~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Pratiksha Arvind Chate
Student ID: x20150377

School of Computing
National College of Ireland

Supervisor: Prof. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Pratiksha Arvind Chate
Student ID: x20150377
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Prof. Christian Horn
Submission Due Date: 31/01/2022
Project Title: Configuration Manual
Word Count: 1534
Page Count: [15

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Pratiksha Arvind Chate

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Pratiksha Arvind Chate
x20150377

1 Introduction

This configuration manual provides a high-level overview of the hardware and software
requirements for replicating the study. This handbook will be valuable in gaining a decent
understanding of the prerequisites, starting with setting up the execution environment
for implementing the research.

Phase 1: Data Cleaning and Exploratory Data Analysis

Python Filename : “x20150377_Exploratory_Data_Analysis”

Phase 2: Feature Engineering

Python Filename : “x20150377_Feature_Engineering”

Phase 3: Data Modelling
Python Filename : “x20150377_Modelling”

Figure 1: Phases of executing the Jupyter notebook files

The figure Figure|l|depicts the three phases to execute the files created. The sequence
of the notebooks is Data Cleaning and Exploratory Data Analysis
("x20150377_Exploratory_Data_Analysis”), Feature Engineering
("x20150377_Feature_Engineering”) and Data Modelling (”x20150377_Modelling”).

2 System Configuration

2.1 Hardware Requirements

The hardware specifications on which this research is implemented is given as follows:
e Windows Edition: Windows 10 Home Single Language
e Processor: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz
e Installed RAM: 8.00 GB (7.80 GB usable)

1

e System Type: 64-bit operating system, x64-based processor

e Pen and Touch No pen or touch input is available for this display

Device specifications

G5 5500
Device name DESKTOP-D89IMDS

Processor Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59
GHz

Installed RAM 8.00 GB (7.80 GB usable)

Device ID 44216658-7A9E-40BB-9532-3F0816987DD6
Product ID 00327-35889-17135-AA0EM

System type 64-bit operating system, x64-based processor
Pen and touch No pen or touch input is available for this display

Figure 2: Device Specifications

2.2 Software Requirements

The software requirements to implement this research are stated below:
e Programming Language: Python (version - 3.9.5)

e IDE: Jupyter Notebook

3 Project Implementation

This section concentrates upon the steps involved to execute the research model imple-
mented.

3.1 Programming Environment Setup

The Jupyter Notebook is launched from the command prompt in order to start the
execution environment for its implementation.

Upas [Wewe| &

(a) Launch Jupyter Notebook (b) Jupyter Notebook home page
Figure 3: Execution environment
The Figure |3a] shows the command to start the jupyter notebook through command

prompt. As the jupyter notebook is launched, a new tab with home page is opened in
the browser as shown in Figure [3b]

3.2 Data Collection

The dataset which the research is based upon is a fairly descriptive sales and order data
of an e-commerce giant based out of Brazil. The dataset incorporates particulars of
100k customer orders placed in Brazil between the year 2016 and the year 2018. The
attributes of this data facilitate observation of details from several viewpoints. The data is
gathered from Kaggld'|and is present in the form of CSV files that are further subdivided
into numerous distinct datasets for easier interpretation and organization.

The new Python 3 file is created (with .ipynb extension) to extract the collected data
and explore it to draw meaningful insights required for further processing.

3.3 Python Libraries

The libraries used such as pandasﬂ N umpyﬁ, matplotlibﬂ seabornE] are described in the
table [l below.

Library Version
pandas 1.2.4
Numpy 1.19.5
matplotlib 3.4.2
seaborn 0.11.1
datetime

Table 1: Python Libraries used for Data Analysis

These libraries can be installed using pip command in the Jupyter Notebook.
Example: The Numpy library can be used by the command:
!pip install numpy.

Figure 4: Fetch the collected data to jupyter notebook

Once all the standard packages are in place, the collected data is fetched into the python
notebook to perform data cleaning operations and exploratory data analyis as shown in

the Figure [5]

"https://www.kaggle.com/olistbr/brazilian-ecommerce
2https://pandas.pydata.org/

3https://numpy.org/

“https://matplotlib.org/
Shttps://seaborn.pydata.org/

https://www.kaggle.com/olistbr/brazilian-ecommerce
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://seaborn.pydata.org/

3.4 Data Merging (One-to-One Mapping)

Few discrepancies were observed in the data causing cartesian product which were handled
keeping in mind the below assumptions.
Assumptions:

e Order ID will be unique across all the transaction tables so that the resultant data
is based on one-to-one mapping.

e One review ID can be tagged to just one order ID.

e For analysis, the data will be constrained to contain unique order IDs with one
order item and one payment record.

ers\Pratiksha Chate\Desktop\Books\SEM ITT\Thesis\Dataset")

Reading Data

In [3]: data = pd.re:

Figure 5: Fetch the collected data to jupyter notebook

Data cleaning operations such as treating null values, deduplication, etc. were performed.

ler 83483
(6), object(22)

Figure 6: Final Data for EDA

The final set of data obtained contains 42 variables and no missing values as shown
in Figure [6]

The detailed exploratory data analysis on the cleaned data is performed with respect
to the positive and negative reviews and some meaningful insights were discovered.

