. The hardware & system configurations required to reproduce research work are explained in great detail. This section covers the design and implementation strategies needed for effective operations. to built an instance segmentation model to detect dental caries using the Detectron2 model

2. Specifications Hardware and Software Requirements

• The hardware specifications used to implement the project are shown in figure 1

Device specifications			
Device name	MSI		
Processor	Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.60 GHz		
Installed RAM	8.00 GB (7.85 GB usable)		
Device ID	8EE96324-12CD-4A8B-87B0-8C0D5B06B168		
Product ID	00327-35894-81646-AAOEM		
System type	64-bit operating system, x64-based processor		
Pen and touch	No pen or touch input is available for this display		

Figure 1 Hardware Specification

- **Google Collab** is a cloud-based, open-source platform for developing deep learning algorithms. To sign in to Google Collab, you'll need a Gmail account. Each user is given a minimum of 12.73 GB of RAM, which can be increased to 25 GB, as well as 64 GB of hard disk space. The research is carried out according to the guidelines listed below.
- **LabelMe** is used to annotate the images manually and annotated file is saved inCOCO JSON format to load the data into the Detectron2 model.

- **Cuda Toolkit** is an open-source computing tool that enables users to CUDAgraphics for overall computing.
- Anaconda3: For python programming, the platform provides a variety of integrated design frameworks (IDD). The models are created using the libraries indicated below
 - Python 3.6.13 Libraries
 - numpy 1.19.5
 - tensorflow 1.3.0
 - keras 2.0.8
 - detectron2 arch flags 3.7
 - PyTorch 1.8.0+cu101
 - Pillow 8.3.1
 - torchvision 0.9.0+cu102
 - iopath 0.1.9
 - opencv-python 4.5.3
 - IPython[all]
 - > scipy
 - > matplotlib
 - scikit-image

3. Data Collection

The data set for this study came from a publicly accessible open-source platform. The dataset contains 116 panoramic x-rays with their relevant masks. The OPG X-ray covers the full region of the patient's mouth. The dental caries type is classed into 5 categories: Dentinal Caries, Proximal Caries, RootPiece, Caries involving pulp, and Secondary Caries, this is annotated manually in this dataset in coordination with 5 dental practitioners to attain accurate annotations.

Link to Dataset: Panoramic Dental X-rays With Segmented Mandibles - Mendeley Data

The database contains 3 directories: Images, Segmentation1 and Segmentation2. This study takes only the Images folder for Instance Segmentation tasks.

4. Data Pre-processing

The image labeling is performed on LabelMe software after the images are resized. Images are resized in a go with natsorted function in python. In figure 1, the lines of code have successfully resized the images into (255,255)

In [3]:	<pre>## Exploring Data set img_path = 'C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images/1.png'</pre>
	<pre>img = Image.open(img_path)</pre>
	<pre>print('{}'.format(img.format))</pre>
	print(size:(), format(img.size)) print(simage mode:(), format(img.mode))
	img.show()
	PNG
	size:(3100, 1300)
	image mode:L
In [4]:	#empty lists
	<pre>image list = []</pre>
	resized_images = []
In [5]:	#append images to list
	<pre>for filename in natsorted(glob.glob('C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images/*.png')):</pre>
	print(filename)
	opimage = image:open(interiore) image list.append(opg_image)
	C:/Users/kdaiy/Downloads/Teeth SegCaps/SegCaps/Images\7.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\8.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\9.png
	C:/UserS/kdai//Downloads/leetn_segCaps/segCaps/Images/10.png
	C:/Users/kdaiv/DownLoads/Tecth_SegCaps/Images(11.png C:/Users/kdaiv/DownLoads/Tecth_SegCaps/Images(12.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\13.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\14.png
	C:/Users/kdai//Downloads/Teeth_SegCaps/SegCaps/Images\15.png
	C:/UserS/Kdai//DWML0daS/leEtn_SegLapS/SegLapS/ImageS\10.png C:/UserS/Kdai//DWML0daS/leeth_SegCapS/ImageS\17.png
	C;/Users/kdai//Downloads/Teeth_SegCaps/SegCaps/Simages(1):8.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\19.png
	C:/Users/kdai//Downloads/Teeth_SegCaps/SegCaps/Images\20.png
	C:/UserS/Kdai//DownLoads/leetn_segLaps/segLaps/ImageS\21.png C:/UserS/Kdai//DownLoads/leetn_segLaps/SegLaps/ImageS\22.png
	C:/Users/kdai/Jownloads/Teeth_SecOps/Jegcups/Jegcups/Jamees/23.png
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\24.prg
	C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\25.png
	C:/Users/Kdaly/Downloads/leetn SegLaps/SegLaps/Images\26.png
In [9]:	#append resized images to list
	for image in image_list:
	1mage.snow() image perize(/255.255))
	resized images.append(image)
To [10].	trave resized images to new folder
IU [10];	mauve resized dimuges to new jocaer
	<pre>for (i, new) in enumerate(resized_images):</pre>
	<pre>new.save('{}{}{}'.format('C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages',i+1,'.png'))</pre>

