

Configuration Manual

MSc Research Project

Master of Science in Data Analytics

Shubham Chaudhari

Student ID: x20160836

School of Computing

National College of Ireland

Supervisor: Prof. Mohammed Hasanuzzaman

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Shubham Sarjerao Chaudhari

Student ID:

x20160836

Programme:

MSc in Data Analytics

Year:

2021-2022

Module:

MSc Research Project

Lecturer:

Prof. Mohammed Hasanuzzaman

Submission Due

Date:

31th January 2022

Project Title:

Deep Learning Networks for Detection, Classification and Analysis

of Car Damage

Word Count:

1494 Page Count: 16

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Shubham Sarjerao Chaudhari

Date:

31th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Shubham Chaudhari

Student ID: x20160836

1 Introduction

The prerequisites for installing the system, which was intended for categorization and

detection of car damages utilizing Deep Learning models are outlined in the setup manual

below. In addition, the document will go through the hardware as well as software

requirements that were utilized to complete the project successfully.

2 System Configuration

The following is a list of the software and hardware configurations that were utilized to

complete this project. The following are the hardware and software configurations utilized in

the implementation:

2.1 Hardware Requirements

Table 1 depicts used hardware configuration to complete the project successfully.

Table 1 Hardware Requirements

Hardware Configuration

System ASUS ZenBook Duo

Operating System Windows 10 (64bit)

RAM 16 GB

Hard Disk 1 TB (Solid State Drive)

Graphics Card NVIDIA GeForce MTX250 (2GB)

Processor Intel (R) Core (TM) i7

CUDA Version 11.3

This project was run on Windows 10, which has a 64-bit operating system. Installed RAM

was 16 GB and installed GPU was NVIDIA GeForce MTX 250 2GB with cuda version 11.3,

and the storage capacity was 1 TB Solid State Drive. Processor installed was Inter(R) Core

(TM) i7.

2

Figure 1 Laptop Configuration

2.2 Software Requirements

Table 1 depicts used hardware configuration to complete the project successfully.

Table 2 Software Requirements

Software Configuration

Python 3.7 (64 bit)

Microsoft Excel 2019 Edition

Google Colab GPU Tesla K80

Anaconda 1.10.0

VS Code 1.63.1

Figure 2 Python Configuration

Figure 3 Excel Configuration

3

Figure 4 Google Colab Configuration

Figure 5 Google Colab GPU Configuration

For training High-End Deep Learning Neural Network models Tesla K80 GPU from Google

Colab was used.

Figure 6 Anaconda Configuration

4

Anaconda Navigator 1.10.0 was used to create specific environments for completion of this

project. Also, it was used to download necessary libraries.

Figure 7 VS Code Configuration

VS-Code was used to create supporting as well as main python scripts for completion of the

project.

3 Model Implementation

3.1 Data Collection

Step 1 – Creating an account with SerpAPI to scrap images from Google Images.

SerpAPI was utilised to scrape the data that was used in the implementation from Google.

Initially, account need to be created on SerpAPI for further processing. Figure 8 shows

dashboard of SerpAPI.

Figure 8 SerpAPI Dashboard

5

Figure 9 shows Google image API screen from which images were scrapped. Images were

scrapped as per batches and each batch was responsible for fetching 100 images. So, if we

want the first 500 images, we'll need to conduct five searches.

Figure 9 Google API Images

Figure 10 shows number of successful as well as failed searches per batch. From figure, we

can conclude that number of successful searches are more than failed searches. It also shows

statistics of API including number of searches per month, searches from account creation and

so on.

Figure 10 Account Usage

6

Step 2 – Execute “serp-api.py” to store image links in excel file.

Step 3 – Execute “image-downloader.py” to store image in different folders using excel file.

Figure 11 Excel File Creation with Dataset Link and Search Query

Function “get_google_images” allow to download and create excel file containing image

links, search query, image downloaded date.

Figure 12 Search queries for different classes

7

Calling the function “get_google_images” with different search queries to get multiple

results, and saving it into an excel file.

Figure 13 Downloading Images Execution

Figure 13 shows successfully downloaded images included with its path, search query as well

as URL and store this meta-data into an excel file.

Figure 15 Dataset Metadata Snapshot

8

3.2 Data Pre-processing

3.2.1 Image Resizing

Step 4 – Execute “image-resize.py” to resize all the images in the folders to 1024 X 1024.

Image compression is the process of increasing or decreasing the size of an image without

removing any content.

Figure 16 Image Resize Code

Figure 17 Image Resize Execution

9

Our acquired car image data was of varying sizes; each image's pixel was unique,

necessitating resizing to the same scale. Figure 17 shows code for resizing all augmented

images into same scale i.e., 1024*1024. Here W and H represents width and height of image

and converted images get stored into newly created folder with existing file name.

As a result, we transformed all images to a fixed size format of 1024 × 1024 pixels. Figure 10

shows resized image results of each damage category.

3.2.2 Image Augmentation for Damage Classification

Step 5 – Execute “image-augmentation.py” to increase the number of images within specific

folder and store it into new folder.