3.5 Customer Segmentation

The customer segmentation based on quantile method is implemented to segment the
customers into their respective groups. The Figure [7] Figure [§] Figure [9] depict the
customer segmentation implemented.

as
§
o
oy

8) and (dF['RFM Score s'] < 9)):

152 7) and (dF'RFIS
1= 6) and (dF[RFN_S
>2'5) and (dFRFN_S

4) and (df['RFM_Score_s'] < 5)):

-apply (r
5 top 5

out[126] recency frequency monetary f quartile r quartie m quarile RFM Score RFM Scores REM Level
customer_unique_id

0003sSrIbSaTSOZMCTECHAR2ZIe2 115

14150 a1 s Crampons

1 1 0 B
0000b84SITTase4sdce2bMcasbESH 116 EE:2t) 1 3 1 an 5 pomsig
O000MBATIN1accOB0SMABITOB 541 1 w2 1 1 2 2 4 Needs Atenton
0000fGcco07assGaMpsEBSSAT6CIIOT 325 1 e 1 2 1 m 4 NeedsAtenton
O00daacsseOdazbtaTICaTOC285 252 1 sse 1 2 4 2 7 Loyal

Figure 8: Customer segmentation

ALY,

*NEEDS ATTENTION',
*POTENTIAL',
*PROMISING®

RFM Segments

CHAMPIONS
NEEDS ATTENTION

CAN'T LOOSE THEM

Figure 9: Customer Segmentation Diagram

3.6 Feature Engineering

This part of the research is considered to be significant as feature engineering is known to
enhance the performance of the machine learning models applied. This is the second phase
of this research. It is implemented by executing the "x20150377_Feature_Engineering”
upon the successful execution of ”"x20150377_Exploratory_Data_Analysis”. The set of
libraries required to execute the feature engineering file are same as mentioned in the
Table [

To achieve the desired objective, new time-based and distance based features have
been added and the existing attributes were not highly correlated with the target variable.

Addition of Time Based Features

1. estimated_time = order_estimated_delivery_date - order_purchase_timestamp

2. actual_time = order_delivered_customer_date - order_purchase_timestamp

3. diff_actual_estimated = order_delivered_customer_date - order_estimated_delivery_date
4. diff_purchased_approved = order_approved_at - order_purchase_timestamp

5. diff_purchased_courier = order_delivered_carrier_date - order_purchase_timestamp

In [17]: #Time of estimated delivery
final_data["estimated_time"] = (final_data["order_estimated_delivery_date"]-final_data["order_purchase_timestamp"]).apply(
lambda x: x.total_seconds()/3600)

In [18]: #Time taken for delivery
final_data["actual_time"] = (final_data["order_delivered_customer_date"]-final_data[“order_purchase_timestamp"]).apply(
lambda x: x.total_seconds()/3600)

In [19]: #Difference between actual delivery time and estimated delivery time
final_data["diff_actual_estimated"] = (final_data["order_delivered_customer_date"] - final_data["order_estimated_delivery_date"]]
lambda x: x.total_seconds()/3600)
>

In [20]: # difference between purchase time and approved time
final_data["diff_purchased_approved"] = (final_data["order_approved_at"] - final_data["order_purchase_timestamp"]).apply(
lambda x: x.total_seconds()/3600)

In [21]: # difference between purchase time and courrier delivery time
final_data["diff_purchased_courrier"] = (final_data["order_delivered_carrier_date"] - final_data["order_purchase_timestamp"1).aps
lambda x: x.total_seconds()/3600)
>

Figure 10: Time-based features

Time-based features such as "estimated time”, "actual delivery time”, ”difference
between actual and estimated delivery time”, ”difference between purchased and order
approved time”, and ”difference between purchased and shipped time” have been created
as demonstrated in Figure [10] from the existing features to check if these are correlated
with the target variable.

Addition of Distance Based Features

We have observed that, Many most of the customers are from state SP and most of the sellers are from SP. And most of the products that are sold from the
user of SP ot positive review score

So, | am assuming, distance between seller and customer could be one aspect that affect customer satisfaction. i.e. If the distance is more then there could be
a chance that customer is not satisfied and give review_score less

In [22]: from math import radians
from sklearn.metrics.pairwise import haversine_distances

In [23]: X = [] # List to store customer latitude and Longitude
Y = [1 # List to store seller Latitude and Longitude

for i in range(len(final_data)):
X.append([radians (final_data.geolocation_lat_customer[i]),radians(final_data.geolocation_lng_customer[i])])
Y.append([radians (final_data.geolocation_lat_seller[i]),radians(final_data.geolocation_lng_seller[i])])

#converting to numpy array
cust_loc = np.array(X)
seller_loc = np.array(Y)

distance=[]

for i in range(len(final_data)):
#calculating distance and multiplying by radius of earth(6371) to get distance in km
dist = haversine_distances([cust_loc[i], seller_loc[i]])*6371
distance.append(dist[0,1])

final_data["distance"] = distance
Speed of delivery is also plays important role.

