~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Shivani Chandak
Student ID: x20186762

School of Computing
National College of Ireland

Supervisor: ~ Mr. Taimur Hafeez

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Shivani Chandak
Student ID: x20186762
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Mr. Taimur Hafeez
Submission Due Date: 15/08/2022
Project Title: Configuration Manual
Word Count: 1060
Page Count: 2

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 17th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Shivani Chandak
x20186762

1 Introduction

This Configuration Manual includes all the materials needed to replicate the findings of
the research- “Classification of Severity Levels in Diabetic Retinopathy in Ultra-
wide Field Colour Fundus Images using Hybrid Deep Learning Models”. This
document consists of the hardware, software requirements as well as the details of the
code written in order to implement the research.

2 System Configuration

2.1 Hardware Specifications

Table 1 demonstrates the hardware specifications of the system on which the research
was carried out.

Table 1: Hardware Specifications

RAM 8 GB

Processor Intel(R) Core(TM) i5-8300H
Speed 2.30 GHz

Operating System | Windows 10, 64 Bit

Storage 1 TB HDD

GPU NVIDIA GeForce GTX1650

2.2 Software Specifications
2.2.1 Jupiter Notebook from Anaconda Distribution

The Anaconda distribution includes an open-source desktop GUI called Anaconda Nav-
igator. It comprises of Jupiter Notebooks which supports in application of deep learning
algorithms as required. Version 6.4.12 consists of all the operations required to construct
a deep learning model along-with augmentation and pre-processing features which were
needed while implementing this research.

2.2.2 Microsoft Excel

Excel was used to manipulate the CSV.

3 Development of Project

The research was built using the programming language- Python. It was used to im-
plement different sections of the code- data pre-processing, data transformation, model
construction and evaluation. The main libraries used were Matplotlib, Pandas, Keras,
TensorFlow, Numpy etc.

3.1 Data Collection
The data is available for public use on: DeepDRid Github

3.2 Importing Libraries

The required libraries are first imported as shown in Figure 1.

importing relevant libraries

import pandas as pd

import numpy as np

import os

from keras.preprocessing.image import load img
import matplotlib.pyplot as plt

from sklearn.preprocessing import OneHotEncoder
import zipfile

from keras import layers

from keras import models

from tensorflow.keras.applications import VGG19
from keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import optimizers

from tensorflow.keras import regularizers

from sklearn.metrics import confusion matrix
import tensorflow

from sklearn.svm import SVC

import random

import seaborn as sns

from pylab import rcParams

import cv2

from sklearn import metrics

import tensorflow as tf

from sklearn.metrics import precision_recall_ fscore_support
from sklearn.metrics import accuracy score

from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score

from keras.preprocessing.image import img_ to_array
from numpy import expand dims

import warnings
warnings.filterwarnings('ignore")

Figure 1: Importing Libraries

3.3 Data Pre-processing & Transformation

Jupiter notebook is given access to the dataset that was obtained from Github. All
the images are contained within a single directory after downloading the dataset. First,
a directory structure ‘datasetBeforeAugmentation/train’ and ‘datasetBeforeAugmenta-
tion/test’ is devised. The code first checks if there is any directory with the name of
‘datasetBeforeAugmentation’. If no directory is found, then ‘datasetBeforeAugmenta-
tion” directory will be made. A similar task is done for the test data as well. Next, the
code makes folders from 0 to 4 within both ‘train’ and ‘test’ directories if they are not
already present. The code grabs images from the common repository and then saves it
to the related class in the data directory shown in Figure 2.

https://github.com/deepdrdoc/DeepDRiD/tree/master/ultra-widefield_images

making a directory structure to hold the training and testing data into folders 0 - 4
try:
os.mkdir('datasetBeforeAugmentation')

except:
print('dataset directory already exists')

train
try:
os.mkdir('datasetBeforeAugmentation/Train')
except:
print('train directory already exists')
for i in range(len(train_info['DR_level'].value_counts())):
try:
os.mkdir(f'datasetBeforeAugmentation/train/{i}")
except:
print(f'{i} directory already exists')

test
try:
os.mkdir('datasetBeforeAugmentation/Test')
except:
print('test directory already exists')
for i in range(len(train_info['DR_level'].value_counts())):
try:
os.mkdir(f'datasetBeforeAugmentation/test/{i}")
except:
print(f'{i} directory already exists')

