—

\‘ . |
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Data Analytics 2021-2022

Kajol Daiya
Student ID: x19216831

School of Computing
National College of Ireland

Supervisor: Hicham Rifali

Student Name:
Student ID:
Programme:

Module:

Lecturer:
Submission Due
Date:

Project Title:

Word Count:

‘—-
National College of Ireland \ National

MSc Project Submission Sheet COllegeOf
c Project Submission Shee
Ireland
School of Computing
Kajol Daiya
x19216831
MSc Data Analytics Year: 2021-2022

Research Project
Hicham Rafai

31.01.22

Instance Segmentation for Detecting Dental Caries in Panoramic
X-rays using Detectron2

Page Count: 13

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Kajol Daiya

31.01.2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project O
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Sighature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Kajol Daiya
Student ID: x19216831

1. Introduction

This document's objective is to outline the stages involved in developing the project. The
hardware & system configurations required to reproduce research work are explained in great
detail. This section covers the design and implementation strategies needed for effective
operations. to built an instance segmentation model to detect dental caries using the
Detectron2 model

2. Specifications
Hardware and Software Requirements

® The hardware specifications used to implement the project are shown in figure 1

Device specifications

Device name MSI

Processor Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.60

Installed RAM
Device ID
Product ID
System type

Pen and touch No pen or touch input is available for this display

Figure 1 Hardware Specification

e Google Collab is a cloud-based, open-source platform for developing deep
learning algorithms. To sign in to Google Collab, you'll need a Gmail account.
Each user is given a minimum of 12.73 GB of RAM, which can be increased to
25 GB, as well as 64 GB of hard disk space. The research is carried out according
to the guidelines listed below.

e LabelMe is used to annotate the images manually and annotated file is saved
inCOCO JSON format to load the data into the Detectron2 model.

e Cuda Toolkit is an open-source computing tool that enables users to
CUDAGgraphics for overall computing.

e Anaconda3: For python programming, the platform provides a variety of
integrated design frameworks (IDD). The models are created using the libraries
indicated below

Python 3.6.13 — Libraries
numpy 1.19.5
tensorflow 1.3.0

keras 2.0.8

detectron?2 arch flags 3.7
PyTorch 1.8.0+cul01
Pillow 8.3.1

torchvision 0.9.0+cu102
iopath 0.1.9
opencv-python 4.5.3
IPython[all]

scipy

matplotlib

scikit-image

VVVVVVYVVVVVYYVYY

3. Data Collection

The data set for this study came from a publicly accessible open-source platform. The dataset
contains 116 panoramic x-rays with their relevant masks. The OPG X-ray covers the full
region of the patient’s mouth. The dental caries type is classed into 5 categories: Dentinal
Caries, Proximal Caries, RootPiece, Caries involving pulp, and Secondary Caries, this is
annotated manually in this dataset in coordination with 5 dental practitioners to attain
accurate annotations.

Link to Dataset: panoramic Dental X-rays With Segmented Mandibles - Mendeley Data

The database contains 3 directories: Images, Segmentationl and Segmentation2.

This study takes only the Images folder for Instance Segmentation tasks.

4. Data Pre-processing

The image labeling is performed on LabelMe software after the images are resized.
Images are resized in a go with natsorted function in python. In figure 1, the lines of code have
successfully resized the images into (255,255)

https://data.mendeley.com/datasets/hxt48yk462/1

In [3]: ## Exploring Data set
img_path = 'C:/Users/kdaly/Downloads/Teeth_SegCaps/SegCaps/Images/1.png

img = Image.open(img_path)
print(.format({img.format))

print('s :{}" .format(img.size))
print('image mode:{}'.format(img.mode})
img.show()

PNG

size: (3188, 1388)
image mode:L

In [4]: |#empty Lists
image_list = []
resized_images = []

In [5]: |#oppend images to List
for filename in natsorted(glob.glob('C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images/*.png"}):
print{filename)
opg_image = Image.open(filename)
image_list.append(opg_image)

