

Generating Python Code from Docstring s
 using

OpenNMT

MSc Research Project
MSc in Data Analytics

Sayok Kumar Bose

Student ID: X20187688

School of Computing
National College of Ireland

Supervisor: Mr. Rejwanul Haque

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Sayok Kumar Bose
Name: ……………………………………………………………………………………

Student ID: X20187688
………..……

 MSc in Data Analytics
Programme: ……………………………………………………………… Year: …2022…………………..
 MSc Research Project
Module: ……………………………………………………………………………………….………

Supervisor: Mr. Rejwanul Haque
…….………

Submission 19/09/2022
Due Date: …….………

Project Title: Generating Python Code from Docstrings using OpenNMT

………………………………………………………………………………….…………….

Word Count: ……6663………………………… Page Count…………20…………………………….……..

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sayok Kumar Bose

………………………………………………………………………………………………………
 19/09/2022
Date: ……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Assignments that are submitted to the Programme Coordinator Office must be placed into
the assignment box located outside the office.

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

□

 1

Generating Python Code from Docstrings using
OpenNMT
Sayok Kumar Bose

X20187688

Abstract

In the last two years with the birth of large language models we have seen some
great advancements in the area of code generation in the past 2 years. With more
years to come it is expected to rake in more developers from the current statistics
of 26 million and stats show an exponential increase of code commits to GitHub
every day. Which brings us to the idea considering writing code or a piece of a
software can be scaffolded with the help of AI assisted systems. This following
piece of article deals with the use two techniques firstly Neural machine
translation and Decoder only Language Model built from scratch using
OpenNMT Toolkit to generate python code from the docstrings that is scraped
out of public GitHub repositories. The data source that we use for the research
is CodeSearchNet (CSN) which is a cleaned dataset of code and docstring pairs.
Moreover, the performance of the model is evaluated by human intervention,
BLEU scores, Language Linting Tools and IDEs.

1. Introduction

 Software development through the history of time has evolved as a tool that became
necessary and highly entangled in today’s way of existence. The exponential growth in the
field of technology and the constant human and machine reliance has led to a demand of
continuous improvements in the field of computer research and also the tool that can aid the
researchers much more effective in this journey of technologically evolving world. The rapid
advancements in the field of Artificial Intelligence (AI) showed once again that an independent
artificial cognitive was capable of identifying patterns within the data and became great when
it came to generate and predict new information based on the historical data. What became
obvious beyond this was the step of evolution to make the tools that we use in everyday life
for building software to be upgraded with the assistance of an AI. Thus, the compounding
knowledge led to more research to understand how an AI perceives code and what generative
patterns it can find when trained over large volumes of code bases.
 Program synthesis using machine learning is set to bring revolutionary changes to the
way how code is perceived in the community as it is to be believed that a code synthetically
generated by an AI would bring more agility, better quality, remove impediments and reduce
vulnerabilities when it comes to software development. Generating code that solves a specific
task is the ultimate way forward as it reduces the human dependency in building better

 2

software. The work of an AI assistant to generate code not only help the enterprises looking
for skilled developers but also helps an individual to improve on the existing style of
development as well as bring in agility by presenting code snippets predicting on the writing
of a developer thus reducing many computational hours in context switching in search of the
right documentation. Moreover, the code built by the AI could be more resilient when it comes
to code recommendations from previously tested code which has been already written and
tested. Doing so bring more time back to the developers as they can now focus more on building
the desired software and incorporating the business needs rather than looking though code
manuals and identifying the ways to write a code. This brings in a layer of abstraction between
the developer and the software and gives more flexibility to a developer to even code in the
programming language which is not native to them. One way how we perceive interactions
between a human and an artificial cognitive has always through natural language. which is
similar to the way how we have always queried the web or even asked anyone for help. Thus,
using natural language processing (NLP) has always seemed more efficient when we think of
information retrieval and hence is a perfect option to fit in when generating code snippets.
 With every research demands the question of why the research is needed. To simply
understand that we need to look into some statistics that has been put out by Evans Data Corp1
that predicts that as of today there are 27 million software engineers in this world and by the
end of 2030 the world would have produced over 45 million people who deal with software or
software building day to day. Which shows that there is a huge skill gap that needs to be
identified and moreover what we understand that to incorporate new developers the tooling
should be scalable and more efficient and resilient. With more numbers of developers pouring
in and more demand in software brings in new code vulnerabilities and more time spent in
building the same code which has been already built earlier. In order to ensure transparency
and agility we need to bring in AI to generate code for us in the future.