Figure 2: Maintaining Directory

“Train Dataset Befors Augmentation Test Dataset Before Augmentation

©
2

0
0
B

S
6
s

0

- Z -
o o
o ' 2 3 s o ' 2 3 4

Figure 3: Imbalanced data Before Augmentation

The deep learning model cannot be trained using the original train dataset, as it
consists of 155 images divided into 5 classes. Additionally, there was an imbalance in the
images for each class as seen in Figure 3. With this few examples in the training data,
the model may have a tendency to overfit. To solve this problem, variants are added to
the snaps using data augmentation techniques.

Further, the images are augmented and saved into the newly generated directory with
a slight shift in zoom, flip and rotation as seen in Figure 4. The image generator is called
50 times for of the class in the train dataset and 35 times for the test dataset. Every
time a unique image is generated and saved in the directory. The unbalanced dataset has
been made balanced after data augmentation as seen in Figure 5.

3.4 K-Fold Cross Validation

To yield the images in batches to facilitate the training process, a data generator is made.
The generator yielded the images in batch size of 1 and sent it to the model for training,

defining a datagen

datagen = ImageDataGenerator (
featurewise_center=False,
samplewise center=False,
featurewise_std normalization=False,
samplewise std normalization=False,
zca_whitening=False,
zca_epsilon=0,
rotation_range=0.1,
width_shift_ range=0,
height shift range=0,
brightness_range=None,
shear range=0.0,
zoom_range=0.1,
channel shift range=0.0,
fill mode='nearest',
cval=0.0,
horizontal_ flip=True,
vertical_ flip=True,
rescale=None,
preprocessing_function=None,
data_format=None,
validation_split=0.0,
dtype=None,

Figure 4: Data Augmentation

“Train Dataset Afer Augmentaton with balansed classes. st Dataset After Augmentation with balanced classes

» =
@
“
=
»
2
H H
H g
5
»
0
w©
s
o o
o ' 2 3 4 o ' 2 3 4
aasses aasses

Figure 5: Balanced Data After Augmentation

validation, and testing. Since, the research is using k fold cross validation with 80/20
ratio, for each epoch, 20% of the data is made validation data while the remaining 80%
of the data is made train data. The output shape of the data generator was (120, 120,
3) (Figure 6)

train generator = train_datagen.flow_from directory(train dir,
target_size=(120, 120),
batch_size=1,
shuffle = True,
class_mode='categorical',
subset='training')

validation data for k fold = 5

validation_generator = train datagen.flow_from directory(train_dir,
target_size=(120, 120),
batch_size=1,
shuffle = True, # for k fold
class_mode='categorical',
subset='validation')

test data
test_datagen = ImageDataGenerator (rescale=1./255)

test_generator = test_datagen.flow_ from directory(test dir,
target size=(120, 120),
batch_size=1,
shuffle = False,
class_mode='categorical')

Figure 6: K-fold Cross Validation

3.5 Model Implementation
3.5.1 VGG-19

In Figure 8, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. The input shape
from the generator is (120, 120, 3). Then a custom top is added for the classification.
The custom top has 4 dense layers. The first layer has 200 neurons followed by the
second layer which has 100 neurons. The third layer has 50 neurons and the last layer
has 5 neurons (as there are 5 classes). The first three layers had ‘relu’ as activation
function to include some non linarites. Since it is a multi-class problem, the final layer
has ‘softmax’ activation function. “crossentropy” has been used as loss function as this
was a classification problem. “Adamax” optimizer has been used since it is among one
of the best optimizers for image classification. Additionally, two callbacks are used- one
is to save the best weights and other is to monitor the validation loss as seen in Figure 7.

