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Deep Neural Network for Seismic Image
Segmentation and Detection of Salt Domes

Nikhil Chambial
x20232713

Abstract

Historically, seismic images have been essential in understanding sub-surface
structures. Salt Domes is a sub-surface structure that traps hydrocarbons. Do-
main experts such as geologists use these seismic images to detect salt domes and
explore oil and natural gas reservoirs. However, domain experts require substan-
tial computational power to analyze these seismic images, and the classification is
also error-prone. Moreover, the precise position of the salt deposit is critical since
drilling in the wrong spot would result in significant expenses for corporations as
well as environmental harm. As a result, computational systems can stimulate
experts in categorizing subsurface structures such as salt domes to fasten the ana-
lysis process, which is critical to the industry’s growth. Deep learning’s growing
popularity prompted academics to apply such technologies to seismic data. While
these methods have produced promising results, the difficulty in determining an
appropriate initialization for adjusting the model’s parameters is a common issue
in deep machine learning systems. Often the random initialization results in longer
training sessions, failure to locate the solution, and disappearing gradients till the
first layers owing to back-propagation. To solve this problem, modern deep neural
network models with transfer learning are used to provide an initialization point
for the model’s parameters and improve the performance. Most of the deep learn-
ing models in the past showed sub-par performance due to the scarcity of data
that has been resolved in this study by using data augmentation techniques such
as rotation and flipping. This study has implemented a state-of-the-art encoder-
decoder model called Unet to detect salt domes in seismic images. The model has
been trained and tested on the publicly available seismic image dataset provided by
TGS. The Unet model is evaluated and optimized using various evaluation metrics
such as Intersection over Union(IoU) and Accuracy, with values of 0.80 and 97%,
respectively.

Keywords- Salt Domes, Seismic Images, UNet, IoU(Intersection over Union), Data
Augmentation, Convolution Neural Network

1 Introduction

1.1 Background and Motivation

Huge salt deposits are present in many places on Earth, and some locations also have
significant oil and gas resources. Oil and gas companies may extract oil and gas more
effectively and in less harmful ways using seismic imaging of salt bodies. Seismic pictures
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aid in the visualization of the subsurface structures needed to find hydrocarbon fuel.
Sound waves are emitted by receivers called geophones and are reflected by the subsurface
structures, which create seismic images. As seen in Figure 1 1, a three-dimensional image
of the subterranean rocks is made using the recorded reflected sound signal. The captured
pictures are known as seismic images, and they depict the borders of various rock types.

Figure 1: Seismic Image Collection

Even though it is highly challenging to identify the rock types from these seismic
pictures, the reflected signal can reveal the boundaries between the rocks at the site of
contact. This seismic picture interpretation is primarily used to locate salt domes that
store hydrocarbon hydrocarbons like oil and natural gas, as seen in Figure 2 2. The
properties of salt domes are numerous, complex, and only interpretable by specialists like
geologists. Since salt domes have a lower density than the rocks surrounding and a higher
seismic velocity than the rocks nearby, the seismic pictures of the salt dome’s boundary
exhibit a sharp reflection, making it easier for the experts to locate them.

Figure 2: Oil Reservoir trapped by Salt Dome

1https://www.petroman.com
2https://www.geology.com
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It takes a lot of processing power and domain knowledge to analyze seismic pictures
to comprehend the subsurface structures. Seismic pictures are stored, rendered, and
interpreted using high-end computer hardware and software. Experts interpret these
seismic images to detect numerous structures such as salt domes, faults, and channels.
Using powerful computers to render seismic images is better than manual interpreta-
tion but still requires much time to show conclusive results. The manual correction and
modification of human interpretations introduce bias and forecasting inaccuracies. Much
work has gone into automating, deciphering seismic pictures, and producing accurate
forecasts. These challenges motivate this research study to create an automated deep
learning framework that can accurately detect salt domes in the seismic images while im-
proving the classification accuracy and reducing the time taken to interpret the seismic
images.

1.2 Research Question

”To what extent can deep machine learning techniques in combination with data augment-
ation techniques help to detect salt domes under earth’s surface by segmenting the seismic
images?”

This research aims to address the above research question using Unet architecture
(Ronneberger et al.; 2015) to create a deep learning model to detect salt domes in seismic
images accurately. This research aims to develop an automated deep learning model that
can categorize each seismic picture pixel as either salt or non-salt. This research has
used TGS’s seismic image dataset, which includes 22000 images with corresponding salt
masks. The dataset also includes depth data in addition to the salt masks. As this is an
image segmentation model, a deep learning approach would be best suited to detect salt
domes. Although CNN algorithms have been used since the 1990s, deep CNN’s devel-
opment has completely changed how this field is approached since a Deep CNN network
called Alexnet ultimately defeated the runners-up by a wide margin in the Imagenet
Large Scale Visual Recognition Challenge (Guo et al.; 2020). On the TGS seismic image
dataset, many deep learning models, including VGGNet(Alfarhan, Deriche and Maalej;
2020), Segnet (Badrinarayanan et al.; 2017), Resnet50, ResNext, and DenseNet, have
been used in the past. However, these models achieved high accuracy but faced the issue
of overfitting due to scarcity of data. This research aims to overcome this issue using
data augmentation techniques to increase the dataset volume.

