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1 Introduction

This Configuration Manual includes all the materials needed to replicate the findings of
the research- “Classification of Severity Levels in Diabetic Retinopathy in Ultra-
wide Field Colour Fundus Images using Hybrid Deep Learning Models”. This
document consists of the hardware, software requirements as well as the details of the
code written in order to implement the research.

2 System Configuration

2.1 Hardware Specifications

Table 1 demonstrates the hardware specifications of the system on which the research
was carried out.

Table 1: Hardware Specifications

RAM 8 GB
Processor Intel(R) Core(TM) i5-8300H
Speed 2.30 GHz
Operating System Windows 10, 64 Bit
Storage 1 TB HDD
GPU NVIDIA GeForce GTX1650

2.2 Software Specifications

2.2.1 Jupiter Notebook from Anaconda Distribution

The Anaconda distribution includes an open-source desktop GUI called Anaconda Nav-
igator. It comprises of Jupiter Notebooks which supports in application of deep learning
algorithms as required. Version 6.4.12 consists of all the operations required to construct
a deep learning model along-with augmentation and pre-processing features which were
needed while implementing this research.

2.2.2 Microsoft Excel

Excel was used to manipulate the CSV.
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3 Development of Project

The research was built using the programming language- Python. It was used to im-
plement different sections of the code- data pre-processing, data transformation, model
construction and evaluation. The main libraries used were Matplotlib, Pandas, Keras,
TensorFlow, Numpy etc.

3.1 Data Collection

The data is available for public use on: DeepDRid Github

3.2 Importing Libraries

The required libraries are first imported as shown in Figure 1.

Figure 1: Importing Libraries

3.3 Data Pre-processing & Transformation

Jupiter notebook is given access to the dataset that was obtained from Github. All
the images are contained within a single directory after downloading the dataset. First,
a directory structure ‘datasetBeforeAugmentation/train’ and ‘datasetBeforeAugmenta-
tion/test’ is devised. The code first checks if there is any directory with the name of
‘datasetBeforeAugmentation’. If no directory is found, then ‘datasetBeforeAugmenta-
tion’ directory will be made. A similar task is done for the test data as well. Next, the
code makes folders from 0 to 4 within both ‘train’ and ‘test’ directories if they are not
already present. The code grabs images from the common repository and then saves it
to the related class in the data directory shown in Figure 2.
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Figure 2: Maintaining Directory

Figure 3: Imbalanced data Before Augmentation

The deep learning model cannot be trained using the original train dataset, as it
consists of 155 images divided into 5 classes. Additionally, there was an imbalance in the
images for each class as seen in Figure 3. With this few examples in the training data,
the model may have a tendency to overfit. To solve this problem, variants are added to
the snaps using data augmentation techniques.

Further, the images are augmented and saved into the newly generated directory with
a slight shift in zoom, flip and rotation as seen in Figure 4. The image generator is called
50 times for of the class in the train dataset and 35 times for the test dataset. Every
time a unique image is generated and saved in the directory. The unbalanced dataset has
been made balanced after data augmentation as seen in Figure 5.

3.4 K-Fold Cross Validation

To yield the images in batches to facilitate the training process, a data generator is made.
The generator yielded the images in batch size of 1 and sent it to the model for training,

3



Figure 4: Data Augmentation

Figure 5: Balanced Data After Augmentation
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validation, and testing. Since, the research is using k fold cross validation with 80/20
ratio, for each epoch, 20% of the data is made validation data while the remaining 80%
of the data is made train data. The output shape of the data generator was (120, 120,
3) (Figure 6)

Figure 6: K-fold Cross Validation

3.5 Model Implementation

3.5.1 VGG-19

In Figure 8, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. The input shape
from the generator is (120, 120, 3). Then a custom top is added for the classification.
The custom top has 4 dense layers. The first layer has 200 neurons followed by the
second layer which has 100 neurons. The third layer has 50 neurons and the last layer
has 5 neurons (as there are 5 classes). The first three layers had ‘relu’ as activation
function to include some non linarites. Since it is a multi-class problem, the final layer
has ‘softmax’ activation function. “crossentropy” has been used as loss function as this
was a classification problem. “Adamax” optimizer has been used since it is among one
of the best optimizers for image classification. Additionally, two callbacks are used- one
is to save the best weights and other is to monitor the validation loss as seen in Figure 7.

3.5.2 VGG19-SVM

In Figure 9, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. These low level
features are saved in the form of an array. The input shape from the generator is (120,
120, 3). The array is then fed to the Support Vector Machine (SVM) model. The model
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Figure 7: Function to save Best Weights and monitor Validation Loss

Figure 8: VGG-19
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SVM has a c parameter equal to 20 to handle the misclassifications. Additionally, the
kernel is selected as ‘poly’.

Figure 9: VGG19-SVM

3.5.3 VGG19-RF

In Figure 10, the research uses base model of VGG-19 with the pre-trained weights of
ImageNet dataset to extract the features (low level) out of the images. These low level
features are saved in the form of an array. The input shape from the generator is (120,
120, 3). The array is then fed to the Random Forest (RF) model. No depth is passed to
the model so it can infer the best one.

3.6 Model Evaluation & Results

A generic function is created to analyze all the performance metrices as seen in Figure
11.
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Figure 10: VGG19-RF
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Figure 11: Function for analyzing performance metrices
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3.6.1 VGG-19

The confusion matrix and other performance metrics for VGG-19 model can be seen in
Figure 12 and Figure 13.

Figure 12: Performance Metrices: VGG-19

Figure 13: Confusion Matrix: VGG-19

3.6.2 VGG19-SVM

The confusion matrix and other performance metrics for VGG19-SVM model can be seen
in Figure 14 and Figure 15.

3.6.3 VGG19-RF

The confusion matrix and other performance metrics for VGG19-RF model can be seen
in Figure 16 and Figure 17.
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Figure 14: Performance Metrices: VGG19-SVM

Figure 15: Confusion Matrix: VGG19-SVM

Figure 16: Performance Metrices: VGG19-RF
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Figure 17: Confusion Matrix: VGG19-RF

12


	Introduction
	System Configuration
	Hardware Specifications
	Software Specifications
	Jupiter Notebook from Anaconda Distribution
	Microsoft Excel


	Development of Project
	Data Collection
	Importing Libraries
	Data Pre-processing & Transformation
	K-Fold Cross Validation
	Model Implementation
	VGG-19
	VGG19-SVM
	VGG19-RF

	Model Evaluation & Results
	VGG-19
	VGG19-SVM
	VGG19-RF