Data augmentation is the process of increasing the amount of data required to train a

classifier. Image-augmentation.py file was used for augmenting images for further

classification training. Different types of functions were applied on image data like horizontal

flipping as well as vertical flipping of images. Augmenter’s library is used for image

augmentation. Figure 18 shows code snippet of image augmentation. And figure 8 represents

successful downloading of augmented images.

Figure 18 Image Augmentation Code

Figure 19 Image Augmentation Code Execution

10

3.2.3 Image Annotations for Damage Detection

Step 6 – Upload the original downloaded folder to CVAT by creating different projects with

specific category to annotate. Select Bounding Box as annotation type for image annotations.

CVAT is a web-based image and video annotation tool that is free as well as open source. For

image annotations, initially account need to be created on CVAT for further processing.

Figure 20 represents dashboard for creating new task in CVAT.

Figure 20 Task Creation on CVAT

In CVAT Tool task needs to be created prior starting the annotation process. In task multiple

projects can be created with respect to classes. Classes and attributes need to be added Add

Label section. Labels like Tail Lamp, Head Lamp, Windshield Damage, Bumper Dent,

Scratch and Door Dent were added. Also, images were also uploaded in the same section.

Figure 21 Different tasks according to classes

11

Different tasks were created according to different classes. Tasks like Windshield Damage

Annotations, Tail Lamp Damage Annotations, Scratch Annotations, Bumper Dent

Annotations, Door Dent Annotations and Head Lamp Damage Annotations were created.

Opening a particular task gets to annotation page.

Figure 22 Annotation Dashboard

Figure 22 shows annotations dashboard. Here we can annotate with specific labels as well as

with different annotations type. For the project Bounding box annotation type was selected.

3.3 Model Building

3.3.1 Damage Detection Model

Step 7 – Download all the annotated data into COCO format.

Step 8 – Execute “coco_json_to_csv.py” to convert COCO format file to CSV file.

Step 9 – Execute “plot_results.py” to check the bounding boxes positions on images after

converting COCO JSON file to CSV.

Step 10 – Execute “retinanet.py” to train the model.

Step 11 – Upload the model weight file and test dataset on google drive for inferencing.

Step 12 – Execute “car-damage-detection.ipynb” to check the output results.

Object detection is important stage which has to be done before classification. RetinaNet is a

well-known single-stage detector that is both accurate and fast. RetinaNet employs a feature

pyramid network to recognize objects at several scales. To achieve damage detection

objective, RetinaNet is used for implementing damage detection.

12

Figure 23 RetinaNet Model Code

Figure 24 RetinaNet inference code

3.3.2 Damage Classification Model

Step 13 – Execute “car-damage-classification.ipynb” to train different classification model as

well as to inference the final output results.

After successful detection of damage, our next task was to classify that damage into correct

category. For classification, various deep learning models were trained on pre-processed data.

Figure 25 shows basic CNN model’s layers.

13

Figure 25 CNN Model Layers

Figure 26 Method for calling CNN model

Figure 26 shows calling method of CNN model, which consist of different parameters like

batch size, number of epochs, loss function and so on.

After training basic CNN model, research is further processed by training same data on pre-

trained models. Figure 27 represents creation of initial layers for pre-trained model training.

14

Figure 27 Setting initial layers for pre-trained models

Some pretrained models were trained on pre-processed data for further assessment. Figure 28

shows training parameters of MobileNet model. Hyper parameters used while training

MobileNet includes batch size i.e., 50, number of epochs, weights of pre-trained imagenet

dataset, loss function, number of classes and so on.

Figure 28 Training Mobile Net

Similar to the MobileNet, next model was trained that is nothing but VGG16. Figure 17

shows implementation and training of VGG16 model on same dataset. Parameters that are

used while training VGg16 model includes number of parameters being freeze while training,

batch size of images, number of epochs to be trained, loss function, initial layers that are

replaced with base model, model summary and so on.

15

Figure 29 Training VGG16

The Inception-ResNet-v2 structure is a convolutional neural network that is based upon this

Inception group of models but includes residual connections. Figure 18 shows

implementation snippet of InceptionResNetV2 model. Similar to other pre-trained models,

this model also contains same parameters like base model for initial layers, loss function,

weights and so on.

Figure 30 Training InceptionResnetv2

16

Figure 31 Model Inference Code

Figure 31 shows code snap for different model inferencing on different models trained.

References

Kyu, P.M. and Woraratpanya, K., 2020, July. Car Damage Detection and Classification.

In Proceedings of the 11th International Conference on Advances in Information

Technology (pp. 1-6).

Malik, H.S., Dwivedi, M., Omakar, S.N., Samal, S.R., Rathi, A., Monis, E.B., Khanna, B.

and Tiwari, A., 2020. Deep Learning Based Car Damage Classification and

Detection. EasyChair Preprint, (3008).

Patil, K., Kulkarni, M., Sriraman, A. and Karande, S., 2017, December. Deep learning based

car damage classification. In 2017 16th IEEE international conference on machine learning

and applications (ICMLA) (pp. 50-54). IEEE.