1.3 Research Objectives

This research paper pursues various techniques to fulfill the objective of research
question and is organized into different sections which are elaborated below:

Section 2: Discussion of traditional and modern research in salt dome detection in
seismic images.
Section 3: Discusses the adopted methodology in this research.
Section 4: Demonstrates the Design Specification .
Section 5: Presents the implementation of the Unet architecture.
Section 6: Discusses the model training parameters.
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Section 7: Evaluation of results of the implemented model.
Section 8: Conclusion of the research.

2 Related Work

The research on detecting salt domes in seismic images can broadly be classified into
the traditional Feature Extraction Approach and Modern Deep Learning Methods. Most
methods for locating and understanding salt domes were developed by analyzing the
characteristics of two-dimensional seismic images. It is a segmentation problem as the
features are taken from the seismic images and used to find the salt borders.

2.1 Traditional Methods

To identify salt dome borders in seismic pictures, (Lomask et al.; 2006) applied the
Normalized Cuts and Image Segmentation technique that (Shi and Malik; 2000) had
previously developed. Due to the potential size of the weight matrix and the associated
high processing demands, the computations were divided across a parallel network, which
turned out to be extremely precise and efficient. NCIS handled the problem of local
discontinuities by ignoring the local data and extracting the global characteristics from
the images and proving to be an efficient approach to salt dome detection. As opposed
to the reflectivity idea employed in NCIS algorithms, textural alterations are typically a
superior method of classifying salt borders in seismic images, as just using the variations
in amplitude can lead to incorrect detection. (Hegazy* and AlRegib; 2014) suggested that
in order to obtain the smooth delineated region, the salt borders may be detected utilizing
three different seismic image texture features, which are smoothness, edge content, and
direction. The authors employed the eigenvalues of the moment of inertia of any pixel
(x, y) to extract the direction attribute of any specific pixel since the salt content area in
the seismic pictures lacked direction. In other instances, the directionality characteristic
could not identify salt locations since several seismic images contained non-salt areas
with no direction that were consequently labeled as salt regions. Since salt dome borders
have a high intensity reflected in the pixels, edge detection is instrumental in identifying
salt domes in seismic pictures. Sobel Edge Detector (Woods; 1992) used the derivative
approach to detect the salt dome boundary. Sobel Edge Detector applies two masks on
image slices where the first mask detects the boundaries of the salt domes. In contrast, the
second mask is responsible for detecting if there are any discontinuities in any direction.
For example, (Jing et al.; 2007) took inspiration from Sobel Edge Detector and used
weighted masks to detect salt boundaries. This approach showed an accuracy of 81.1%
in detecting salt Domes. The method produced decent results but was only accurate
when the seismic pictures’ amplitude fluctuations in the x and y directions were of the
same order. Another variation of Sobel Edge Detector was adopted by (Aqrawi et al.;
2011), who overcame the amplitude variation issue by using 3D Sobel Edge Detector to
detect salt domes in seismic images. The amplitude fluctuations in the 2D model were
addressed by this method, but the abnormalities in identifying borders on the diagonals
of seismic pictures persisted. This limitation was overcome by (Asjad and Mohamed;
2015) who used a 3D edge detector that combined the gradient maps of three directions
of the salt dome edges. This approach showed better results than the Sobel Detector, as
it could correctly detect salt domes in seismic images with high amplitude variations and
low intensity, giving an accuracy of 89%.
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2.2 Deep Learning Seismic Image Analysis

Deep learning algorithms have been used to solve the problems posed by traditional
methods by adequately identifying the salt borders by readily extracting any number of
variables from the seismic images. Deep learning technology has produced significantly
superior results compared to the traditional techniques of salt identification based on
edges and textures.

