~

\" National
College
Ireland

Machine Learning and Eye-tracking
Framework to Detect Engagement in Online
Learning

MSc Research Project in Data Anlaytics
Configuration Manual

Yogalakshmi Chandrasekar
Student ID: x20221665@student.ncirl.ie

School of Computing
National College of Ireland

Supervisor: Dr.Paul Stynes, Dr.Anu Sahni, Dr.Pramod Pathak

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Yogalakshmi Chandrasekar

Student ID: x20221665Qstudent.ncirl.ie

Programme: Configuration Manual

Year: 2022

Module: MSc Research Project in Data Anlaytics

Supervisor: Dr.Paul Stynes, Dr.Anu Sahni, Dr.Pramod Pathak

Submission Due Date: 15/08/2022

Project Title: Machine Learning and Eye-tracking Framework to Detect En-
gagement in Online Learning

Word Count: 1255

Page Count: [15]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Yogalakshmi Chandrasekar

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Machine Learning and Eye-tracking Framework to
Detect Engagement in Online Learning

Yogalakshmi Chandrasekar
x20221665@student.ncirl.ie

1 Introduction

The report is aimed to outline the steps involved in the implementation of the research
thesis 'Machine Learning and Eye-tracking Framework to Identify Engagement in Online
Learning’. The configuration manual covers every step that is carried out in the entire
project life cycle of this engagement detection research. This research study is targeted
to identify participants engagement in a digital learning ecology. It is a framework that
combines the machine learning algorithms and the data extracted from the SMI eye
tracking device and retrieved from a BeGaze software in a machine readable form. There
are totally three experiments conducted with 3 different sets of features and having the
same dependent variable named 'Median split’. The data extracted from the Begaze
software, Scores from the MCQ were used to classify the participants into two groups,
and the data from the personality questionnaire. The report is structured into following
sections, detailed below:

e Section 2 describes the specification computational resources. This section briefs
about the tools used, the software and the hardware specifications of the machine
employed.

e Section 3 describes the equipment used for conducting the primary experiment for
the research.

e Section 4 details the data acquisition procedure and steps.

e Section 5 discusses the data pre-process that is done for the research with the data
collected to make it ready to apply the machine learning models on the data-sets
and the code snippets.

e Section 6 details the specifics of the three experiments that is done to identify the
engagement and the code snippets.

e Section 7 provides the list of machine learning algorithm that is employed and the
code snippets.

e The report concludes with section 7 with the overall summary of the document.

2 Computational Resource Information

The device configuration of the machine used in this research are below:

Processor Intel(R) Core{TM) i5-8145U CPU @ 2.10GHz 2.30 GHz

Installed RAM 8.00 GB (7.85 GB usable)

Systemtype 64-bit operating system, x64-based processor

Figure 1: Device specifications

Edition Windows 11 Pro

Version 21H2

05 build 22000.856

Experience Windows Feature Experience Pack 1000.22000.856.0

Figure 2: Windows Specifications

To implement the machine learning models Jupyter notebook is used as an integ-
rated development environment (IDE) and Python coding language is used. The version
information are below:

Anaconda Installers Python 3.5 64-Bit Graphical Installer

Jupyter notebook 6.4.8

Figure 3: Integrated Development Environment

Coding Language Python

Libraries Pandas, MumPy, Seaborn, and Scikit learn

Figure 4: Language and Libraries

3 Experimental Equipment

The experiment for this research is conducted on 26 participants 20 male participants and
6 female participants. Age of the participants ranged between 19 and 52. The participants
involved in the experiment is asked to fill out a |personality questionnaire in an online
google form. They are posted with questions about their gender, age, behavioural pattern,

https://forms.gle/3xpAa1f9bVuFouuD9

current mood with the help of Stanford Sleepiness Scale (SSS), and Karolinska Sleepiness
Scale (KSS). After filling out the pre-experiment questionnaire they are asked to wear an
eye tracking device to listen to an online video lecture on android development. Finally,
they are asked to answer a few questions based on the tutorial to measure the score and
the highest point is set to 15.