If in past 2 years a lot more money is spent in building an AI that can understand code
and can generate them on command as of today there are major corporations such as Microsoft,
Google and Tesla are building their own language models that can build software just on
command. Moreover, with disruption in cloud driven solutions we see more adoption of
service-based infrastructure, platform, and deployments as code in order to maintain a version
history and we see more and more GitHub commits every day. Companies like DeepMind (Li
et al., 2022), Microsoft (Svyatkovskiy et al., 2020) OpenAI (Chen et al., 2021) has all invested
in building an ultimate state of the art machine learning model that delivers software on demand
based on NLP using “Transformers” as it has been shown that they are significantly better in
writing code when it comes to RNNs (Chernyavskiy et al., 2021). This proves that the idea is
backed by the industry experts who see great value and potential in this field of work. Most of
the above-mentioned research is based on recent years mainly from 2020 to 2022 which shows
that there are more areas to explore in the similar domain space.

1 https://evansdata.com/press/viewRelease.php?pressID=278

 3

2. Related Work

Use of NLP in Program Synthesis:

Synthesis of programs usually defines the generation of executable code that can run

on desired specifications and perform the expected task. Even though the synthesizing the
executables has stirred many debates among the researchers the occurrence of the first ever
artificially generated code was dated 1971 when the researchers (Manna & Waldinger, 1971)
extracted the idea of generating looping algorithms over contiguous data structures like arrays,
queues, and stacks as well as nonlinear data structures such as trees and lists. Over the years
the interactive medium in the world of computers evolved and commanding over generating a
program based on an instruction set given as input became more popular. From the years 2008
to 2011 monumental progress was made where synthesis of program could generate multiple
algorithms and then rank them based on the complexities of the generated code.

What showed great promise was the initial business implementation of such artificial
synthesis was used to generate and fill out empty cells in the tool MS-Excel (Gulwani, 2011).
The tool was great in extracting patterns from the data in the cells and synthetically generate
the empty cells with predicted values. Thus, autocomplete became the niche market of research
and by the year 2017 the idea of autocompleting in program synthesis evolved and the work of
(David & Kroening, 2017) from Oxford University led the examples of how code synthesizers
would help software developers using inductive synthesis. On similar grounds the research
from (Gulwani et al., 2017) elaborated the challenges interacting between the domain of
program space and intention of the user. The state of the art of code generators even though
were able to generate code snippets they were nowhere close to production ready codes and
sometimes were a complete miss in terms of domain knowledge. Gulwani pointed out that these
synthesizers took configuration as input to generate code which was far more difficult to write
than the actual code.

 During the similar time the research of deeplearning was going in parallel track and
huge progress was made in the field of Natural Language processing. In 2010 the deep learning
had outstanding results in language processing where the research (Torfi et al., 2020)
identified that language parsers could understand tokenized sentences and following that came
the birth of code synthesizers based on NLP in 2017 (Victoria Lin et al., n.d.) used the RNN
model trained on bash commands scraped form the internet which had natural descriptors
depicting the purpose of the methods. The model showed great success in generating 80% in
producing syntaxes that we correct and was production ready. The tool was built on the “RNN-
Encoder-Decoder model” which later was made the standard for machine translations in future.
This style of decoder encoder model should provide a boost to our research question which
tries to generate python code from the source of docstrings written in natural English language.

