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Configuration Manual

Nikhil Chambial
x20232713

Msc Research Project

1 Introduction

This document is a configuration manual that specifies the various components of the
research named - ”Deep Neural Network for Seismic Image Segmentation and
Detection of Salt Domes”. In addition, the document discusses the software and
hardware requirements for executing this project, along with the model design, imple-
mentation details, and evaluation of the model.

2 System Configuration

2.1 Hardware

• Processor: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz

• RAM: 16GB

• Operating System: 64-bit Windows OS, x64-based processor

• GPU: Intel(R) UHD Graphics 620, 6GB

• Storage: 1 TB

2.2 Software

• Google Collaboratory: Google Collaboratory 1 is a free cloud-based platform
provided by Google for machine learning development. The platform provides sim-
ilar functionality to Jupyter Notebook and optional GPU and TPU hardware accel-
erator to speed up the code execution. In addition, the GPU hardware accelerator
is very efficient in handling large datasets.

1https://colab.research.google.com/

1



Figure 1: Google Collab: Hardware Accelerator

• Microsoft Excel: Software by Microsoft to create visualizations and tables used
in the report.

• Overleaf Latex: Overleaf platform 2 was used to create project report and con-
figuration manual using Latex.

Figure 2: Overleaf Platform

3 Project Development

The project was implemented using the python programming language. The project can
broadly be divided into three stages of development- Data Preparation, Model Imple-
mentation, and Evaluation of the Model.

2https://www.overleaf.com/
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3.1 Data Extraction and Staging

The dataset in this project was made available by a Geophysical company called TGS
through a competition hosted on Kaggle 3, a public platform.

Figure 3: Overleaf Platform

The dataset was first downloaded as a zip file from Kaggle and uploaded on a personal
google drive. It can be accessed using the below link:

TGS Salt Dataset

Below are the steps to use this dataset:

• Step 1: Download this dataset and upload to your Google Drive.

• Step 2: Now login to Google Collab and run the code file named: 20232713 Project Code

• Step 3: In the second code cell, while running the code in Figure 4, the system
will ask for the permission to use the same google drive. Once given permission,
the code will stage the stage to notebook and unzip it automatically.

Figure 4: Google Drive Mount

3https://www.kaggle.com/competitions/tgs-salt-identification-challenge/data
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3.2 Data Preparation

The seismic image data was imported using Pandas data frames and Numpy arrays. The
data pre-processing was carried out following the below steps:

3.2.1 Data Loading

The following figures show the code snippets for various data extraction and manipula-
tion activities. Figure 5 shows the various libraries that were imported as part of the
development.

Figure 5: Importing Libraries

After the libraries were imported, the Google Drive was mounted, and the data was
unzipped. As seen in the Figure 6, the dataset folder contains Test Image and Train
Image sub-folders along with CSV files containing depth and training data information.

Figure 6: Importing Libraries
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3.2.2 Data Visualization

Figure 7 shows the code implemented to visualize the seismic image. The figure shows
seismic images along with the respective salt masks.

Figure 7: Seismic Image and Salt Mask

3.2.3 Data Manipulation

All the seismic images and respective salt masks were loaded in grayscale format and
resized to 128*128 dimensions from 101*101 using resize() method. The images were also
converted to the array using img to array method. There are 4000 images and 4000 salt
masks, as seen in Figure 8.

Figure 8: Data Manipulation
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3.2.4 Data Augmentation and Split

Finally, the data was augmented using various data augmentation techniques such as
flipping left-right and up-down using the fliplr() and flipus() methods to increase the
dataset to 12000 images and 12000 salt masks, as seen in Figure 9.

Figure 9: Data Augmentation

3.3 Modelling

3.3.1 Model Building Blocks

Three functions were defined to form building blocks of the U-net deep learning model.
BatchActivate() function is used to first perform batch normalization on the input layer
and then activate using the relu activation layer. The convolution block() function takes
the input layer, filers size, and stride size as input and applies Conv2D() and BatchActiv-
ate operation on the input. The residual block() function first activates the input and
then applies two convolution operations on the input, as seen in Figure 10.
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Figure 10: Unet Building Blocks

3.3.2 Unet Model Implementation

The Unet architecture (Ronneberger et al.; 2015) was implemented using the above model
building blocks with four levels in the encoder part, 1 in the middle, and four in the
decoder part. Each level in the encoder consisted of a Conv2D() layer, two residual
blocks, a MaxPooling2D() layer, and a Dropout() layer. In the decoder part, Conv2D()
was replaced by Conv2DTranspose() operation, and each layer was concatenated with
the output of encoder layers before the Dropout() operation. The DropoutRatio was
initiated as 0.5 and was halved at every level in the encoder Dropout() operation.
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Figure 11: Unet Implementation

3.3.3 Model Parameters

Before training the model, two functions were created to improve the model training.
The iou vector() function was created to use as the evaluation metric while training the
model. The model was trained using a binary cross entropy loss function, but another
loss function called weighted cross entropy() was also implemented to compare the per-
formance.
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Figure 12: iou vector evaluation metric

Figure 13: weighted cross entropy() loss function

3.3.4 Model Building

The model was compiled using adam optimizer and binary crossentropy loss function.
The metrics used while compiling the model were accuracy and iou metric discussed
above. Different combinations of optimizers and loss functions were also implemented,
such as Nadam, SGD, Adamax optimizer, and weighted cross entropy() loss function.
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Figure 14: Model Compile

3.4 Evaluation

3.4.1 Model Training Hyper-parameters

The implementation of Keras callbacks was done before training the model. A value of
30 was set for the Early Stopping parameter, and the learning rate decayed to 0.1 when
the accuracy did not improve for five epochs. Min value of the learning rate is set to
1e-12. By using these parameters, the model was run over 200 epochs with a batch size
of 32.

Figure 15: Model Training

The model training stopped at the 74th epoch due to early stopping parameters set
before model training. As seen in Figure 15, the model was able to achieve an accuracy
of around 0.97 and iou metric of 0.79.
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Figure 16: Training Output

Figure 16 shows the accuracy and loss function plots of the Unet model. The graphs
were plotted using the history() function of the model output and the subplots() function
to draw the graphs.

Figure 17: Plotting Evaluation Plots
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Figure 18: IoU Plot

Figure 19: Loss vs Epochs

Finally, the output salt mask predicted by the model was compared with the ground
truth salt mask provided in the dataset. As seen in the Figure 20, the model performs
well at correctly detecting the salt region in the seismic image.
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Figure 20: Ground Truth Salt Mask vs Predicted Salt Mask
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