Figure 1 Images Resized

Figure 2 Interface of the LabelMe Software

Dental X-ray images tend to be quite noisy coming from various types of noise sources. To denoise these x-ray images, denoising filters are used to highlight useful details in the x-ray and increase its image quality. Image thresholding and equalization are some of the tools that we have for image processing so image thresholding for segmentation tasks becomes a bit easier. With histogram equalization, we can stretch the histogram to span the entire range. Histogram Equalization considers the global contrast of the image, not just the local contrast. The result of Histogram equalization and Contrast Limiting Adaptive Histogram Equalizer was taken out. CLAHE does histogram equalization in small patches and it works very well and does contrast limiting

CLAHE and EQUALIZATION

```
In [12]: img_path = 'C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages/ResizedImages1.png'
                               img = Image.open(img_path)
                              img = image.open(img_path)
print('{}'.format(img.format))
print('size:{}'.format(img.size))
print('image mode:{}'.format(img.mode))
img.show()
                                PNG
                              size:(255, 255)
image mode:L
   In [2]: import cv2
                                import numpy as no
                              from matplotlib import pyplot as plt
                                C:\Users\kdaiy\anaconda3\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
                              C:\Users\kdaiy\anaconda3\lib\site-pacKages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBK/M4EVBGM7.gfortran-win_amd64.dll
C:\Users\kdaiy\anaconda3\lib\site-pacKages\numpy\.libs\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JJIKNDB7.gfortran-win_amd64.dll
warnings.warn("loaded more than 1 DLL from .libs:"
In [30]: xray = cv2.imread("C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages/ResizedImages114.png",0)
                                eq_img = cv2.equalizeHist(xray)
                              plt.hist(eq img.flat, bins=100, range=(0,255))
                               clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
                               cl_img = clahe.apply(xray)
                              #cv2.imshow('Equalised Image', eq_img)
#cv2.imshow('CLAHE image', cL_img)
#cv2.waitKey(0)
#cv2.distroyALUWindows()
img_titles =["ORIGINAL","CLAHE", "EQUALISED"]
                              img_titles -[ violative , claim, claim,
                               plt.xticks([]),plt.yticks([])
plt.show()
                                                               CLAHE
                                                                                                                                            EQUALISED
                                                                                                                                             ALC: NO. 12
```

Figure 3 Image Preprocessing

Thresholding

```
In [32]: ret, thresh1 = cv2.threshold(c1_img, 190,150, cv2.THRESH_BINARY)
         ret, thresh2 = cv2.threshold(cl_img, 190,255, cv2.THRESH_BINARY_INV)
         ret, thresh3 = cv2.threshold(cl_img,190,255,cv2.THRESH_TRUNC)
         ret, thresh4 = cv2.threshold(cl_img,190,255,cv2.THRESH_TOZERO)
         ret, thresh5 = cv2.threshold(c1_img,190,255,cv2.THRESH_TOZERO_INV)
         #cv2.imshow('Original', xray)
         #cv2.imshow('Binary Threshold 1', cl_img)
         #cv2.waitKey(0)
         titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
         xray_images = [xray, thresh1, thresh2, thresh3, thresh4, thresh5]
         for i in range(6):
             plt.subplot(2,3,i+1),plt.imshow(xray_images[i],'gray')
             plt.title(titles[i])
             plt.xticks([]),plt.yticks([])
         plt.show()
           Original Image
                              BINARY
                                            BINARY INV
               TRUNC
                              TOZERO
                                            TOZERO INV
```

Figure 4 Thresholding Technique

Data Transformation:

The dataset in this study contains only 116 images which are split into a train (70%), test(20%), validation(10%). The training dataset contains 93 relatively small images, also these images are distributed unevenly among 5 classes of dental caries.