 4

Use of language modelling using Transformers:

 The previous section talked about the good and the bad of NLP used on program
synthesis the challenges of RNN Encoder-Decoder in program synthesis which used the
concept of context vectors which held the information of the whole input sequence which was
used to target the output sequence. Despite the advantages of the architecture using internal
weighted attentions the network degrades over long range dependencies due to the problem of
vanishing gradients. This study by (Pascanu et al., 2012) shows that this drawback of vanishing
gradient started affecting the NLP with long sequences as well as the choice of architecture
prevents parallelization.

 Challenges of our research question of generating codes from docstrings sometimes
may have multiline comments or might have comments which are very long hence using such
an architecture would degrade the translation of text to code. LSTMs and GRUs are also often
considered rigid thus will not allow us to scale and parallelize if needed. Such challenges can
be overcome by the use of the new transformer architecture which removes the recurrent
architecture and relies on “attention” mechanism (Vaswani et al., 2017).
This research removed the bound of parallelization and now the training of source data can be
scaled over broader networks. Transformers come with their own set of drawbacks and
limitations (Fan et al., 2020) which is a missing feedback loop. The feedforward feature makes
the transformer very efficient but also pushes back when it comes to exploit the advantages of
the input sequence. Thus, one study to enhance quality of large language models can be done
by incorporating a feedback loop and shown in the study (Jain et al., 2021) called the Jigsaw
model. The choice of often whether to use a pretrained model and leverage the benefits of
transfer learning or to build a model from scratch. The idea of picking the right approach for
the project comes from the work of (Min et al., 2021) which describes that transfer learning
over the years has become cheaper, faster, and easier to implement. The study by Zhuang et al.
(2021) on transfer learning shows that be it any domain of data the pre trained model have
always outperformed the models built from scratch but transfer learning on pre trained models
requires resources that are expensive and exhaustive in nature.

 Some models like BERT (Devlin et al., 2018) was trained over 3.3 billion tokens and
almost 110 million parameters this was a significant breakthrough in the field of NLP. The
palce where BERT outshined GPT was that BERT uses Bi-Directional Encoders this fused the
idea of multi-head attention layers which lead to great GLUE score of 80% (Wang et al., 2019)
and the MiltiNLI (Williams et al., 2017) was increased by 5%. This led to the rush of using
BERT to push boundaries of down streaming tasks such as “VideoBERT” (Sun et al., 2019)
and “CodeBERT” (Feng et al., 2020). New advances in BERT led to a lot of close-knit research
that pushed the boundaries of the model to explore how the baseline model could be
extrapolated and finetuned to perform specific tasks. Such working examples were explored
when language models were trained on code. Research was conducted such as AlphaCode (Li
et al., 2022), PYMT5 (Clement et al., 2020) and CodeBERT clearly showed some progress
when it came to synthesizing code from natural language. CodeBERT and PYMT5 showed
great predictions outcomes in terms of BLEU scores of 19.06 and 16.3 for python code

 5

generations respectively. While CodeBERT was approximately 82% accurate while generating
a valid python code.
 Each of these models had their unique approaches to solve code generation challenges,
PYmt5 is the first ever python code completion tool that leverages on T5 transformer
architecture (Raffel et al., 2019) which has been seen to outperform the GPT2 generators in
terms of code generators.

OpenNMT: An Open-Source Toolkit for Neural Machine Translation:

The OpenNMT for neural machine translation(NMT) is a modern, efficient, and
extensible toolkit that was built to help and support NMT research into a model architecture
and feature representations without losing the competitive performance. The toolkit comes with
modelling and translation out of the box with detailed descriptions of the underlying technique
that has been used.
 NMT is considered as the modern de facto standard when it comes to machine
translation, as it has shown great improvements in the domain of human evaluations compared
to rule based statistical approaches used in SMT systems (Johnson et al., 2016). The NMT
approaches are standardized when it comes to NLP community for developing open translation
systems for researchers to set benchmarks, learn and extend. OpenNMT can be used for
multiple language modelling techniques such as dialogue generation like chats, parsing a text
sequence and also can be used to summarize long passages.
 Currently there a multiple NMT toolkits many of which are developed by industry
leaders such as Google and Microsoft but are mostly closed for public use and will not be used
as free license software.