Scene cam

L left, right eye cam
SMI-ETG Front View SMI-ETG Back View

Figure 5: SMI eye tracker

A machine which is exclusive for functioning the BeGaze software is used specifically
to store the raw data generated from the eye tracking experiment. The data for each
video is stored inside a folder which contains audio, video, gaze collected, calibration and
annotations details. The folder is saved under the participants name provided in the
software at the beginning.

To extract the data in a machine readable format the entire folder must be opened
via BeGaze software from the menus option.

BeGaze -

BT E SR ThErE Il e, Sl

Figure 6: BeGaze Software

Below figure shows the glimpse of how the metric export environment in BeGaze
software looks like. Once the video is processed Gaze point option must be clicked and

https://forms.gle/FNJzv5RKtSCZH5JB6

metrics must be exported from the metrics option in the tool. Event statistics and trail
summary are extracted and stored. The trial summary statistics is used in this research
project.

Figure 7: Metrics Export Environment

4 Data Acquisition

Below table provides the list of metrics that is generated by the BeGaze software with
the help of the data captured by the SMI eye tracker.

1|Trial

2|Stimulus

3|Export Start Trial Time [ms]
4|Export End Trial Time [ms]
5|Participant

6|Color

7|Visual Intake Count

8|visual Intake Frequency [count/s]
9(Visual Intake Duration Total [ms]

[
=]

Visual Intake Duration Average [ms]

11|Visual Intake Duration Maximum [ms]

12|Visual Intake Duration Minimum [ms)]
13|Visual Intake Dispersion Total [px]
14|Visual Intake Dispersion Average [px]
15|Visual Intake Dispersion Maximum [px]

16|Visual Intake Dispersion Minimum [px]
17|Saccade Count
18|5accade Freguency [count/s]

19|Saccade Duration Total [ms]
20|5accade Duration Average [ms]
21|Saccade Duration Maximum [ms]

21|5accade Duration Maximum [ms]
22|Saccade Duration Minimum [ms]
23|5accade Amplitude Total []
24|Saccade Amplitude Average [°]
25|5accade Amplitude Maximum [°]
26|Saccade Amplitude Minimum [°]
27|Saccade Velocity Total [*/s]
28|Saccade Velocity Average [°/s]
29|Saccade Velocity Maximum [*/s]
30|Saccade Velocity Minimum [°/s]
31|Saccade Latency Average [ms]
32|Blink Count

33|Blink Frequency [count/s]
34|Blink Duration Total [ms]
35|Blink Duration Average [ms]
36|Blink Duration Maximum [ms]
37|Blink Duration M

Figure 8: Features (Metrics) from BeGaze software

5 Data Pre-process

This section of the report would detail every step involved in handling the data gathered
through the eye tracking experiment.

5.1 Preparation

Most of the steps of data cleaning and preparation are done programmatically. The trial
summary collected for each participants are stored in a "txt’ format. Ideally, the summary
generated are a record for each participants but in some experiments it generated more
than a record and they are included in the experiment. So final data set contains 45
records.

import pandas as pd

import seaborn as sns

import numpy as np

import matplotlib.pyplot as plt

df= pd.read csv({"C:/Users/coding/Downloads/MCQ.csv", index col=8)

df["median_split"] = (df.Score<df.Score.quantile()}).replace({True:8, False:1})
df['Score’] = df['Score’].astype(int)
df.median split

Participants’ were classified in to two group according to median split results. Records
that has score equal to or above the median is considered enagaged and given the value
"1’ and remaining trials are classified under disengaged and to represent it the value given
is '0’. Each record is given a unique serial number in order to make the concatenation

across the dataframe possible.