JUsers/kdaly/Downloads/ Teeth_Seglaps) Seglaps) IMGges 7 .ong .
fUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\8.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\9.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\18.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi1l.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi12.png
/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi13.png
/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi14.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\15.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\16.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\17.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images\18.png
/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi19.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Images’28.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi21.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi22.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi23.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi24.png
JUsers/kdaiy/Downloads/Teeth_SegCaps/SegCaps/Imagesi25.png
1/Users/kdaiv/Downloads/Teeth SegCaps/SegCaps/Imagesi26.0nE

[aRaRaRaRaiaiaiaiaiaiaaiaiaiaiaRaRaRale

In [9]: |#oppend resized images to List
for image in image_list:
image.show()
image = image.resize({255,255))
resized_images.append{image)

In [18]: #sgve resized imgges to new folder

for (i, new) in enumerate(resized_images)

new.save("{}{}{}" .format('C: /Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages’,i+1,".png"))

Figure 1 Images Resized

e o

Figure 2 Interface of the LabelMe Software

Dental X-ray images tend to be quite noisy coming from various types of noise sources. To de-
noise these x-ray images, denoising filters are used to highlight useful details in the x-ray and
increase its image quality. Image thresholding and equalization are some of the tools that we have
for image processing so image thresholding for segmentation tasks becomes a bit easier. With
histogram equalization, we can stretch the histogram to span the entire range. Histogram
Equalization considers the global contrast of the image, not just the local contrast. The result of

3

Histogram equalization and Contrast Limiting Adaptive Histogram Equalizer was taken out.
CLAHE does histogram equalization in small patches and it works very well and does contrast
limiting

CLAHE and EQUALIZATION

In [12]: img_path = 'C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages/ResizedImagesl.png’

img = Image.open(img_path)

print("4 format(img.format))
print(‘size:{}'.format(img.size))
print(image mode:{}'.format(img.mode))
img.show()

PNG
size: (255, 255)
image mode:L

In [2]: import cv2
import numpy as np
from matplotlib import pyplot as plt

C:\Users\kdaiy\anaconda3\1lib\site-packages\numpy_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:

C:\Users\kdaiy\anaconda3\lib\site-packages\numpy\.1libs\libopenblas.NOIJJIG62EMASZIENYURL6IBKMAEVBGMT . gfortran-win_amd64.d1l

C:\Users\kdaiy\anaconda3\1lib\site-packages\numpy\.1libs\libopenblas.WCDINK7YVMPZQ2ME2ZZHIIRI3IIKNDB7 .gfortran-win_amd64.d1l
warnings.warn("loaded more than 1 DLL from .libs:"

In [30]: xray = cv2.imread("C:/Users/kdaiy/Downloads/Teeth_SegCaps/SegCaps/ResizedImages/ResizedImages114.png”,8)
eg_img = cv2.equalizeHist(xray)

plt.hist(eq_img.flat, bins=1@0, range=(@,255))

clahe = cv2.createCLAHE(clipLimit=2.8, tileGridSize=(8,8))
cl_img = clahe.apply(xray)

#cv2. imshow('Equalised Image’, eq_img)

#cv2. imshow("CLAHE image', cl_img)

#cv2.waitKey(8)

#cv2.distroyALLivindows()

img_titles =["ORIGINAL","CLAHE", "EQUALISED"]

opg_xray = [xray, cl_img, eq_img]

for i in range(3):
plt.subplot(1,2,i+1),plt.imshow(opg_xray[i], 'gray’)
plt.title(img_titles[i])
plt.xticks([]1),plt.yticks([])

plt.show()