3. Research Methodology

For this research we have selected Knowledge Discovery in Database (KDD) methodology as
the base driver for the overall procedure of data collection, preprocessing, feature engineering,
data modeling, evaluation, and visualization. The idea of KDD fits perfect here as KDD is an
iterative process that allows to extract useful information form large data corpuses running an
iterative process of modeling, data cleaning and engineering to foster better results.

3.1 Dataset Selection

The data that we are using for this research is code that is scrapped out of public
repository like GitHub. This includes code from different programming languages such has
Go, Python, Java, JavaScript, PHP, and Ruby. Details of the dataset with breakdown of
language and their respective number of functions are displayed in Table-1. CSN (Husain et
al., 2019) dataset which is available for public use has over a million commented code pairings.
The median code length for the corpus is around 60-100 text tokens. This dataset is set as a
benchmark that explores the problem of code retrieval using natural language processing. This
dataset was presented as a joint collaboration between GitHub and Microsoft’s Research team

 6

at Cambridge. The data is segregated into Test, Train and Validation and the quality was
ensured that code form similar repositories existed in only one partition.

Table 1: Statistics of the dataset used for
training

Programming
Language

Number of Functions
with documentation

Go 347789.00

Java 542991.00

JavaScript 157988.00

PHP 717313.00

Python 503502.00

Ruby 57393.00

 2326976.00

Figure 1: Share of functions available in the CSN dataset

As described in Chen et al., (2021) when scraping public repositories, the problem arises when
the repos are cloned and are non-forked there could be a lot of duplication the repositories
should have higher star ratings to ensure that the algorithm has a cleaner data to start with.
Lastly the corpus should be avoiding docstrings with large comments which is exactly what we
do in our experiments or code files as this would affect the modeling technique due to
scaffolding issues.

3.2 Data Extraction

The CSN data corpus is already filtered and gives us multiple ways to unpack the data one of
the simple ways to unpack the data is to download the zip files from Amazon (AWS) S3 bucket.
The CSN also provides us with scripts to download the code base as a part of the initial setup
script and also provides with API endpoints to download the code-corpus. The folder structure
is quite simple to understand, and we can specifically download the code corpus for our python
code. Once we download the corpus, we have uploaded the following code corpus to google
drive so that we can easily access the corpus within google collab session.

Figure 2: Folder Structure for python code in CodeSearchNet

3.3 Feature Selection

Go
15%

Java
23%JavaScript

7%
PHP
31%

Python
22%

Ruby
2%

S H A R E O F F U N C T I O N S
A V A I L A B L E I N T H E C S N

D A T A S E T

Go Java JavaScript

PHP Python Ruby

 7

The data is stored as jsonlines for all programming languages where each individual lines are
uncompressed files that denotes one example along with its associated docstrings. The
breakdown of this jsonline shows the following details:

• repo: The actual owner of the repository (user who checked in the code)
• path: The complete path for the code file inside the repo
• func_name: The name of the function
• original_string: The complete raw string in original format
• language: The programming language in which the code is written
• code: the part of the original_string that is code
• code_tokens: code tokens
• docstring: The comment that describes the code written in original string
• docstring_tokens: doctsring tokens
• partition: This identifies what segment the data lies into (test, train, validation).
• url: the complete url for the for the code present in GitHub along with the line

numbers

From this data of jsonl we would be taking the function name as the source and the original
string as the target for our OpenNMT. Rest of the data could be ignored as the OpenNMT needs
a source and target in a single line of records. Since original string contains newlines with
indentations in order to make them serialized we removed the instatement docstring the form
the original string and then appended the function name and the code to into a single line by
removing the “\n” characters and replacing them with a token “NMTNL” just to understand
where the newline in a sequence exists.