3.5.2 VGG19-SVM

In Figure 9, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. These low level
features are saved in the form of an array. The input shape from the generator is (120,
120, 3). The array is then fed to the Support Vector Machine (SVM) model. The model

function to save best weights only

best_weight = tf.keras.callbacks.ModelCheckpoint (
filepath="'/content/',
save_weights_only=True,
monitor='val_accuracy',
mode="'max",
save_best_only=True)

function for early stopping
early stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_accuracy",
min_delta=0,
patience=5,
verbose=2,
mode="auto",
baseline=None,
restore_best_weights=True,

Figure 7: Function to save Best Weights and monitor Validation Loss

convolution base of Vggl9
np.random.seed(0)
tensorflow.random.set seed(0)
conv_base = tf.keras.applications.vggl9.VGG19 (
include_ top=False,
weights='imagenet’,
input_tensor=None,
input_shape=(120,120,3),
pooling=False,
classes=5

)

custom top
model = models.Sequential()
model.add(conv_base)

Adding our own dense layers
model.add(layers.Flatten())
model.add(layers.Dense(200, activation='relu'))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(100, activation='relu'))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(50, activation='relu'))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(5, activation='softmax'))

compiling the model
model.compile(loss='categorical_crossentropy',
optimizer= 'adamax',
metrics=['accuracy'])

training the model
history = model.fit(train_generator,
epochs=100,
batch_size=25,
callbacks=[early_ stopping, best weight],
validation_data= validation_generator

)

Figure 8: VGG-19

SVM has a ¢ parameter equal to 20 to handle the misclassifications. Additionally, the
kernel is selected as ‘poly’.

convolution base of Vggl9

conv_base = tf.keras.applications.vggl9.VGG19 (
include_top=False,
weights='imagenet',
input_ tensor=None,
input_shape=(120,120,3),
pooling=True,
classes=5

Make loaded layers as non-trainable. This is important as we want to work with pre-trained weights
for layer in conv_base.layers:
layer.trainable = False

Now, let us use features from convolutional network for SVM
feature extractor=conv_base.predict(train generator)

features = feature_extractor.reshape(feature extractor.shape[0], -1)
X for SVM = features # This is our X input to SVM

SVM
SVM model = SVC(C = 20, kernel = 'poly')

Train the model on training data
SVM _model.fit(X for SVM,train generator.classes)

Test

Send test data through same feature extractor process
X_test_feature = conv_base.predict(test_generator)

X test features = X test feature.reshape(X test feature.shape[0], -1)

Now predict using the trained SVM model.
prediction SVM = SVM model.predict(X test_features)

data for perfomence matrices

y_true = test_generator.classes

y_pred = prediction_SVM

enc = OneHotEncoder (handle unknown='ignore')
enc.fit(y pred.reshape(-1, 1))

Yy _p = enc.transform(y pred.reshape(-1, 1)).toarray()

Figure 9: VGG19-SVM

3.5.3 VGG19-RF

In Figure 10, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. These low level
features are saved in the form of an array. The input shape from the generator is (120,
120, 3). The array is then fed to the Random Forest (RF) model. No depth is passed to
the model so it can infer the best one.

3.6 Model Evaluation & Results

A generic function is created to analyze all the performance metrices as seen in Figure
11.

convolution base of Vggl9

conv_base = tf.keras.applications.vggl9.VGG19(
include_top=False,
weights='imagenet',
input_tensor=None,
input_shape=(120,120,3),
pooling=True,
classes=5

Make loaded layers as non-trainable. This is important as we want to work with pre-trained weights
for layer in conv_base.layers:
layer.trainable = False

Now, let us use features from convolutional network for RF
feature extractor=conv_base.predict(train generator)

features = feature_ extractor.reshape(feature extractor.shape[0], -1)
X for RF = features # This is our X input to RF

RF
RF _model = RandomForestClassifier()

Train the model on training data
RF_model.fit(X for RF,train generator.classes)

Test

Send test data through same feature extractor process

X test feature = conv_base.predict(test generator)

X test features = X test feature.reshape(X test feature.shape[0], -1)

Now predict using the trained RF model.
prediction RF = RF model.predict(X_ test_ features)

data for perfomence matrices

y_true = test_generator.classes

y_pred = prediction RF

enc = OneHotEncoder(handle unknown='ignore')
enc.fit(y pred.reshape(-1, 1))

y_p = enc.transform(y_pred.reshape(-1, 1)).toarray()