2.2.1 Standard Deep Learning Models

(Di et al.; 2018) employed a multi-layer perceptron and CNN combination to locate salt
bodies in seismic pictures and assess how well it performed compared to other approaches.
The writers looked at the key elements that aided in comprehending and recognizing the
various characteristics of seismic pictures. It was discovered that CNN could effectively
produce the features in the seismic images. Previously, interpretations of seismic images
required experienced interpreters, and the characteristics needed to be fine-tuned to ac-
quire good performance. With this model, the random noise in seismic pictures could
be effectively removed, and the salt bodies and distinctive patterns could be recognized
accurately. A four-step process was suggested by (Pochet et al.; 2018) to locate faults in
the seismic pictures. Due to the lack of high-quality photos, the initial step was to build
synthetic seismic images made up of faults. Using the Ricker wavelet on reconstructed
photos and adding random noise to the images, a collection of around 500 images, each
measuring 572 by 572 pixels, was produced. If a pixel in the corresponding binary pic-
ture was covered by a white pixel, it was regarded as a fault, and vice versa. Finally,
the architecture was developed, incorporating the Rectified Linear Unit activation func-
tion for quicker training than other activation functions and max-pooling for nonlinear
downsampling. On the artificial image dataset, this model displayed accuracy of 0.98.
(Waldeland et al.; 2018) conducted the study on seismic imagery for salt body detection
using CNN. Five convolutional layers and one linked layer make up the CNN architec-
ture suggested by the authors. Finally, the authors classified pixels as salt or no salt
pixels using a two-node SoftMax loss function. The suggested model was trained using
an inline slice that had been manually labeled and several little cubes placed around the
relevant pixels. The study was conducted using seismic data from the Netherlands F3
block. (Pochet et al.; 2018) suggested a unique approach to locate salt bodies using elec-
tromagnetic algorithms using data from towed streamers. A batch normalization layer,
two max-pooling layers, a SoftMax loss function, and two fully connected layers were all
present in each of the four convolutional layers of the CNN model. Rectified Linear Unit
and Dropout Layers were also employed in this model to facilitate quicker training and
prevent overfitting. The dropout rate for Convolutional layers was adjusted to 0.1 and set
as 0.2 for fully connected layers. The accuracy for the noise-free data was 92.62 percent,
indicating that the model performed well. The model provided an accuracy of over 80%
even when there was data noise. (Xiong et al.; 2018) constructed synthetic seismic images
by making a few alterations such as inserting folds, shears, faults, and noise. The output
of the CNN model was a class label for the patch’s center point. Batch normalization, four
convolutional layers, four maximum pooling layers, a nonlinear RELU function, and an
activation function made up the model’s architecture. The outputs were finally subjected
to the SoftMax function before being converted to probabilities. The authors observed
the model accuracy using several loss functions, including CE Loss, BCE Loss, and Focal
Loss. BCE loss function fared better than CE and Focal loss, obtaining 91.21% accur-
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acy.(El Zini et al.; 2019) used transfer learning to adopt a unique exploiting bright spot
detection method. SeisNet architecture, a deep convolutional neural network, performed
better than previous approaches, with an accuracy of 95.6%. Noise addition, rotation,
and cropping data augmentation techniques were utilized to produce additional synthetic
data, which improved the F1 score by up to 50%. The transfer learning approach was
used to increase accuracy by 10% by transferring information obtained from vast amounts
of unlabeled data to the classification stage.

2.2.2 UNET Deep Learning Models

(Shi et al.; 2018) detected the salt domes in seismic images by creating image segmenta-
tion architecture. Drawing inspiration from previous works such as Segnet Architecture
by (Badrinarayanan et al.; 2017) and UNet Architecture by (Ronneberger et al.; 2015)
for automatic detection of salt bodies in the seismic pictures, they developed an Unet
encoder and decoder architecture. In order to correctly recognize salt bodies, (Zeng
et al.; 2019) suggested the Resnet framework in conjunction with U-Net architecture for
residual learning. They used the activation function of the exponential linear unit and
the Lovasz-Softmax loss function in the model. Additionally, K-fold cross-validation was
carried out to increase accuracy. Compared to the manual interpretation of seismic im-
ages, the model produced good results when deployed on the SEG-SEAM dataset. (Liu
et al.; 2019) developed a unique Se-FPN architecture to identify salt bodies in seismic
imagery. The encoder portion of the model used SENet-154 and has five convolutional
layers for downsampling. The authors employed batch normalization and ReLU activa-
tion function to combat overfitting, taking inspiration from earlier publications. Using
stochastic gradient descent, the authors trained the model with a parameter size of 24,
momentum of 0.5, and a learning rate of 0.0001. In the first five epochs, Binary Cross
Entropy loss was applied, and for the remaining epochs, Lovasz Softmax was applied.
The model’s IoU score of 87.48 percent demonstrated remarkable performance compared
to comparable models, including Deeplab and FCN.

The U-Net backbone was used for most of the prior research; however, (Ma and
Li; 2021) developed a Rotated U-Net model for fault identification in the seismic images.
When features were extracted from pictures using up-sampling, the researchers noticed an
information loss at the U-Net model’s foundation. They were inspired by Mobilenetv2,
where the residuals extracted the picture characteristics by ascending and descending.
Then an inverse sampling encoder-decoder block was put in front of the U-Net model.
To combat the overfitting issue, the input was passed through a three-by-three convo-
lutional layer, a Dropout Layer, and finally, a ReLU activation layer. The input image
of dimension 128*128*128 was used along with the parameters- learning rate as 0.0001,
epochs as 100, and batch size as 1. This method demonstrated greater than 95% accur-
acy in accurately locating faults in seismic pictures. (Zhang et al.; 2019) suggested an
ensemble-based approach for identifying seismic features. In order to build an ensemble
technique, the authors pooled the output from the two models they had created using
Segnet architecture and U-Net architecture backbones. Compared to the Segnet architec-
ture model’s accuracy of 92.40%, the U-Net architecture model demonstrated a 91.89%
accuracy. However, the ensemble model developed employing both of these models had
an enhanced accuracy of 96.57%.
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2.2.3 UNET with Transfer Learning Models