3.4 Modelling Technique

Here in this research we have kept two different choice of modelling techniques both using
OpenNMT Toolkit:

• Encoder Decoder Model Used For Translation
• Decoder Only Language Model (Radford et al., 2018)

3.5 Evaluation Metrics

Evaluation techniques for language models generating code is quite difficult when considered
in parallel to simple machine translation as code generation cannot be quantified based on
translation metrices. Usually, language models trained on code face challenges to evaluate on
machine generated code pieces as well and something like BLEU (Papineni et al., 2002) does
not fit the overall objective. Researchers have shown how BLEU scoring for code evaluation
is fuzzy as precision (Chen et al., 2021) cannot be the only criteria to validate a code snippet.
Thus, for this research we would be using a comprehensive 3 step approaches.

 8

• Human Evaluation (with help of PyLance + VSCode editor)
• Linting scores based PyLint (code quality check)
• BLEU scores (using SacreBLEU2)

4. Exploratory Data Analysis

Once	we	have	downloaded	the	python	corpus	the	next	step	in	the	data	mining	process	is	
to	 perform	 exploratory data analysis (EDA) on the existing corpus as this allows us to
understand the data better before we move into data modelling while check for data outliers or
any abnormalities in the data. The source string, which is the docstrings for us, will be the
primary natural English language input and the following are the few observations from that.

Exploratory analysis of the docstring shows that the length of the scraped strings varies in size
and some of them are huge sentences with over 190 words in them and the sentence length of
these docstrings are also nearing 1000 letters. Now these are quite lengthy strings that should
be remove and truncated for the model training.

Figure 3: Frequency of senetcne length and word counts

To check the frequency of the choice of words by developers in their docstrings we tried to
implement a word cloud removing the stop words completely. This shows that some of the
prominent words used in docstrings are “Return”, “Create”, “List”, “Delete”. This shows that
the docstrings are usually filled with verbs that demand a specific task form the subsequent
method.

Figure 4: Mostly commonly used word-cloud and stowords frequency

2 https://github.com/mjpost/sacrebleu

 9

Building on top of that when we look into the stop words and their frequencies and plot the
most common ones, we could see that the frequency of the articles such as “the” and “a” are
quite massive when it comes in comparison with others.

5. Implementation and Evaluation

 This section is broken into two separate experiments as based on two different choices
of modelling techniques used as mentioned in section 3.4. This gives an in-depth understanding
of the individual implementation of the choices made in each step as they differ from one
another.

5.1 Experiment 1

The first experiment is conducted by using the standard. OpenNMT seq-2-seq translation on
the python docstring corpus as the source and the code body as the target. For our experiments
we have used the Pytorch version OpenNMT-py. The toolkit that was released in 2017 and
further updated in 2020 (Klein et al., n.d.). Installation of this toolkit is fairly simple and can
be downloaded using latest pip installer.

5.1.1 Preparing Data

In order to use the translation OpenNMT translation model we need to prepare the data
accordingly just so that we can use the “onmt_train” tool and for that the primary step is to
prepare the data. So, for our experiment we would move all the “docstring” from jsonl files
and move them to train.src and “original_string” which contains the code corpus was then made
into a single line as the onmt_train expects the translated text also to be in a single line. To
achieve that we have removed the newline characters with “NMTNL”.

The following image shows the glimpse of the training source used where each line is
a docstring while fig 5 shows the function definition and the code for the respective docstrings
with the filler word NMTNL for newline characters. For training we have removed the
docstrings that are greater than 100 characters long as according to good programing practices
and the industry standards the maximum suggested length of a docstring should be less than 72
characters3.

3 http://docs.bigchaindb.com/projects/contributing/en/latest/cross-project-policies/python-style-
guide.html#maximum-line-length

 10

Figure 5: Source corpus or NMT

Figure 6: Target corpus or NMT

5.1.2 Setup

The setup for using OpenNMT-Py training needed a config.yaml file that needed to be created
that would hold the details of the architecture that is needed to run the training for the
translation model. For a baseline the configuration was kept simple with transformer-based
encoder decoder architecture running for 100000 steps with a batch size of 2048 and a learning
rate of 2. Validation was carried out after every 1000 steps and the model was also saved as
checkpoints at every 1000 steps. The model training was also configured to have Adam
Optimizer and to avoid extensive training we have used early stop if there is no improvement
on last 3 validation checkpoints. The following table shows the details of the configuration
setup for the baseline experiments.