New feature speed is added using distance and actual time created earlier

In [24]: #speed = distance/time
final_data["speed"] = final_data["distance"]/final_data["actual_time"]

Figure 11: Distance-based features

Similarly, the distance-based features such as ”distance” between customer and seller
and ”speed” of delivery were created as depicted in Figure

The newly created attributes were analysed with kdeplot and box plot to check if they
are correlated with the target variable. The analysis of ”difference between actual and
estimated delivery time” is presented as an example in the figure below.

1f aeudl esnated

(a) kdeplot (b) Box plot

Figure 12: Analysis of difference between actual and estimated delivery time

This newly derived attribute is found to be useful for predicting the review score
as for lower values, probability density of positive review scores is highly peaked (refer
Figure . The same is conveyed through the box plot in Figure m Thus, the
likelihood of receiving a positive review score is high if the product is delivered before
the estimated delivery date. Also, business is likely to receive a lower review score if the
delivery exceeds the estimated delivery time.

(a) Same city and same state (b) Late shipping and high freight

Figure 13: Binary features

Some new binary features such as ”"same city”, "same state”, "late shipping” and
"high freight” were derived (refer Figure to check if the customers are sellers are from
the same city, same state or if the product is shipped late or high freight value is paid by
the customers respectively.

3.7 Data Modelling

This is the final phase of this research where data oversampling, and modelling is per-
formed and the implemented models are evaluated. It is implemented by executing the
"x20150377_Modelling” upon the successful execution of ”x20150377_Feature_Engineering”.

The packages imported such as pickld’], sklearn[’] imblearnf| and lightgbm{| for executing
this file are presented in the Table [2| along with the versions used.

Library Version
pandas 1.2.4
Numpy 1.19.5
matplotlib 3.4.2
seaborn 0.11.1
datetime

pickle 4.0
scikit-learn (sklearn) | 0.24.2
imblearn 0.8.0
lightgbm 3.2.1

Table 2: Python Libraries used for Data Modelling

In [3]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
import pickle

from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.preprocessing import StandardScaler

from sklearn.metrics import confusion_matrix,fl_score,accuracy_score
from sklearn.preprocessing import LabelEncoder

from imblearn.over_sampling import SMOTE

from imblearn.over_sampling import RandomOverSampler

from lightgbm import LGBMClassifier
from sklearn.model_selection import RandomizedSearchCV,GridSearchCV
from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier

import warnings
warnings. filterwarnings ("ignore")

Figure 14: Packages for Data Modelling

The modules and sub-packages from the libraries mentioned in the Table |2| that are
used for data modelling are depicted in the Figure[14] These packages are the prerequisites
for the execution of machine learning models implemented.

3.8 Data Preparation

The categorical variables such as ”"payment type”, "order status”, ”"product category
name”, and "RFM Level” are transformed in the numeric values to train the model using
LabelEncoder as shown in Figure [15]

Shttps://docs.python.org/3/library/pickle.html
"https://scikit-learn.org/stable/
Shttps://imbalanced-learn.org/stable/
9nttps://lightgbm.readthedocs.io/en/latest/Python-Intro.html

https://docs.python.org/3/library/pickle.html
https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable/
https://lightgbm.readthedocs.io/en/latest/Python-Intro.html

In [19]: for colname, coltype in final_data.dtypes.iteritems():
print(colname, coltype)
if (coltype == 'object'):
print(colname)
#Create an instance of Label encoder
labelencoder = LabelEncoder ()
#Assign a numerical value and storing it in another column
final_data[colname] = labelencoder.fit_transform(final_data[colname]) # '0:Can\'t Loose them’,'1: Champions', '2:Loyal

payment_type
order_status
product_category_name_english
RFM_Level

Figure 15: Data Preparation for modelling

3.9 Data Oversampling

The data is highly imbalanced (79% posiive and 21% negative). This might yeild poor
results.

In [24]: random=RandomOverSampler(random_state=0)
X_random, y_random = random.fit_resample(X,y)

In [25]: oversampler=SMOTE(random_state=0)
X_smote, y_smote = oversampler.fit_resample(X,y)

In [26]: print("Positive Reviews in SMOTE",X_smote[y_smote==1].shape , "Positive Reviews in SMOTE",X_smote[X_smote.review_score==1].shape]
»
Positive Reviews in SMOTE (65941, 40) Positive Reviews in SMOTE (65941, 40)

In [27]: print("Positive Reviews in Random Sample",X_random[y_random==1].shape , "Positive Reviews in Random Sample",X_random[X_random.rey
>
Positive Reviews in Random Sample (65941, 40) Positive Reviews in Random Sample (65941, 40)

Figure 16: Oversample data using SMOTE and Random Sampling

For this purpose, Synthetic Minority Oversampling Technique (SMOTE) and Random
Sampling is used as shown in Figure The distribution of features when randomly
oversampled was similar to the original distribution of features as observed in the original
dataset. However, with SMOTE oversampling, the distribution is slightly deviated as
compared to that of the original data. Therefore, randomly oversampled data is used for
training the models.