data=pd.read_csv("C:/Users/coding/Downloads/Trial Summary.txt",sep="\t',index_col=8)

data.insert(®, 'Experiment no', range(l, 1 + len(datal)))
data.set_index('Experiment no',inplace=True)

data["median_split"] = (data.Score<data.Score.quantile()).replace({True:8, False:1})

data = data.drop(['Participant’, 'Color’,’'Stimulus'], axis=1)

data
Export Export - Visual Visual Visual Visual .) . ; .
Start End Visid 0% ke itake Intake Intake U@ Bink Bink Bink Bink L
N - Intake . ; - ; Intake Duration Duration Duration Duration Mou
Trial Score Trial Intake Duration Duration Duration Duration . . - e
) - Frequency - s Dispersion Total Average Maximum Minimum Cl
Time Time Count (count’s] Total Average Maximum Minimum Total [px] (ms] [ms] ms] ms Cor
[ms] [ms] [ms] [ms] [ms] [ms] P
Experiment
no
1 00 15 043614 111 12 595428 536.9 37507 99.4 67564 .. 82647 551.0 4746.2 165.8
2 0o 15 5268198 156 03 200841 1287 3489 fi6.2 168802 . 4476425 73384 825285 4145
3 00 6 119320 36 30 95764 266.0 9957 993 17213 .. 7458 149.2 165.7 1328
4 0o 6 441586.0 1119 25 1547989 M7 120082 827 486213 .. 432152 2194 1825.4 430

Figure 9: Loading the raw data to Pandas Dataframe

5.2 Transformation

Each record has participants’ name under 2 columns ’stimulus’ and ’participant’ they

were dropped.

data = data.drop(['Left Mouse Click Count','Left Mouse Click Frequency [count/s]’,
'Right Mouse Click Count','Right Mouse Click Frequency [count/s]'], axis=1)

Figure 10: Removing personal information of the participants

A variable named ’perclose’ is calculated to measure the number blinks within the

total time.

#Perclos=

P .
DL TR

def perclos():
for i in range{len{datal))

tot_blink=data.iloc[i.,38]

-
[

ime +

tot interval=
print{data.iloc[i.&],.tot_inmnterwval)
PERCLOS=tot_ blinks/tot_inmterwal
data.iloc[i, 36]=PERCLOS

perclos()}

clo=s

data.iloc[i,o]

=

g

ime tTotal

Figure 11: Calculating Perclos

time interval

#Fitotal blLink duration

HFtotal time interval

The personality questionnaire is pulled using python code and the values in the gender
column are transformed in to ’0’ if the value is "'Woman’ and ’1’ for "Man.

df_g=pd.read_csv("C:/Users/coding/Downloads/personality questicnnaire Responses - Sheetl.csv™)

df_q
KS
Karolins
Sleepine
Scal
This is
Dependable, Anxious, Open to new caim. alertne
concer ge Sttt | Cateal PPk ensly expoinces, ROSNed, Smbatete, DsOranist noponaty Conentona |t
' ° disciplined. upset complex stable
we need
rate ¢
self frc
degree
sleepine
as follow
0 ‘Woman 26.0 5.0 30 40 5.0 30 4.0 5.0 40 4.0 4.0
1 Woman 28.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 4.0 4.0 4.0
2 Man 280 40 20 6.0 50 30 30 40 40 30 40 f
3 Man 29.0 40 20 6.0 5.0 30 30 4.0 40 3.0 4.0 i
4 Man 28.0 4.0 2.0 6.0 5.0 3.0 3.0 4.0 4.0 3.0 4.0 i
##transformation
df_g.loc[df_g["Gender"] == "Man", "Gender"] =1
df_q.loc[df_g["Gender"] == "Woman", "Gender"] = @
df q
KS
Karolins
Sleepine
Scal
This is
Extraverted Critical Dependable, Anxious, Open to new Reserved, Sympathetic, Disorganized Calm, Conventional alert:;
Gender Age entl"lusiasti::I quarrelsome, self- easily experiences, quie{ yme warn': Earelesé emotionally un(:reali\.'laI underti
: ° disciplined. upset complex stable
we need
rate ¢
self frc
degree
sleepine
as follow
0 0 26.0 5.0 30 40 5.0 3.0 4.0 5.0 40 4.0 40
1 0 26.0 5.0 30 40 5.0 3.0 4.0 5.0 40 4.0 40
2 1 290 40 20 6.0 5.0 3.0 3.0 4.0 40 3.0 40 £
3 1 290 40 20 6.0 5.0 3.0 3.0 4.0 40 3.0 40 i
4 1 290 40 20 6.0 5.0 3.0 3.0 4.0 40 3.0 40 i

Finally, all the records are joined as a single dataset and exported to CSV.