EQUALISED

Figure 3 Image Preprocessing

Thresholding

cv2.threshold(cl_img, 198,158, cv2.THRESH_BINARY)
cv2.threshold(cl _img, 198,255, cv2.THRESH_BINARY_INV)
cv2.threshold(cl_img,198,255,cv2.THRESH_TRUNC)
ret, threshd = cv2.threshold(cl_img,198,255,cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(cl_img,198,255,cv2.THRESH_TOZERO_INV)
#cv2.imshow('Original’, xray)
#cv2.imshow('Binary Threshold 1°',cl_img)
#cv2.waitkey(9)
titles = ['Original Image’,'BINARY','BINARY_INV', TRUNC','TOZERC','TOZERO_INV']
xray_images = [xray, threshl, thresh2, thresh3, thresh4, thresh3]
for i in range(6):
plt.subplot(2,3,i+1),plt.imshow(xray_images[i], 'gray"’)
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

In [32]: ret, threshl
ret, thresh2
ret, thresh3

BINARY BINARY INV

Oniginal Image
o

W]
Figure 4 Thresholding Technique

Data Transformation:
The dataset in this study contains only 116 images which are split into a train (70%),
test(20%), validation(10%). The training dataset contains 93 relatively small images, also
these images are distributed unevenly among 5 classes of dental caries.

Split into train test validate

In [36]: pip install split-folders

Collecting split-folders
Downloading split folders-@.4.3-py3-none-any.whl (7.4 kB)
Installing collected packsges: split-folders
Successfully installed split-folders-8.4.3
Mote: you may need to restart the kernel to use updated packages.

In [27]: import splitfolders

In [28]: pip install split-folders tgdm

Requirement already satisfied: split-folders in c:‘\wusers\kdaiy\anaconda3ilib‘\site-packages (8.4.3)
Requirement already satisfied: tgdm in c:lusersikdaiy\snaconda3\lib\site-packages (4.52.2)

Requirement already satisfied: coleorama in c:lwsers\kdaiy\anaconda3\lib\site-packasges (from tgdm) (@.4.4)
Mote: you may need to restart the kernel to use updated packages.

input_folder = 'opg_xrays

—
=)
[X)
=)

In [38]: splitfolders.ratio(input_folder, output="opg wrays2",
seed=42, ratio=(.7, .2, .1),
group_prefix=None) # defoult v

Copying files: @ files [15:88, ? files/s]

Copying files: 15 files [8@:08, 148.54 files/s]
Copying files: 45 files [@B8:8@, 237.27 files/s]
Copying files: 69 files [@9:8@, 237.96 files/s]
Copying files: 93 files [8@:08, 233.47 files/s]
Copying files: 123 files [@8:88, 256.75 files/s]
Copying files: 149 files [@9:88, 248.14 files/s]

Copying files: 178 files [09:88, 261.24 files/s]

5. Detectron2 Model

Google Colab was used to train the Detector2 model

google.colab import drive
mount(S)

Mounted at /content/drive

Ipip install pyyaml==5.
!pip install torch==1.8.@+cul@1 torchvisi 9.0+cu101 -f https://download.pytorch.org/wh

Collecting pyyaml==5.1
Downloading PyYAML-5.1.tar.gz (274 kB)
| 274 kB 5.2 MB/s
Building wheels for collected packages: pyyaml
Building wheel for pyyaml (setup.py) ... done
Created wheel for pyyaml: filename=PyYAML-5.1-cp37-cp37m-linux x86_64.whl size=44892 sha256=31c606e19fe7979d416737e4dd8bdbfbeacb82e8b773d9267291e53301c71298
Stored in directory: /root/.cache/pip/wheels/77/f5/10/de@a2bd30928b972790053b5de@c703cas7324f3feadef2fd9
Successfully built pyyaml
Installing collected packages: pyyaml
Attempting uninstall: pyyaml
Found existing installation: PyYAML 3.13
Uninstalling PyYAML-3.13
Successfully uninstalled PyYAML-3.13
Successfully installed pyyaml-5.1
Looking in links
Collecting torch==1.8.0+cu101
Downloading c _X86_ (763.5 MB)
| 763.5 MB 15 kB/s
Collecting torchvisio
Downloading _x86_ (17.3 M8)
| 17.3 MB 841 kB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages .8.8+cu101) (1.19.5
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from torch==1.8.@+cul0l) (3.10.0.2
Requirement already satisfied: pillow>=4.1.1 in /usr/local/lib/python3.7/dist-packages (from torchvision==0.9.@+cu101) (7.1.2
Installing collected packages: torch, torchvision
Attempting uninstall: torch
Found existing installation: torch 1.10.@+culll
Uninstalling torch-1.10.@+culll:
Successfully uninstalled torch-1.10.@+culll
Attempting uninstall: torchvision
Found existing installation: torchvision @.11.1+culll
Uninstalling torchvision-0.11.1+culll
Successfully uninstalled torchvision-8.11.1+culll