3.10 Stratified Train-Test Split

The randomly oversampled data is used for splitting it into the training(80%) and test-
ing(20%) datasets as shown in Figure [17]

In [32]: # train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y,random_state=25)

print(" X_train",” y_train")
print(X_train.shape,y_train.shape)
print('-'*15)

print("X_test”,” y_test")

print (X_test.shape,y_test.shape)

X_train y_train
(105505, 39) (185505,)
X_test 2

(26377, 39) (26377,)

Figure 17: Train-Test Split

3.11 Classification Models

3.11.1 Random Forest Model

In this study, the Random Forest Classifier is used for the binary classification of reviews
as positive or negative. The hyperparameter tuning of this model is implemented in
Figure and Figure The best parameters of the model obtained are depicted in
Figure [20f The model is then trained with these best parameters as shown in Figure

In [36]: estimators = [5,10,25,50,100,150]
train_scores = []

‘gini',
, min_samples_split=2,
5, verbos

cIf = RandomForestClassifier(criterio
max_depth=None,min_samples_lea
n_estimators=i, random_stat
c1f.fit(X_train,y_train)
train_sc = f1_score(y_train,clf.predict(X_train),averag
test_sc = f1_score(y_test,clf.predict(X_test),average
test_scores.append(test_sc)
train_scores.append(train_sc)
train_ac = accuracy_score(y_train,clf.predict(X_train))
test_ac = accuracy_score(y_test,clf.predict(X_test))
,i,'Train Score',train_sc, test Score',test_sc,'Train Accuracy’,train_ac, 'Test Accuracy’,test_ac)
"#fFcf2b, linewidt

macro*)
macro*)

print('Estimators =
plt.plot(estimators, train_scores, label='Train Score’,colo
plt.plot(estimators, test_scores, label='Test Score',color='#005777",linewidth=2)
plt.xlabel('Estimators')
plt.ylabel('Score')
plt.legend()
plt.title('Estimators vs score')
plt.grid()

5 Train Score ©.9923888967017664 test Score ©.9167470414926302 Train Accuracy ©.9923889863039667 Test Accuracy @.

Estimators =
10 Train Score ©.997118607098022 test Score ©.9275734946928391 Train Accuracy 0.9971186199706175 Test Accuracy @.

9169352087045533
Estimators =
9277400765818705
Estimators = 25 Train Score ©.999649305719982 test Score ©.9615896760279714 Train Accuracy ©.999649305720108 Test Accuracy .9
615953292641316

50 Train Score ©.9999905217762192 test Score 0.9638655491284874 Train Accuracy 0.9999905217762192 Test Accuracy

Estimators =
©.9638700382909353

Estimators = 100 Train Score 1.0 test Score 0.9665214939993008 Train Accuracy 1.0 Test Accuracy 0.9665238654888729
150 Train Score 1.0 test Score 0.9670147653979506 Train Accuracy 1.8 Test Accuracy 0.967016719111347

Estimators =

Estimators vs score

100
0s8
£ 096
&
098
Yain Score
092 — Bstscore
0 » 4o @ @ 10 B0 10

Figure 18: n.stimatorsfor RandomForest Model

In [37]: depths = [None,3,9,11,15,20]
train_scores
test_scores = []
for i in depths:
cIf = RandomForestClassifier(criterio
max_depth=i, min_samples_leaf=1, min_samples_split=2,
00, random_state=25,verbose=0,

n_estimator:

clf.fit(X_train,y_train)
1_score(y_train, c1f.predict(X_train),averag

1_score(y_test,clf.predict(X_test),averag
i accuracy_score(y_train,clf.predict(X_train))

test_ac = accuracy_score(y_test,clf.predict(X_test))

test_scores.append(test_sc)

train_scores.append(train_sc)

print('depth = ',i,'Train Score’,train_sc, test Score',test_sc,'Train Accuracy’,train_ac, 'Test Accuracy’,test_ac)
plt.plot([None,3,9,11,15,20] train_scores,label="'Train Score',color='#ffcf2b’,linewidth=:
plt.plot([None,3,9,11,15,20] test_scores,label='Test Score',color='#005777",linewidth=2)

plt.xlabel('Depth')
plt.ylabel('Score')
plt.title('Depth vs score')
plt.legend()

plt.grid()
plt.show()

None Train Score 1.0 test Score ©.9665214939993008 Train Accuracy 1.0 Test Accuracy 0.9665238654888729

3 Train Score 0.6247391799897997 test Score ©.6284136680936194 Train Accuracy 0.6496185014928203 Test Accuracy 0.65242

depth =
depth
44607044015
depth = 9 Train Score 0.6757168936965388 test Score ©.6645246895368409 Train Accuracy 0.6900241694706412 Test Accuracy 0.67877
31735982105
depth = 11 Train Score ©.7217353336778716 test Score ©.6955134827303466 Train Accuracy ©.7325340031278138 Test Accuracy ©.7065
246237252152
depth = 15 Train Score ©.8743658543318396 test Score ©.8172595446113062 Train Accuracy ©.8757499644566609 Test Accuracy ©.8194
260150889032

20 Train Score ©.9875253864028753 test Score ©.9410769498772896 Train Accuracy ©.9875266575043837 Test Accuracy 0.9410
850362057853