Figure 12: Personality Questionnaire Dataset Transformation

7

df_exp2= pd.concat([datal, df_q], axis=1, join="inner")
display(df_exp2)

Export Visual Visual Visual Visual Visual Visual
End Visual Intake Intake Intake Intake Dependable, Anxious, Open to new .
Trial Intake Fre L";ﬁte Duration Duration Duration Duration Dis é?;?:ﬁ sfelfl easil); experiences, Reser'.:.leigi sympal:s;ﬁ;
Time Count [c%unb’sy] Total Average Maximum Minimum Ttﬂal [px] disciplined. upset complex a
[ms] ms] [ms] [ms] [ms] P
94361.4 111.0 12 595928 536.9 37507 994 6756.4 .. 40 50 30 40 5.0
526819.8 156.0 03 200841 1287 3489 66.2 168802 .. 40 50 30 40 5.0
11932.0 36.0 3.0 9576.4 266.0 995.7 99.3 17273 .. 6.0 5.0 3.0 30 4.0

Figure 13: Final Dataset for Experiment 3

5.3 Storage

The raw data of eye tracker is retrieved and stored in organization’s one drive cloud
solution which could be helpful for future researchers. The masked and fully transformed
data-sets are stored in a github repository and it made available publicly after removing
the sensitive information and as well as the Jupyter notebook is uploaded in the same
location if future researchers want to replicate it.

5.4 Data Exploration and Visualisation

The variables are checked for their correlation and whichever feature had high correlation
were removed from the model application.

cor_vl=data.corr()
cor_vil

sns.set(style="whitegrid"”, font_scale=13)

plt.figure(figsize=(368,388))

plt.title('Pearson Correlation Matrix', fontsize=25)
sns.heatmap(datal.corr(),linewidth=8.25, vmax=8.7, square=True, cmap="GnBu", linecolor="w",
annot=True, annot_kws={"size":18}, cbhar_kws={"shrink™:.7})

cor_vl=df exp2.corr()
cor_wvl

sns.set({style="whitegrid", font_scale=13)

plt.figure(figsize=(388,388))

plt.title('Pearson Correlation Matrix', fontsize=25)
sns.heatmap(df_exp2.corr(),linewidth=8.25, vmax=8.7, square=True, cmap="GnBu", linecolor='w',
annot=True, annot_kws={"size":18}, cbar_lkws={"shrink":.7})

https://github.com/yogalakshmi2904/Thesis

6 Experiments

This section explains the three different experiments carried out in this research project
and the rationale of each. In all the three experiment the target variable is "Median split’.

6.1 Experiment 1

This experiment has included all the metrics extracted from the BeGaze software that
showed no to less correlation between each other.

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

X1= con_df[['Visual Intake Count', "Wisual Intake Frequency [count/s]",
'Wisual Intake Duration Total [ms]’,
'Wisual Intake Duration Awverage [ms]",
'Wisual Intake Duration Maximum [ms]",
'Wisual Intake Duration Minimum [ms]",
'Wisual Intake Dispersion Total [px]°,
'Wisual Intake Dispersion Awverage [px]’,
'Wisual Intake Dispersion Maximum [px]’,
'Wisual Intake Dispersion Mindmum [px]', 'Saccade Count’®,
'Saccade Frequency [count/s]', 'Saccade Duration Total [ms]°®,
'Saccade Duration Average [ms]', 'Saccade Duration Maximum [ms]',
'Saccade Duration Minimum [ms]', 'Saccade Amplitude Total [®]°,
‘Saccade Amplitude Average [®]', 'Saccade Amplitude Maximum [®]°,
‘Saccade Amplitude Minimum [®]', 'Saccade Velocity Total [®/s]',
'Saccade Velocity Average [°/s]', 'Saccade Velocity Maximum [®/s]",
‘Saccade Velocity Minimum [°/s5]", 'Saccade Latency Average [ms]’,
'Blink Count', 'Blink Frequency [count/s]', 'Blink Duration Total [ms]®,
'Blink Duration Average [ms]', 'Blink Duration Maximum [ms]"',
'Blink Duration Minimum [ms]", ‘Scanpath Length [px]"]1]