(Alfarhan, Maalej and Deriche; 2020) suggested combining the U-Net and ResNet to
distinguish salt bodies in seismic pictures. The suggested model demonstrated high ac-
curacy, but no tangible outcomes could be demonstrated due to the lack of a sizable
dataset of annotated seismic pictures. In (Alfarhan, Deriche and Maalej; 2020), the au-
thors of this study once more suggested a brand-new, enhanced architecture. They used
the labeled data from the F3 block for their study. The authors offered two distinct mod-
els. In the first model, the pooling and convolutional layers of the VGG19 architecture
served as the encoder, and ResNet34, a network noted for its ability to handle the van-
ishing gradient issues, served as the encoder in the second network. Each convolutional
layer in both models was followed by a reLU activation layer and a batch normalization
layer. The U-Net encoder was swapped out for ResNet34 and VGG19 to generate the two
variations of Unet architecture. Two techniques—random weight initialization and pre-
trained weights—were used to train both systems. The photos were initially reduced to a
size of 128 by 128, then normalized. With a learning rate of 0.0001 and a fading factor of
0.5, the four models were generated using these pictures over 100 epochs. Pre-trained net-
works outperformed networks trained using random initialization. The U-Net was used
as the reference model while comparing the effectiveness of the four networks. The pre-
trained models appeared to demonstrate significant advancements in defect identification.
None of the four models outperformed the baseline U-Net model, which displayed an IoU
metric value of 0.9778, even though all four models significantly increased defect detec-
tion. (Guo et al.; 2020) also suggested the U-Net design, which included edge prediction,
an encoder, and a decoder to enhance the performance of salt dome identification. To
link feature maps and the appropriate masks, they employed jump connections. At each
phase, the encoder component took care of downsampling the seismic images. ResNet-
34 served as the foundation of the whole model architecture. The decoder component
handled the incremental upsampling and delivered the final results of the same size as the
original seismic image. Due to a lack of data, the authors employed pre-trained ImageNet
weights for the encoder to enhance the outcomes. The model’s accuracy was increased
using various parameters, including scSE, which increased the accuracy to around 85%,
and deep supervision, which increased the accuracy further to around 87%. After testing
the edge branch with various weights, the optimum weight of 0.1 increased accuracy by
the maximum. (Alfarhan, Deriche, Maalej, AlRegib and Al-Marzouqi; 2020) employed
a similar strategy, employing an Unet encoder-decoder architecture in which high-level
features were transferred from the encoder part of the architecture to the decoder part
for the extraction of low-level information via skip-level links. A sigmoid activation func-
tion and three convolutional layers made up the model’s final section, which displayed
each output as a probability. According to this study, the pre-trained ResNet model had
a more excellent accuracy score of 98% compared to ResNet, which was created from
scratch. A different approach of using a Mask Region-based Convolutional Neural Net-
work was proposed by (Arsha and Thulasidharan; 2021) for delineating salt bodies in the
seismic images. The segmentation model Mask R-CNN was used to classify each pixel
of the seismic image as either a salt-containing or non-salt-containing pixel. The Mask
R-CNN model used CNN backbone for feature extraction from seismic images. The re-
searchers proposed to use RESNET101 as the backbone of the model. The performance
of the Mask R-CNN was much better than the CNN model as it showed an accuracy of
0.93 compared to 0.58 of the CNN model. Another research was conducted by (ul Islam;
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2020), who tackled this issue as a segmentation challenge by categorizing each pixel as a
salt-containing pixel or a non-salt-containing pixel. These pixels were then used to form
a mask for each seismic picture, where a white pixel denoted the presence of salt, whereas
the black pixel denoted its absence. Before feeding the neural network, the seismic pic-
tures were initially downsized to 101 by 101 by 1. The pictures were standardized within
0-1 after array conversion. The network included Resnet blocks in conjunction with the
U-Net base design. With the increasing depth of the encoder in the network, the picture
size reduced, and with the decrease in the depth of the decoder in the network, the picture
size increased. With a modest adjustment to enhance the dependency of channels, the
residual blocks were used to solve the overfitting problem. Additionally, outcomes were
25% better because of the introduction of Imagenet weights.

Research Paper Model Name Year Dataset Acc/IoU
Arsha and Thulasidharan (2021) Mask R-CNN 2021 TGS Salt 0.93/NA
Alfarhan, Maalej and Deriche (2020) Unet-Resnet 2020 Netherland F3 0.99/NA
Liu et al. (2019) Se-FPN 2019 TGS Salt NA/0.87
ul Islam (2020) U-Net with Se-ResNet 2020 TGS Salt NA/0.86
Zhang et al. (2019) Ensemble Learning 2020 Netherlands F3 0.96/NA
El Zini et al. (2019) SeisNet 2019 TGS Salt NA/0.95
Ma and Li (2021) Mobilenetv2 2021 TGS Salt NA/0.96
Tschannen et al. (2020) Ensemble Learning 2021 Netherlands F3 0.96/NA

Table 1: Summary of related work

3 Methodology

This research study’s technique is similar to the Cross-Industry Process for Data-Mining
(CRISP-DM). The seismic salt dome identification technique is depicted systematically
in the Figure 3, which includes the phases of business understanding, data understanding,
data preparation, modeling, evaluation, and results. The model output will effectively
identify salt domes in seismic images.

Figure 3: Salt Dome Detection Design Methodology
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3.1 Business Understanding

The oil and gas industries are constantly dealing with industry-specific issues, such as a
lack of coverage in intricate processes, performance improvement problems, equipment
issues, and environmental regulations. Machine learning can help to transform massive
datasets and efficiently make decisions to explore oil and gas in a particular area Alfarhan,
Maalej and Deriche (2020). This would further help the oil companies to reduce costs
related to hiring experts and expensive exploration equipment and would also pose less
threat to the environment. In addition, the companies are looking for a cheaper altern-
ative to expensive sensors and handling the vast amount of exploration data. Manually
identifying salt domes is a laborious process that is expensive due to the need for quali-
fied interpreters. The time commitment and error-proneness of conventional procedures
for identifying salt domes are its significant drawbacks. Furthermore, these techniques
call for specialists to extract precise seismic characteristics, which they cannot achieve in
noisy seismic pictures. Deep learning systems have outperformed more conventional ap-
proaches when identifying salt domes in seismic picturesul Islam (2020). Adopting deep
learning algorithms to automate salt dome recognition would thus be highly advantageous
to the oil and gas sector.