Figure 19: Depth for Random Forest Model

10

In [38]: from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform

param_dist = {"n_estimators”: [50,100,120,150],
"max_depth”: [None, 1,2,5,10],
"min_samples_split”: [2,4,6,8],
"min_samples_leaf": [1,2,3],
"criterion” : ['gini’, entropy’]}

clf = RandomForestClassifier(random_state=25,n_jobs=-1)

rf_random = RandomizedSearchCV(clf, param_distributions=param_dist,
n_iter=s, cv: 1

macro’ ,random_state=25, return_train_score=True)
rf_random. fit(X_train,y_train)

print('mean test scores',rf_random.cv_results_['mean_test_score'])

print('mean train scores',rf_random.cv_results_['mean_train_score'])

mean test scores [0.94298645 0.67424276 0.66790159 ©.63373945 0.62073768]
mean train scores [0.99077242 ©.69629855 ©.68728359 ©.63509862 0.62090063]

In [39]: # printing best parameters and score
print("Best Parameters: ",rf_random.best_params_)
print("Best Score: ",rf_random.best_score_)

Best Parameters: {'n_estimators': 100, 'min_samples_split': 4,

‘min_samples_leaf
Best Score: ©.9429864452299995

3, 'max_depth': Nome, 'criterion': 'gini'}

Figure 20: Best Parameters for Random Forest Model

In [41]: # Fitting the model on best parameters
rf_classifier = RandomForestClassifier(max_depth = None, min_samples_leaf = 3, min_samples_split = 4, n_estimators = 100,criteric
j 1

rf_classifier.fit(X_train,y_train)

y_train_pred_rf = rf_classifier.predict(X_train)
y_test_pred_rf = rf_classifier.predict(X_test)

printing train and test scores
print('Train f1 score’,f1_score(y_train,y_train_pred_rf,average='macro’))
print('Test f1 score’,f1_score(y_test,y_test_pred_rf,average='macro’))

printing train and test scores Accuracy
print('Train Accuracy’,accuracy_score(y_train,y_train_pred_rf))
print('Test Accuracy’,accuracy_score(y_test,y_test_pred_rf))

Train f1 score 0.9915454139902318
Test 1 score ©.9502974566020448
Train Accuracy 0.9915454243874698
Test Accuracy ©.9502976077643401

Figure 21: Random Forest training with best parameters

3.11.2 Light Gradient Boosting Model (LGBM)

The LGBM Classifier is also used for the binary classification of reviews as positive or
negative. The hyperparameter tuning of this model is implemented in Figure The
best parameters of the model obtained are depicted in Figure The model is then
trained with these best parameters as shown in Figure

In [48]: # Variation of score with estimators used in LGBM with other parameters set to default value
estimators = [1,3,5,16, 50,100, 250, 500, 1000]
estimators = [300,320,350, 400,430,450,500,530,550,600,650,700,800,900,1000,1050,1100,1200,1500]
train_scores = []
test_scores = []
for i in estimators:
c1f_lgbm = LGBMClassifier(n_estimators=i,random_state=25)
c1f_lgbm.fit(X_train,y_train)
train_sc = f1_score(y_train,clf_lgbm.predict(X_train),average='macro’)
test_sc = f1_score(y_test,clf_lgbm.predict(X_test),average='macro")
test_scores.append(test_sc)
train_scores.append(train_sc)
print('Estimators = ',i,'Train Score',train_sc, test Score',test_sc)
plt.plot(estimators,train_scores,label='Train Score',color='#ffcf2b’, linewidth=2)
plt.plot(estimators, test_scores,label='Test Score',color='#005777",linewidth=2)
plt.xlabel(’Estimators')
plt.ylabel(’Score')
plt.legend()
plt.title('Estimators vs score')
plt.grid()

Estimators = 300 Train Score ©.7912744815015101 test Score ©.7423389579234455
Estimators = 320 Train Score ©.7990425289297217 test Score ©.7474203495212701
Estimators = 350 Train Score ©.8083650467184074 test Score 0.7528506191877763
i 400 Train Score 0.8215193708166163 test Score 0.7630329167683226
430 Train Score 0.8296791631608378 test Score 0.7679731640134624
450 Train Score 0.8371795796149228 test Score 0.7739262817939265
500 Train Score ©.8487119834180357 test Score 0.7845279352994268
530 Train Score ©.8558716601731 test Score 0.7897093630116163
550 Train Score ©.8605119478607667 test Score 0.7937501039110744
600 Train Score 0.8698707486538857 test Score ©.799289517361891
650 Train Score 0.8803379148486967 test Score 0.8065740791703282
700 Train Score 0.8876819180270017 test Score ©.8126491333793622
800 Train Score 0.9019868225339427 test Score ©.8255710014735521

Estimators = 900 Train Score ©.915270354145691 test Score 0.8378575417719616
Estimators = 1000 Train Score 0.924795166260594 test Score ©.8470163480720149
Estimators

1050 Train Score ©.9293584739781553 test Score @.8500013939152729
1100 Train Score ©.9342042266305637 test Score ©.856020921492171
Estimators = 1200 Train Score 0.9428303523138124 test Score ©.8638713642559436
Estimators = 1500 Train Score 0.9606479638364469 test Score ©.8833692495946253