Figure 10: VGG19-RF

def performance_evaluatlon(y_true,y_pred, ;_pi:

print('\n\n\n ***PERFORMANCE MATRICES*** \n')

precision, recall, fscore

precision, recall, fscore, ncone = precision_recall fscore support(y true, y pred, average='macro')
print(f'precision = {precision}')

print(f'recall = {recall}')

print(f'fscore = {fscore}')

accuracy
print (f'Accuracy: {accuracy score(y_true, y pred)}')
fpr, tpr, thresholds = metrics.roc_curve(y true, y pred, pos_label=4)

AUC
print(f'AUC: {metrics.auc(fpr, tpr)}')

cohen_kappa_score
print (f'cohen_kappa score: {metrics.cohen_kappa_ score(y_true, y pred)}\n')
sensitivity and specificity
res = []
for 1 in range(5):
prec,recall, , = precision recall fscore_support(np.array(y_true)==1,
np.array(y_ pred)==1,
pos_label=True, average=None)
res.append([l,recall[0],recall[1l]])
print(pd.DataFrame(res,columns = ['class', 'sensitivity', 'specificity']))

roc curve for multiclasses

fpr = {}
tpr = {}
thresh ={}

n_classes = y_p.shape[l]
for i in range(n_classes):
fpr(i), tpr[i], thresh[i] = roc_curve(y_true, y p[:,i], pos_label=i)

plt.figure(figsize = (20,20))
for i in range(n_classes):

plt.plot(fpr[i], tpr[i], label=f'Class{i+1}")
plt.title('Multiclass ROC curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive rate')
plt.legend(loc="'upper right', ncol = 10)
plt.show()

confusion matrix

print('\nConfusion Matrix')

cnf matrix= confusion matrix(y true, y_pred)
plt.figure(figsize = (10,7))
sns.heatmap(cnf_matrix, annot=True, fmt="d")

Figure 11: Function for analyzing performance metrices

3.6.1 VGG-19

The confusion matrix and other performance metrics for VGG-19 model can be seen in
Figure 12 and Figure 13.

precision = 0.8196626984126985
recall = 0.8

fscore = 0.7938549342186088
Accuracy: 0.8

AUC: 0.7956122448979592
cohen_kappa_score: 0.75

class sensitivity specificity
0.921429 0.971429
.921429 .600000
.914286 .857143
.992857 .000000
.000000 571429

=W N R o
S WN e o
or oo

0
0
0
1

Figure 12: Performance Metrices: VGG-19

Confusion Matrix

-35

Figure 13: Confusion Matrix: VGG-19

3.6.2 VGG19-SVM

The confusion matrix and other performance metrics for VGG19-SVM model can be seen
in Figure 14 and Figure 15.

3.6.3 VGG19-RF

The confusion matrix and other performance metrics for VGG19-RF model can be seen
in Figure 16 and Figure 17.

10

precision = 0.44850515816082537

recall = 0.4171428571428571

fscore = 0.41369699302217927

Accuracy: 0.41714285714285715

AUC: 0.6803061224489795
cohen_kappa_score: 0.27142857142857146

-20

class sensitivity specificity
0 0 0.664286 0.371429
1 1 0.950000 0.142857
2 2 0.892857 0.371429
3 3 0.928571 0.685714
4 4 0.835714 0.514286
Figure 14: Performance Metrices: VGG19-SVM
Confusion Matrix

©

Ll

~

Ll

<t

. . .
Figure 15: Confusion Matrix: VGG19-SVM
precision = 0.5396913231695841
recall = 0.56
fscore = 0.5373434892785534
Accuracy: 0.56
AUC: 0.766734693877551
cohen_kappa_ score: 0.44999999999999996
class sensitivity specificity

0 0 0.835714 0.485714
1 1 0.907143 0.314286
2 2 0.921429 0.285714
3 3 0.935714 1.000000
4 4 0.850000 0.714286

Figure 16: Performance Metrices: VGG19-RF

11

Confusion Matrix

-35

Figure 17: Confusion Matrix: VGG19-RF

12

	Introduction
	System Configuration
	Hardware Specifications
	Software Specifications
	Jupiter Notebook from Anaconda Distribution
	Microsoft Excel

	Development of Project
	Data Collection
	Importing Libraries
	Data Pre-processing & Transformation
	K-Fold Cross Validation
	Model Implementation
	VGG-19
	VGG19-SVM
	VGG19-RF

	Model Evaluation & Results
	VGG-19
	VGG19-SVM
	VGG19-RF