3.2 Data Understanding

This dataset 3 used in this research is made accessible to the public on the Kaggle platform
by the Geophysical Company TGS. The data includes seismic pictures taken at numerous
arbitrary subsurface sites. The seismic images in the dataset were obtained using the
reflection seismology method, which creates seismic images utilizing reflected light from
rocky layers under the earth’s surface. Each pixel in the seismic images may be classified
as either salt or not; these are all 101 by 101 pixels in size. A CSV file with each
seismic image’s depth is also available. The training dataset also contains a pixel-by-
pixel classification of the seismic image, also known as a seismic image mask. There are
4000 seismic images and 4000 mask files in the training dataset. The testing dataset also
consists of 12000 seismic test photos that will be used to assess the model’s accuracy and
other evaluation measures. However, in the absence of masks for the seismic images in
the test dataset, we cannot use these images to test the model’s accuracy. Figure 4 shows
the seismic image and the corresponding salt mask.

Figure 4: Seismic Image and Salt Mask

3https://www.kaggle.com/competitions/tgs-salt-identification-challenge/data
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3.3 Data Preparation

3.3.1 Data conversion and loading

The data for this investigation consists of photos with a 101*101 pixel dimension and
their respective masks in a separate folder called Masks, sharing the same name. The
seismic images in the Train folder are used as training data for the model, and the re-
spective masks are used as training labels for the model. Images are initially translated
into grayscale after being read from the dataset directory. The default seismic image
proportions are 101*101*3. As the original seismic image is of the size 101*101*3, after
this seismic image passes through the max pooling layer, the final output of the model
cannot be maintained as the original image. Therefore, the seismic images were converted
to the dimension 128*128*3. To feed the initial layer of the neural network, the picture is
further condensed to 128*128*1. The images are loaded and then transformed to Numpy
Arrays to increase processing flexibility. The values in the image array are normalized to
0.0 and 1.0 taking inspiration from ul Islam (2020). Seismic image masks also go through
a similar process.

3.3.2 Data Splitting

Since the TGS Seismic Dataset only contains Train and Test Data, the dataset was divide
into Train and Validation datasets in the ratio 80/20.

3.3.3 Data augmentation

There are few seismic photos in the TGS dataset; thus, more seismic images are needed
to build a more reliable model. The seismic image dataset was increased using the data
augmentation technique of flipping. Left-right and up-down flipping techniques were
employed to increase the training dataset from 4000 images to 12000 images, as seen in
the Figure 5.

Figure 5: Data Augmentation
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4 Design Specification

As discussed in the related work, traditional salt dome detection methods in seismic im-
ages focused more on extracting different seismic features to make accurate predictions.
However, these methods were cost-intensive, required professional help, and led to many
prediction errors. However, in the recent past, deep learning methods have been very
successful in image segmentation problems and require no manual intervention. For the
specific case of segmenting seismic images to detect salt domes, the deep learning meth-
ods have been shown to automatically extract seismic features showing better perform-
ance than the traditional methods (Alfarhan, Deriche, Maalej, AlRegib and Al-Marzouqi;
2020). Therefore, the image segmentation deep learning approach has been adopted in
this research, where each pixel in the seismic image is classified as a salt-containing pixel
or a non-salt-containing pixel. The state-of-the-art model architecture UNET proposed
by (Ronneberger et al.; 2015) has been adopted to create the model. The entire design
of the research can be seen in Figure 6.

Figure 6: Data Processing

5 Model Implementation

U-Net is an enhanced, fully convolutional network consisting of three main building
blocks. The encoder is the contraction part of the Unet architecture and is used to
downsample the seismic image. The second component is called the compression layer, a
seismic feature vector. The third component, called the Decoder, follows an expanding
path and extracts the location of the salt dome in the whole seismic image. The U-Net
architecture of down-sampling and then up-sampling the seismic images has been used as
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the baseline model in this research. The concept of deep residual learning has been used to
overcome the problem of degradation using skip connections (Alfarhan, Deriche, Maalej,
AlRegib and Al-Marzouqi; 2020). The detailed implementation of the Unet architecture
can be seen in the Figure 7.

Figure 7: Detailed U-Net Architecture

Figure 8 shows that various operations in the architecture have been performed, such
as Convolution, Maximum Pooling, Activation, Dropout, and Transpose Convolution.
All of these components and operations have been discussed in detail below:

Convolution Operation: The convolution operation in this model has two inputs: 1.
input image of size 128*128*3 where 3 denotes the number of channels. 2. 16 filters,
also known as feature extractors of size 3*3. The below formula gives the relationship
between the input and output of a convolution block:
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x(output) =

∣∣∣∣x(input) + 2p− k

s

∣∣∣∣+ 1 (1)

where k is the number of filters, p is the padding size, and s is the stride size. As seen
in the first layer of our Unet architecture, the x(input) of 128*128*3 gets converted to
128*128*16 after going through 2 convolution layers. 2@Conv in the figure means that
two consecutive convolution layers are applied in the network. c1, c2, and others are the
output tensors after the convolution operations.