Estimators

Figure 22: n_estimators for LGBM

11

In [49]: x_cfl_lgbm=LGBMClassifier(random_state=25,n_jobs
prams={
"learning_rate
'n_estimators
*max_depth':[1,3,5,10,15,20],
‘colsample_bytree':[0.1,0.3,0.5,1],
‘subsample’:[0.1,0.3,0.5,1]
¥
random_cf11_lgbm=Randomi zedSearchCV(x_cf1_lgbm,paran_distributions=prams,verbose=10,n_jobs=-1,random_state=25,scorin
return_train_score=True)

[0.01,0.03,0.05,0.1,0.15,0.2],
:[300,320,350, 400,438,450,500,538,550,600,650,700,800,900,1000,1050,1100,1200,1500] ,

*f1_macro’

random_cf11_lgbm. fit(X_train,y_train)

print('mean test scores’,random_cf11_lgbm.cv_results_['mean_test_score'])
print('mean train scores',random_cfl1_lgbm.cv_results_['mean_train_score'])

Fitting 5 folds for each of 10 candidates, totalling 50 fits
mean test scores [0.70341997 0.70043838 ©.84159933 0.65886863 0.66218285 ©.70701284

©.76093105 0.71387439 0.88527419 0.69806863]
mean train scores [0.73879175 0.73528977 ©.93661215 ©.66857174 0.67426252 0.74640178

©.82875618 0.75768447 0.97607918 0.73141795]

In [5@]: # printing best parameters and score
print("Best Parameters: ",random_cfl1_lgbm.best_params_)
print("Best Score: ",random_cf11_lgbm.best_score_)

‘max_depth’: 10, 'learning_rate': 0.15, 'colsample_bytree': 0.3}

Best Parameters: {'subsample’: 0.3, 'n_estimators': 1500,
Best Score: 0.8852741862145302

Figure 23: Best parameters for LGBM

.15, colsample_bytree=0.3, random_state=25)

Fitting the model on best parameters

LGBMClassifier(n_estimators=1500, max_depth=10,subsample=0.3,learning_rate=

In [52]:
1gbm =
1gbn. fit(X_train,y_train)

y_train_pred_lgbm = lgbm.predict(X_train)
y_test_pred_lgbm = lgbm.predict(X_test)

macro’))

printing train and test scores
print('Train 1 score’,f1_score(y_train,y_train_pred_lgbm,averag:
print('Test f1 score’,f1_score(y_test,y_test_pred_lgbm,average='macro’))

printing train and test scores Accuracy
print('Train Accuracy’,accuracy_score(y_train,y_train_pred_lgbm))
print('Test Accuracy’,accuracy_score(y_test,y_test_pred_lgbm))

Train f1 score 0.9711335204325451
Test 1 score ©.8980544057997748
Train Accuracy 0.9711388085872708
Test Accuracy ©.8980551237820829

Figure 24: LGBM training with best parameters

3.11.3 AdaBoost Model

The AdaBoost Classifier is the final model used for the binary classification of reviews.
The hyperparameter tuning of this model is implemented in Figure The best para-
meters of the model obtained are depicted in Figure 26l The model is then trained with

these best parameters as shown in Figure

In [55]: estimators = [25,50,100,200,250,300,500,750,1000]
train_scores = []

, random_state=25)

for i in estimators:
clf = AdaBoostClassifier(learning_rate = 1,base_estimator = None,n_estimator:

c1f.fit(X_train,y_train)
train_sc = f1_score(y_train,clf.predict(X_train),average='macro’)
test_sc = f1_score(y_test,clf.predict(X_test),average='macro')

test_scores.append(test_sc)
train_scores.append(train_sc)
train_ac = accuracy_score(y_train,clf.predict(X_train))
test_ac = accuracy_score(y_test,clf.predict(X_test))
print('Estimators = ',i,'Train Score',train_sc,'test Score',test_sc,'Train Accuracy',train_ac, 'Test Accuracy',test_ac)
plt.plot(estimators,train_scores,label='Train Score',color='#ffcf2b’, linewidth=2

-plot(estimators, test_scores,label="'Test Score',color='#005777',linewidth=2)

plt.xlabel('Estimators')
plt.ylabel('Score')

plt.legend()
plt.title('Estimators vs score')
plt.grid()
Estimators = 25 Train Score 0.6424395228548293 test Score 0.6440373787527929 Train Accuracy ©.6543007440405668 Test Accuracy
0.6558744360617205

Estimators = 50 Train Score 0.6466196143416666 test Score 0.6466317077443765 Train Accuracy ©.6574285578882517 Test Accuracy

©.65765629146605
©.6493572635690874 Train Accuracy 0.6618359319463533 Test Accuracy

0 Train Score 0.6510163582635617 test Score

Estimators =
©.6604996777495545

Estimators = 200 Train Score ©.6561082189894182 test Score ©.6527936927058613 Train Accuracy ©.6656366996824795 Test Accuracy
©.6626227395079046

Estimators = 250 Train Score ©.6586147225286824 test Score ©.6561336906383404 Train Accuracy ©.6677787782569546 Test Accuracy
©.6655419494256359

Estimators = 300 Train Score ©.6605089620572544 test Score ©.6569086306326491 Train Accuracy ©.6693521634045779 Test Accuracy
©.6659968912309967

Estimators = 500 Train Score ©.6657771497458014 test Score ©.6604927213262239 Train Accuracy ©.6738164068053647 Test Accuracy
©.6688402775145013