Figure 3 Mounting Google Drive

annos = img anns["s

a in anno['p

a in anno['points®]] #
[(x,y) for x, y in zip(px,py)] #pc
[p for x in poly for p in x]

BoxMode . XYXY_ABS,

' [polyl,
classes.index(anno['1

objs.append(obj)
record[ns"] = objs
dataset_dicts.append(record)
irn dataset dicts

classes =
data_path
for d in [AT s

DatasetCatalog.register(

"¢ +d,
: get_data_dicts(data_path+d, classes)

)

MetadataCatalog.get("c ry_" + d).set(thing_cl
microcontrollermetadata_metadata = MetadataCatalog.get(

Figure 5 Classes are defined

Model Training

Pre trained model mask rcnn R 101 is selected as the base model by selecting hyperparameters as seen in the
Figure 6.

= get_cfg()

-merge_from_file(model zoo.get config file("
-DATASETS.TRAIN o)
-DATASETS.TEST

.DATALOADER .NUM_WORKERS

.MODEL .WEIGHTS = model zoo.get_ checkpoint_url(
.SOLVER.IMS PER BATCH = 2

-SOLVER.BASE_LR = 0.0025

-SOLVER.MAX_ITER = 3500

-MODEL.ROI_HEADS.NUM CLASSES = 6

-TEST.EVAL_PERIOD = 1000

-MODEL .ROI_HEADS.BATCH SIZE PER_IMAGE = 128

-MODEL .RETINANET.NUM CLASSES = 6

.MODEL .ROI_KEYPOINT HEAD.NUM KEYPOINTS = 4
-TEST.KEYPOINT_OKS_SIGMAS = np.ones((4,1), dtype=).tolist()

TensorBoard SCALARS TIME SERIES

Show data download links
[ignore outliers in chart scaling

fast_rcnn
Tooltip sorting method: default

fast_ronn/cls_accuracy fast_renn/false_negative
tag fast_scna/cia_sccuracy tag fasticravalse_negative

fast
g

senn/fg_cls_accuracy
fastrcn/fg_cia_sccurcy

Figure 6 TensorFlow Output after training the model

Reconnect +

7

d in random.sample(test dataset dicts, 1):

img = cv2.imread(d["file_name"])

uts = predictor(img)

Visualizer(img,
metadata=microcontrollermetadata _metadata,
scale=0.8,
instance_mode=ColorMode.IMAGE BW

v.draw_instance_predictions(outputs["instances"].to("cpu™))
.figure(figsize = (14,10))

.imshow(cv2.cvtColor(v.get_image()[:, :, ::-1], cv2.COLOR_BGR2RGB))
.show()

Figure 7 Instance Segmentation Results are visualized with Visualizer class

IoU

dlMead=

|

|

|

L ; |
IoU are: e |
0 - |
|

|

|

|

I

area= large
Evaluation r
| APl |
nan
wn as NaN.

Figure 8 Model Evaluation

Figure 9 Average Precision and Recall results

10

6. References

COCO Consortium (2016) COCO - Common Objects in Context. Available at:
https://cocodataset.org/#detection-eval (Accessed: 13 August 2020).

Detectron2: A PyTorch-based modular object detection library (2019). Available at:
https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/ (Accessed: 13
August 2020).

Installation — detectron2 0.2.1 documentation (2019). Available at:
https://detectron2.readthedocs.io/tutorials/install.html (Accessed: 13 August 2020).

11