Activation Layer: We have used Rectified Linear Unit activation function in the ac-
tivation layer of the U-Net model as the previous related papers (Liu et al.; 2019) and
(Ma and Li; 2021) show that ReLU works best with Unet architecture. Below is the
formula for ReLU activation function:

ReLU Formula:

f(x) =

{
0, ifx ≤ 0,
x, ifx > 0

(2)

Max Pooling Operation: Max pooling operation is used to decrease the size of feature
maps. This is done to keep only the vital features of different regions of the image such
that the context of the image is described correctly. This operation takes two inputs
as parameters- the filter size and the stride length. The U-net model in this research
takes filter size 2*2 and the stride as 2, as already seen in the architecture. p1, p2, and
others are the outputs of the max pooling operations in the U-net architecture used in
this research. The visual representation of the max pooling operation can be seen in the
Figure 8.

Figure 8: Max Pooling Operation with filter 2x2 and stride 2

Convolution and Max Pooling Operations are used to down-sample the seismic image
to get a better context or receptive field. As seen in the encoder part of the U-net network,
the input size decreased from 128*128*3 to 8*8*256.

Dropout Layer: Dropout layers are very vital to avoid the issue of overfitting and to
decrease the training time of the deep neural network (Pochet et al.; 2018). The dropout
layer is added to our model after each max pooling operation.
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Transposed Convolution: After the down-sampling of the seismic image is done in
the encoder, the transposed convolution layers are used for upsampling the images with
the learnable parameters. The layer converts a low-resolution image to a high-resolution
image by performing matrix multiplication of the input image matrix with the transpose
of the filter matrix. As seen in the U-net architecture, the layers u6, u7, and so on are
the output vectors of transposed convolution layers used for upsampling. A transpose
convolution example can be seen in Figure 9.

Figure 9: Transposed Convolution

Skip connections: We have used connections (Ronneberger et al.; 2015) in the model
architecture to skip specific layers in the network and directly transfer the output of a
layer to the last layers in the network. The benefit of using skip connections in the U-net
architecture is that the trained features in the encoder part of the network can be directly
used in the decoder part to up-sample the seismic image. Therefore, we have concatenated
the outputs from transposed convolution layers with the learned feature maps gathered
from the encoder. As seen in the U-net architecture, the layer u6(transposed convolution
layer) = u6 + c4(feature map from the encoder layer).

6 Model Training

The U-net model was compiled using the Adam Optimizer as it showed the best perform-
ance compared to other optimizers. As each pixel of the seismic image could be either a
salt-containing pixel or a non-salt-containing pixel, we have the binary cross entropy loss
function in the model. Apart from that, Keras callbacks were implemented to train the
model. Early Stopping patience was set to 30, so the execution could stop if the valid-
ation loss did not improve for 30 successive epochs. The learning rate was set to decay
by a factor of 0.1 if validation loss did not improve for five successive epochs. Minimum
value of learning rate was set to 1e12. We have used a batch size of 32 to fit the model
over 200 epochs.

7 Model Evaluation

The Unet model was trained over 200 epochs and a batch size of 32. Each epoch consisted
of 350 steps. The Keras callback functionality of early stopping could stop the model
training at the 73rd epoch because the validation loss did not improve for 30 successive
epochs.
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Figure 10: Model Training

7.1 Evaluation Metrics:

The performance of the Unet model to detect salt domes was evaluated using different
model evaluation metrics. These metrics help determine the effectiveness of the model in
accurately detecting salt domes in the seismic images.

7.1.1 Intersection over Union(IoU):

The evaluation metric Intersection over Union was used to evaluate the Unet model. IoU
evaluation metric was used by (ul Islam; 2020) to find the overlapping percentage of
masked training seismic image and the predicted seismic image mask. The formula for
IoU is given below:

iou =
IntersectionArea

UnionArea
(3)

Figure 11 graph shows the increase in the value of IoU with the increasing epochs.
The model achieved the IoU metric value of around 80 percent for both training and
validation datasets.

Figure 11: IoU vs Number of Epochs
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7.1.2 Accuracy:

The second evaluation metric, Accuracy, was also used in the model to determine the
performance. Accuracy is defined as the ratio between the number of correct predictions
made by the model and the total number of predictions made by the model. Accuracy
evaluation metric was used in earlier research such as (Arsha and Thulasidharan; 2021)
to evaluate the performance of the U-Net model to detect salt in seismic images. Figure
12 shows the Accuracy vs. the number of epochs graph. The model achieved an excel-
lent accuracy of around 97% for the training dataset and around 96% for the validation
dataset.

Figure 12: Accuracy vs Number of Epochs

7.1.3 Model Loss:

As seen in the Figure 13, the model loss curves show good performance implying that
the model was effectively trained. However, the graph remained stable with the increas-
ing number of epochs, suggesting that the model was not overfitted. Moreover, good
convergence was also demonstrated by the gradual decrease in the curve.