Estimators = 750 Train Score ©.6705922897608453 test Score ©.663379550307482 Train Accuracy 0.6779015212549169 Test Accuracy
©.6710012510899648

Estimators = 1000 Train Score 0.6742690326691729 test Score ©.6664153057847491 Train Accuracy ©.6811146391166295 Test Accuracy

©.6736929901050157

Figure 25: n_estimators for AdaBoost Model

12

In [56]: # https://wm.analyticsvidhya.com/blog/2016/03/complete-guide-paraneter-tuning-xgboost-with-codes-python/
x_cf1_adab=AdaBoostClassifier(random_state=25)

prams={
*learning_rat

[0.001,0.01,0.03,0.05,0.1,0.1,0.2],
*n_estimator:

[25,50,100, 200, 250,300,500, 750,1000] ,
*algorithm’ : ['SAMME', 'SAMME.R']

random_cf11_adab=Randomi zedSearchCV(x_cf1_adab, param_distributions=prams,random_state=None,scoring='f1_macro’,
return_train_score=True)
random_cf11_adab. fit(X_train,y_train)

print('mean test scores’,random_cf11_adab.cv_results_['mean_test_score'])
print('mean train scores',random_cfl1_adab.cv_results_['mean_train_score'])

mean test scores [0.6311167 ©.62064528 ©.59020838 0.62064076 0.62105439 0.59020838
0.62072349 ©.60858948 0.62128435 0.63811522]

mean train scores [0.63212367 0.62076903 ©.59026829 ©.62074749 0.62131557 0.59026829
©.62082348 0.60879959 0.62167616 0.63951851]

In [57]: # printing best parameters and score
print("Best Parameters: ",random_cfl1_adab.best_params_)
print("Best Score: ",random_cfl1_adab.best_score_)

Best Parameters: {'n_estimators': 250,

*learning_rate’: 0.1, 'algorithm’: 'SAMME.R'}
Best Score: 0.638115218807908

Figure 26: Best Parameters for AdaBoost model

In [58]: # Fitting the model on best parameters
ada = AdaBoostClassifier(n_estimators=1000, learning_rate=e.1, algorithm='SAMME.R', random_state=None)
ada.fit(X_train,y_train)

y_train_pred_adab = ada.predict(X_train)

y_test_pred_adab = ada.predict(X_test)

printing train and test scores

print('Train f1 score',f1_score(y_train,y_train_pred_adab,average='macro'))
print('Test f1 score’,fl_score(y_test,y_test_pred_adab,average='macro'))

printing train and test scores Accuracy

print('Train Accuracy’,accuracy_score(y_train,y_train_pred_adab))
print('Test Accuracy’,accuracy_score(y_test,y_test_pred_adab))

Train f1 score 0.6481024698871446
Test 1 score ©.6482296474736925
Train Accuracy 0.6613335860859675
Test Accuracy ©.6614474731773894

Figure 27: Training AdaBoost Model with Best parameters

3.12 Evaluation and Results

The function was defined to plot the confusion matrices for train and test data. The
function is depicted in the Figure

In [46]: def confusion_matrices_plot(y_train, y_train_pred, y_test,y_test_pred):
representing confusion matric in heatmap format
https://seaborn.pydata.org/generated/seaborn. heatmap. htmL
group_names = ['True Negative','False Positive','False Negative','True Positive']
C1 = confusion_matrix(y_train, y_train_pred)
€2 = confusion_matrix(y_test,y_test_pred)

fig,ax = plt.subplots(1, 2, figsize=(15,5))

group_counts = ["{0:0.0f}".format(value) for value in C1.flatten()]
group_percentages = ["{0:.2%}".format(value) for value in Cl.flatten()/np.sum(C1)]
labels = [f"{vI}\n{v2}\n{v3}" for vi, v2, v3 in

zip(group_names, group_counts, group_percentages)]

labels = np.asarray(labels).reshape(2,2)

axl = sns.heatmap(C1, annot=labels, fmt='', cmap='Blues’, ax = ax[@])
axl.set_xlabel('Predicted labels');axl.set_ylabel('True labels');
axl.set_title('Train Confusion Matrix');

axl.xaxis.set_ticklabels(['Negative', 'Positive']); axl.yaxis.set_ticklabels(['Negative', 'Positive']);

group_counts = ["{0:0.0f}".format(value) for value in C2.flatten()]
group_percentage: .2%}" . format(value) for value in C2.flatten()/np.sum(C2)]
categories = ['Negative Reviews', 'Positive Reviews']

labels = [f"{vi}\n{v2}\n{v3}" for vi, v2, v3 in

zip(group_names, group_counts, group_percentages)]

labels = np.asarray(labels).reshape(2,2)

ax2 = sns.heatmap(C2, annot=labels, fmt='', cmap='Blues’, ax = ax[1])
ax2.set_xlabel('Predicted labels');ax2.set_ylabel('True labels');
ax2.set_title('Test Confusion Matrix');

ax2.xaxis.set_ticklabels([‘Negative', 'Positive']); ax2.yaxis.set_ticklabels(['Negative', 'Positive']);

plt.shou()

Figure 28: Function to plot confusion matrix

3.12.1 Random Forest Model

The classification report for the Random Forest classification model trained on best para-
meters is depicted in Figure[29|along with the confusion matrices in Figure The results

shows that the overall accuracy of the test data using Random Forest model is 95% and
the Fl-score for positive and negative review class is 0.95.