Split into train test validate

In [36]:	pip install split-folders
	Collecting split-folders Downloading split_folders-0.4.3-py3-none-any.whl (7.4 kB) Installing collected packages: split-folders Successfully installed split-folders-0.4.3 Note: you may need to restart the kernel to use updated packages.
In [27]:	import splitfolders
In [28]:	pip install split-folders tqdm
	Requirement already satisfied: split-folders in c:\users\kdaiy\anaconda3\lib\site-packages (0.4.3) Requirement already satisfied: tqdm in c:\users\kdaiy\anaconda3\lib\site-packages (4.62.2) Requirement already satisfied: colorama in c:\users\kdaiy\anaconda3\lib\site-packages (from tqdm) (0.4.4) Note: you may need to restart the kernel to use updated packages.
In [29]:	<pre>input_folder = 'opg_xrays/'</pre>
In [30]:	<pre>splitfolders.ratio(input_folder, output="opg_xrays2",</pre>
	Conving files: 0 files [15:00) files/s]
	Copying files: 15 files [00:00, 148.54 files/s]
	Copying files: 45 files [00:00, 237.27 files/s]
	Copying files: 69 files [00:00, 237.96 files/s]
	Copying files: 93 files [00:00, 233.47 files/s]
	Copying files: 123 files [00:00, 256.75 files/s]
	Copying files: 149 files [00:00, 248.14 files/s]
	Copying files: 178 files [00:00, 261.24 files/s]

5. Detectron2 Model

Google Colab was used to train the Detector2 model

Figure 3 Mounting Google Drive

```
annos = img_anns["shapes"]
    objs = []
    for anno in annos:
        px = [a[0] for a in anno['points']] #x coord
        py = [a[1] for a in anno['points']] #y coord
        poly = [(x,y) for x, y in zip(px,py)] #poly for segmentation
        poly = [p for x in poly for p in x]
        obj = {
            "bbox": [np.min(px), np.min(py), np.max(px), np.max(py)],
            "bbox_mode": BoxMode.XYXY_ABS,
            "segmentation": [poly],
            "category id": classes.index(anno['label']),
            "iscrowd": 0
        }
        objs.append(obj)
    record["annotations"] = objs
    dataset dicts.append(record)
return dataset_dicts
```


Figure 5 Classes are defined

Model Training

Pre trained model mask rcnn R 101 is selected as the base model by selecting hyperparameters as seen in the Figure 6.

Figure 6 TensorFlow Output after training the model

Figure 7 Instance Segmentation Results are visualized with Visualizer class

Average Precision	(AP) @[IoU=0.	50:0.95 area=	all max	Dets=100] = 0.535	
Average Precision	(AP) @[IOU=0.	50 area=	all max	Dets=100] = 0.977	
Average Precision	(AP) @[IoU=0.	75 area=	all max	Dets=100] = 0.510	
Average Precision	(AP) @[IoU=0.	50:0.95 area=	small max	Dets=100] = 0.535	
Average Precision	(AP) @[IoU=0.	50:0.95 area=m	edium max	Dets=100] = -1.000)
Average Precision	(AP) @[IoU=0.	50:0.95 area=	large max	Dets=100] = -1.000)
Average Recall	(AR) @[IoU=0.	50:0.95 area=	all max	Dets= 1] = 0.488	
Average Recall	(AR) @[IoU=0.	50:0.95 area=	all max	Dets= 10] = 0.593	
Average Recall	(AR) @[IoU=0.	50:0.95 area=	all max	Dets=100] = 0.593	
Average Recall	(AR) @[IoU=0.	50:0.95 area=	small max	Dets=100] = 0.593	
Average Recall	(AR) @[IoU=0.	50:0.95 area=m	edium max	Dets=100] = -1.000)
Average Recall	(AR) @[IOU=0.	50:0.95 area=	large max	Dets=100] = -1.000)
[01/10 03:19:32 d2.evaluation.coco_evaluation]: Evaluation results for segm:					
AP AP50	AP75 APs	APm AP1	.		
:: :: :	: :	-: :: :	-:		
53.512 97.707	51.005 53.51	2 nan nan	· I		
[01/10 03:19:32 d2.evaluation.coco_evaluation]: Some metrics cannot be computed and is shown as NaN.					
[01/10 03:19:32 d2.evaluation.coco_evaluation]: Per-category segm AP:					
category /	AP categ	ory	AP	category	AP
: :	:		- :		· :
Dentinal Caries	51.785 Carie	s involving pulp	43.117	Rootpiece	54.281
Proximal Caries /	47.771 Secor	dary Caries	39.695	Healthy Dentition	84.422

Figure 8 Model Evaluation

Figure 9 Average Precision and Recall results

6. References

COCO Consortium (2016) COCO - Common Objects in Context. Available at: https://cocodataset.org/#detection-eval (Accessed: 13 August 2020).

Detectron2: A PyTorch-based modular object detection library (2019). Available at: https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/ (Accessed: 13 August 2020).

Installation — detectron2 0.2.1 documentation (2019). Available at: https://detectron2.readthedocs.io/tutorials/install.html (Accessed: 13 August 2020).