Figure 13: Loss vs Number of Epochs
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7.2 Model Parameters:

7.2.1 Loss Function

The model was run using two loss functions: ’Binary Cross Entropy’ and ’Weighted Cross
Entropy.’ Binary Cross Entropy is best suited for datasets where the data is equally
distributed among different classes. In contrast, Weighted Cross Entropy is best suited
for scenarios where the data in the dataset is skewed. As seen in the Table 2, the Binary
Cross Entropy shows better results per the accuracy evaluation metric and is used to
create the final model.

Epoch Binary CE-Train Binary CE-Valid Weighted CE-Train Weighted CE-Valid
1 0.8142 0.4836 0.8386 0.3480
5 0.9111 0.9027 0.8917 0.9078
10 0.9295 0.9289 0.9083 0.9068
15 0.9393 0.9281 0.9372 0.9292
20 0.9434 0.9356 0.9193 0.9319

Table 2: Accuracy Comparison for BCE and WCE

7.2.2 Optimizer

Various optimizers have been used in this research to find the best optimizer to eliminate
the issue of overfitting. The optimizers are required in the model to fasten the loss
minimization process. The process involves the initialization of weights and also bias,
setting optimum values of learning rate and other parameters, and finally correcting the
bias. We have used various optimizers like Adam, Adamax, and SGD optimizer while
compiling the model and compared the accuracy of each optimizer with the increasing
number of epochs. Table 3 compares the accuracy of different optimizers, and it can be
seen that the Adam optimizer performs the best.

Epoch Adam Optimizer Adamax Optimizer SGD Optimizer Nadam Optimizer
1 0.8142 0.8116 0.7092 0.8421
5 0.9111 0.9151 0.8408 0.9256
10 0.9295 0.9342 0.8529 0.9404
15 0.9393 0.9394 0.8533 0.9476
20 0.9434 0.9448 0.8539 0.9591

Table 3: Accuracy Comparison for different optimizers

7.3 Discussion:

The above evaluation metrics prove that the model shows excellent performance in ac-
curately detecting salt in seismic images. The model was used to create seismic masks
for the training data images to compare them. The image segmentation results from our
Unet model are shown in Figure 14. The first column in the figure shows the actual
seismic image from the validation dataset in grayscale format. In contrast, the second
column in the figure shows the seismic image salt masks for the seismic images in the
first column. Finally, the third column shows the predicted salt masks by the trained
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unet model. As seen in the figure, our unet model successfully correctly classifies the salt
regions in the seismic images.

Figure 14: Loss vs Number of Epochs

The results of our model were compared with previous research works in detecting
salt in seismic images. Our model was able to achieve the good accuracy when compared
to the accuracy claimed by the authors of the previous related papers. Alfarhan, Maalej
and Deriche (2020) were able to achieve higher accuracy of 99% as listed in their research
paper, but the Netherland F3 dataset they used contained limited seismic images, and
thus the performance can not be generalized.

8 Conclusion

In this research paper, we created a deep learning model-Unet to classify salt regions
in seismic images correctly. The conventional methods to classify salt regions required
seismic features that were hand-crafted by the experts, which often induced errors in
the method and was also a time taking process. This Unet model was used with resid-
ual blocks to create the model architecture. The dataset was increased by using data
augmentation techniques to create a more robust model. Various optimizers and loss
functions were used in the training phase to compare the performance. The various
model hyper-parameters such as learning rate, epochs, and filter weights were optimized
to avoid over-fitting and get optimal results. Various performance evaluation metrics
such as IoU were implemented to assess and compare the model’s performance. The
Unet model used in this research can be beneficial for researchers in the future who are
facing issues finding a large dataset to segment seismic images. Apart from that, this
model is highly cost-effective for the oil and gas industry as it can automatically classify
salt regions without the requirement of an intervention by experts. In the future, the
performance of this model can be assessed on a dataset consisting of complex seismic im-
ages. Moreover, the impact of using transfer learning where state-of-the-art pre-trained
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networks such as Restnet50 and VGG19 can be used in the encoder part of the U-net
network can be studied, and the results can be compared.

9 Acknowledgement

We would like to acknowledge and express gratitude toward the project supervisor Mr.
Taimur Hafeez for continuously guiding and pushing us to achieve the targets throughout
the period of this research.

References

Alfarhan, M., Deriche, M. and Maalej, A. (2020). Robust concurrent detection of salt
domes and faults in seismic surveys using an improved unet architecture, IEEE Access
.

Alfarhan, M., Deriche, M., Maalej, A., AlRegib, G. and Al-Marzouqi, H. (2020). Mul-
tiple events detection in seismic structures using a novel u-net variant, 2020 IEEE
International Conference on Image Processing (ICIP), IEEE, pp. 2900–2904.

Alfarhan, M., Maalej, A. and Deriche, M. (2020). Concurrent detection of salt domes
and faults using resnet with u-net, 2020 6th Conference on Data Science and Machine
Learning Applications (CDMA), IEEE, pp. 118–122.

Aqrawi, A. A., Boe, T. H. and Barros, S. (2011). Detecting salt domes using a dip guided
3d sobel seismic attribute, SEG Technical Program Expanded Abstracts 2011, Society
of Exploration Geophysicists, pp. 1014–1018.