13

Figure

In

[45]:

from sklearn.metrics import classification_report
print("*"#30,"Training Dataset","*"*30)
print(classification_report(y_train,y_train_pred_rf))
print("*"#30,"Test Dataset”,"x"+30)
print(classification_report(y_test,y_test_pred_rf))
HoHR KX KK KX KX R RRXRX KRR Training Dataset *eAxkERkkikiksik sk kx kkxhknsk
precision recall fl-score support
) 0.99 0.99 0.99 52752
1 0.99 0.99 0.99 52753
accuracy 0.99 105505
macro avg 0.99 0.99 0.99 105505
weighted avg 0.99 0.99 0.99 105505
AR KRR RS KX KRR KR X Tost Dataset %FEKXRKRKHRRKRKXKRRXRRRRER LK
precision recall fl-score support
) 0.95 0.95 0.95 13189
1 0.95 0.95 0.95 13188
accuracy 0.95 26377
macro avg 0.95 0.95 0.95 26377
weighted avg 0.95 0.95 0.95 26377

29: Classification Report for Random Forest Model

In [

47]: confusion_matrices_plot(y_train,y_train_pred_rf,y_test,y_test_pred_rf)

Negative

Tue labels

Positive

Train Confusion Matrix

-so000
- %0000 o
2
L 30000]
H
- 20000
-10000 g
8

Positive
Predicted labels

Test Confusion Matrix
- 12000

10000

Negative
Predicted labels

Figure 30: Confusion Matrices for Random Forest model

3.12.2 LGBM

The classification report for the LGBM classifier trained on best parameters is depicted
in Figure 31| along with the confusion matrices in Figure [32] The results shows that the
overall test accuracy for the LGBM model is 90% and the Fl-score metric for both the
positive and negative classes is 0.90.

Kn R SRR X KRR Training Dataset FRKXHRKKRRKERKR HRRRRREE KRR
precision recall fl-score support
2] 0.98 0.96 .97 52752
1 8.96 0.98 .97 52753
accuracy .97 105505
macro avg 8.97 0.97 .97 105505
weighted avg 8.97 0.97 .97 105505

Test Dataset

precision recall fl-score support
2] 8.90 .90 0.90 13189
1 8.90 .90 0.90 13188
accuracy 0.90 26377
macro avg 8.90 .90 0.90 26377
weighted avg 8.90 .90 0.90 26377

14

Figure 31: Classification Report for LGBM

Train Confusion Matrix Test Confusion Matrix

50000
10000
Foise Postve Faise positive
v 236 |- 40000 v 1380
% 212% £ 523%
. % L2 a0
1 - 30000)
] H 00
20000
False Negative False Negative
.- o 1309 000
2 77% B %
£ or 10000 H a8
& &
2000
Negative Positive Negative Positive
Predicted labels Predicted labels

Figure 32: Confusion Matrices for LGBM

3.12.3 AdaBoost

The classification report for the AdaBoost classifier trained on best parameters is depicted
in Figure [33] along with the confusion matrices in Figure 34 The results shows that the
overall test accuracy for the AdaBoost classification model is 66% and the F1-score metric
for negative review class is 0.58 and positive class is 0.72.

Kn R SRR X KRR Training Dataset FRKXHRKKRRKERKR HRRRRREE KRR
precision recall fl-score support
2] 8.76 0.47 0.58 52752
1 8.62 0.86 0.72 52753
accuracy 0.66 105505
macro avg 0.69 0.66 0.65 105505
weighted avg 0.69 0.66 0.65 105505

Test Dataset

precision recall fl-score support
2] 8.76 0.47 0.58 13189

1 8.62 0.86 0.72 13188

accuracy 0.66 26377
macro avg 0.69 0.66 0.65 26377
weighted avg 0.69 0.66 0.65 26377

Figure 33: Classification Report for AdaBoost Model

Train Confusion Matrix Test Confusion Matrix
45000
L 0000 10000
Tue Ne False Positive mmm
I'E 28094 - 35000 e
% 2337% 26.63% % 2338%
g F) 000
wz L 30000 wZ
f - 25000 Fi a000
20000
False Negative False Negativ
g 7637 M 1908
5 728% 15000 H 723% -4000
H &
-10000
)) 2000
Negative Posiive Negative Positve
Predicted labels Predicted labels

Figure 34: Confusion Matrices for AdaBoost Model

15

	Introduction
	System Configuration
	Hardware Requirements
	Software Requirements

	Project Implementation
	Programming Environment Setup
	Data Collection
	Python Libraries
	Data Merging (One-to-One Mapping)
	Customer Segmentation
	Feature Engineering
	Data Modelling
	Data Preparation
	Data Oversampling
	Stratified Train-Test Split
	Classification Models
	Random Forest Model
	Light Gradient Boosting Model (LGBM)
	AdaBoost Model

	Evaluation and Results
	Random Forest Model
	LGBM
	AdaBoost