X1 train, X1_test, y_train, y_test = train_test_split(Xl,y,test_size=0.2,
random_state=123,
shuffle=True,

)

scaler = StandardScaler()
X1 train=scaler.fit transform{X1l train)
X1_test=scaler.fit_transform(X1_test)

Figure 15: Features included in the first experiment and test-train split

6.2 Experiment 2

This experiment has included all the metrics extracted from the BeGaze software that
showed no to less correlation between each other and the calculated ’perclose’ from the
metrics blink count and total time interval .

10

y=df[‘median_split’]

X=df[["Visual Intake Count’,
‘Visual Intake Frequency [count/s]’,
‘Visual Intake Duration Total [ms]’,
‘WVisual Intake Duration Average [ms]',
'WVisual Intake Duration Maximum [ms]’,
'WVisual Intake Duration Minimum [ms]’,
‘WVisual Intake Dispersion Total [px]’,
'Wisual Intake Dispersion Average [px]’',
‘Wisual Intake Dispersion Maximum [px]°',
‘WVisual Intake Dispersion Minimum [px]', 'Saccade Count’,
'Saccade Frequency [count/s]', "Saccade Duration Total [ms]',
'Saccade Duration Average [ms]', 'Saccade Duration Maximum [ms]',
‘Saccade Duration Minimum [ms]’, 'Saccade Amplitude Total [°]°,
'‘Saccade Amplitude Average [®]', 'Saccade Amplitude Maximum [°]°,
'Saccade Amplitude Minimum [®]°, 'Saccade Velocity Total [%/s]°,
'Saccade Velocity Average [°/s]", 'Saccade Velocity Maximum [®/s]",
'‘Saccade Velocity Minimum [®/s]", "Saccade Latency Average [ms]’,
'Blink Count', 'Blink Frequency [count/s]’, 'Blink Duration Total [ms]’,
'Blink Duration Average [ms]", "Blink Duration Maximum [ms]’,
'Blink Duration Minimum [ms]", 'Scanpath Length [px]', "PERCLOS']]

from sklearn.model selection import train_test split
from sklearn.preprocessing import StandardScaler

X_train, X_test, y_train, y_test = train_test split(X, v,
test size=8.2,
random_state=123,
shuffle=True,

)

scaler = StandardScaler()
X_train=scaler.fit_transform(X¥_train)
X test=scaler.fit_transform(X_test)

Figure 16: Features included in the second experiment and test-train split

6.3 Experiment 3

This experiment has included all the metrics extracted from the BeGaze software that
showed no to less correlation between each other and the data collected from the person-
ality questionnaire.

11

df3_final= pd.concat([df_exp3, df _ques], axis=1, join="inner')
display(df3_final)

port Visual Visual Visual Visual Visual Visual Visual Visual

End Visual Intake Intake Intake Intake Intake Intake Intake Intake Dependable, Anxious, Open tonew Reserved
Trial Intake Frequenc Duration Duration Duration Duration Dispersion Dispersion Dispersion ... self- easily experiences, ui e{
lime Count [?:{(l)unﬁs!; Total Average Maximum Minimum Toﬂal [oxl Average Maximum disciplined. upset complex q
[ms] [ms] [ms] [ms] [ms] [px] [px]

614 111.0 1.2 595928 536.9 37507 994 6756.4 60.9 3571 L 4.0 5.0 30 40
198 156.0 0.3 200841 1287 3439 66.2 18880.2 108.2 6725 . 6.0 5.0 30 3.0
320 36.0 30 9576.4 266.0 995.7 993 1727.3 43.0 3024 6.0 5.0 3.0 3.0
86.0 11190 25 3547939 3T 12098.2 827 48621.3 435 196733 .. 6.0 5.0 30 30

y3=df3 final['median_split’]
X3=df3_final.drop('median_split',axis = 1)

from sklearn.model selection import train_test split
from sklearn.preprocessing import StandardScaler

X3 train, X3 test, y3 train, y3 test = train_test split(X3, y3,
test size=8.2,
random state=123,
shuffle=True,

)

scaler = StandardScaler()
X3 train=scaler.fit_transform{X3 train)
X3 test=scaler.fit transform{X3 test)

Figure 17: Features included in the Third experiment and test-train split

7 Model Implementation

7.1 Support Vector Machine

SVM algorithm is applied across all the experiment and below is the code snippet for the

model application and the model evaluation validation through confusion matrix.