Arsha, P. and Thulasidharan, P. P. (2021). Salt body segmentation in seismic images
using mask r-cnn, 2021 International Conference on Communication, Control and In-
formation Sciences (ICCISc), Vol. 1, IEEE, pp. 1–6.

Asjad, A. and Mohamed, D. (2015). A new approach for salt dome detection using a 3d
multidirectional edge detector, Applied Geophysics 12(3): 334–342.

Badrinarayanan, V., Kendall, A. and Cipolla, R. (2017). Segnet: A deep convolutional
encoder-decoder architecture for image segmentation, IEEE transactions on pattern
analysis and machine intelligence 39(12): 2481–2495.

Di, H., Wang, Z. and AlRegib, G. (2018). Why using cnn for seismic interpretation? an
investigation, 2018 SEG International Exposition and Annual Meeting, OnePetro.

El Zini, J., Rizk, Y. and Awad, M. (2019). A deep transfer learning framework for seismic
data analysis: A case study on bright spot detection, IEEE Transactions on Geoscience
and Remote Sensing 58(5): 3202–3212.

Guo, J., Xu, L., Ding, J., He, B., Dai, S. and Liu, F. (2020). A deep supervised edge op-
timization algorithm for salt body segmentation, IEEE Geoscience and Remote Sensing
Letters 18(10): 1746–1750.

19



Hegazy*, T. and AlRegib, G. (2014). Texture attributes for detecting salt bodies in
seismic data, SEG Technical Program Expanded Abstracts 2014, Society of Exploration
Geophysicists, pp. 1455–1459.

Jing, Z., Yanqing, Z., Zhigang, C. and Jianhua, L. (2007). Detecting boundary of salt
dome in seismic data with edge-detection technique, SEG Technical Program Expanded
Abstracts 2007, Society of Exploration Geophysicists, pp. 1392–1396.

Liu, B., Jing, H., Li, J., Li, Y., Qu, G. and Gu, R. (2019). Image segmentation of salt
deposits using deep convolutional neural network, 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), IEEE, pp. 3304–3309.

Lomask, J., Clapp, B. and Biondi, B. (2006). Parallel implementation of image segment-
ation for tracking 3d salt boundaries, 68th EAGE Conference and Exhibition incor-
porating SPE EUROPEC 2006, European Association of Geoscientists & Engineers,
pp. cp–2.

Ma, Z. and Li, Y. (2021). Rotated-unet: A seismic fault identification network based
on inverse sampling block construction, 2021 3rd International Academic Exchange
Conference on Science and Technology Innovation (IAECST), IEEE, pp. 740–744.

Pochet, A., Diniz, P. H., Lopes, H. and Gattass, M. (2018). Seismic fault detection using
convolutional neural networks trained on synthetic poststacked amplitude maps, IEEE
Geoscience and Remote Sensing Letters 16(3): 352–356.

Ronneberger, O., Fischer, P. and Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation, International Conference on Medical image computing
and computer-assisted intervention, Springer, pp. 234–241.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation, IEEE Transactions
on pattern analysis and machine intelligence 22(8): 888–905.

Shi, Y., Wu, X. and Fomel, S. (2018). Automatic salt-body classification using a deep con-
volutional neural network, SEG Technical Program Expanded Abstracts 2018, Society
of Exploration Geophysicists, pp. 1971–1975.

Tschannen, V., Delescluse, M., Ettrich, N. and Keuper, J. (2020). Extracting horizon
surfaces from 3d seismic data using deep learning, Geophysics 85(3): N17–N26.

ul Islam, M. S. (2020). Using deep learning based methods to classify salt bodies in
seismic images, Journal of Applied Geophysics 178: 104054.

Waldeland, A. U., Jensen, A. C., Gelius, L.-J. and Solberg, A. H. S. (2018). Convolutional
neural networks for automated seismic interpretation, The Leading Edge 37(7): 529–
537.

Woods, R. (1992). Digital image processing, 2nd, Addision-Wesley .

Xiong, W., Ji, X., Ma, Y., Wang, Y., AlBinHassan, N. M., Ali, M. N. and Luo, Y. (2018).
Seismic fault detection with convolutional neural network, Geophysics 83(5): O97–
O103.

20



Zeng, Y., Jiang, K. and Chen, J. (2019). Automatic seismic salt interpretation with deep
convolutional neural networks, Proceedings of the 2019 3rd international conference on
information system and data mining, pp. 16–20.

Zhang, Y., Liu, Y., Zhang, H. and Xue, H. (2019). Seismic facies analysis based on deep
learning, IEEE Geoscience and Remote Sensing Letters 17(7): 1119–1123.

21


	Introduction
	Background and Motivation
	Research Question
	Research Objectives

	Related Work
	Traditional Methods
	Deep Learning Seismic Image Analysis
	Standard Deep Learning Models
	UNET Deep Learning Models
	UNET with Transfer Learning Models


	Methodology
	Business Understanding
	Data Understanding
	Data Preparation
	Data conversion and loading
	Data Splitting
	Data augmentation


	Design Specification
	Model Implementation
	Model Training
	Model Evaluation
	Evaluation Metrics:
	Intersection over Union(IoU):
	Accuracy:
	Model Loss:

	Model Parameters:
	Loss Function
	Optimizer

	Discussion:

	Conclusion
	Acknowledgement