12

from sklearn.svm import SVC

svclassifier2 = SVC(kernel="linear')
svclassifier2.fit(X _train, y train)

SVC{kernel="linear")
y_pred = svclassifier2.predict(X_test)

y_pred

array([1., &., 1., &., 6., 8., 1., 1., &.])

from sklearn.metrics import classification_report, confusion_matrix

print(’-"%*38)

print('Classification Report for SVM for Experiment 2 :')
print{confusion_matrix(y_test,y pred))
print{classification report(y test,y pred))

print("-"%*38)

Figure 18: Implementation of Support Vector Machine

7.2 Logistic Regression

Logistic regression algorithm is applied across all the experiment and below is the code
snippet for the model application and the model evaluation validation through confusion
matrix.

Logistic regression

from sklearn.linear _model import LogisticRegression

model = LogisticRegression()

model.fit(X train,y_train)

pred 1r2 = model.predict(X test)

print(’-"*48)

print{'Classification Result for Logistic Regression :')
print{classification_report(y_test, pred 1lr2))
print{'-"*48)

Figure 19: Implementation of Logistic Regression

13

7.3 K-Nearest Neighbour

KNN algorithm is applied across all the experiment and below is the code snippet for the
model application and the model evaluation validation through confusion matrix.

KM

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier{n neighbors=3)

Train the model using the tragining sets
model.fit (X _train,y train)

#Predict Output
y_knn_pred= model.predict(X test)
print{y_knn_pred)

[6. 1. 1. 8. @. 1. 1. 8. 1.]

print({’'-"*3@)

print{'Classification Report for KNN for Experiment 2 :')
print{confusion matrix(y test,y knn _pred))
print(classification_report(y test,y knn _pred))
print('-"*38)

Figure 20: Implementation of KNN

7.4 Decision Tree

Decision Tree algorithm is applied across all the experiment and below is the code snippet
for the model application and the model evaluation validation through confusion matrix.

Decision tree

from sklearn.tree import DecisionTreeClassifier

dt = DecisionTreeClassifier()
dt.fFit(X_train,y_train)
pred dt2 = dt.predict(X_test)

print{ " - "*48)

print{'Classification result for Decision Tree for second experiment :")
print{classification_report{y_test, pred_dt2))

print{"-"*48)

Figure 21: Implementation of Decision Tree

14

7.5 Adaboost

Adaboost algorithm is applied across all the experiment and below is the code snippet
for the model application and the model evaluation validation through confusion matrix.

Adaboost

from sklearn.ensemble import AdaBoostClassifier

abc = AdaBoostClassifier(n_estimators=58,
learning rate=3

)
Train Adaboost Classifer
model2 = abc.fit(X train, y_train)

#Predict the response for test dataset
y_pred_abc = model2.predict(X test)

print(' -"*48)

print({ 'Classification Results for AdaBoost for second Experiment:')
print{classification report(y test, y pred abc))

print(’-"*48)

Figure 22: Implementation of Adaboost

8 Conclusion

To summarise, this report illustrates step by step procedure of this research project. The
sections are divided chronologically and each step is explained in full length. The entire
code and the data-sets are available on the github| repository

15

https://github.com/yogalakshmi2904/Thesis

	Introduction
	Computational Resource Information
	Experimental Equipment
	Data Acquisition
	Data Pre-process
	Preparation
	Transformation
	Storage
	Data Exploration and Visualisation

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Model Implementation
	Support Vector Machine
	Logistic Regression
	K-Nearest Neighbour
	Decision Tree
	Adaboost

	Conclusion