Table	2	:	Configuration	Details	of	the	NMT	Experiment	
	
Config	 Value	
	 	
Validation Steps 1000

Warmup Steps 4000

Batch Size 2048

Validation Batch Size 2048

Optimization Algorithm Adam

Early Stopping True (up to 3 validations)

Checkpoints 1000 (save up to 3)

Learning Rate 2

Encoder Decoder Type Transformer

Layers 6

Transformer Feed Forward 2048

Word Vector Size 512

 11

Heads 8

Dropout 0.1

5.1.3 Training

Using OpenNMT toolkit has the advantage of using the nmt-train which utilizes the
“tensorboard” feature which logs the whole training runtime. This shows the model trained on
the test data for 34000 steps before it made an early stop with a progress accuracy of 73.27
while the progress perplexity for the same training batch reduced to 3.3. On the validation data
set we can see that the accuracy has reached 64.27 whereas the perplexity reached 7.4 after the
end of 34k steps.

(a) Training Accuracy vs steps

(b) Training Perplexity vs steps

(c) Validation Accuracy vs steps

(d) Validation Perplexity vs steps

Fig 7: The following are the figures from tensorboard trainign logs

5.1.4 Evaluation

As explained in the methodology standard NLP scoring such as BLEU cannot be the only
metric that can account for an evaluation thus, we categorized it into 3 categories Human
Evaluation, BLEU score and PyLint Scores.
If we see the code that the machine learning model writes on the test docstring set, we can see
they all look very similar to a python function definition and with some closer evaluation we

48

52

56

60

64

68

0 5k 10k 15k 20k 25k 30k

4

8

12

16

0 5k 10k 15k 20k 25k 30k

48

52

56

60

64

5k 10k 15k 20k 25k 30k

8

12

16

20

24

28

5k 10k 15k 20k 25k 30k

 12

can see that the Pylance tool in Visual Studio Code shows that the top 5 methods generated has
4 warnings and 0 errors syntactically which makes the research output quite optimistic.
 Some problems that we see with the output is that the translation model generates 3
methods with the exact same name and also the method generated are quite small and concise.

Figure 8: Cleaned and re-aligned code generated by the NMT model.

For evaluating the BLEU score we have used the ScareBLEU tool and form the predicted text
the BLEU score for the following NMT translation evaluates to 0.7.
The pyLint cli tool when ran on the manually cleaned output resulted a score of 2 out of 10
which is quite impressive for an AI generated code snippet.

5.2 Experiment 2

The second experiment is conducted by creating a completely new language model
(Radford et al., 2018) using OpenNMT toolkit using a decoder only architecture built from
scratch.

5.2.1 Preparing Data

Preparing data for training the Decoder only Language model was quite different from that of
the NMT translation model the reference of this data building was similar to building
WikiText-1034. Here is the subword-ed corpus for the first 5 entries.

4 https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/

 13

Figure 9: Code corpus for building the Language Model.

5.2.2 Setup

The setup for using building a completely new learning model using OpenNMT-py is also quite
similar when it comes to designing a config.yaml file. The only change here was the Decoder
type was set to Transformer_LM which signifies OpneNMT toolkit that this is a language
model. The rest was straight forward and was kept similar to the baseline model. The following
table shows the values in detail.

Table	3	:	Configuration	Details	of	the	Language	Model		
	

Config	 Value	
	 	
Validation Steps 1000

Warmup Steps 8000

Batch Size 2048

Validation Batch Size 2048

Optimization Algorithm Adam

Early Stopping True (up to 3 validations)

Checkpoints 1000 (save up to 2)

Learning Rate 2

Encoder Decoder Type Transformer_LM

Layers 6

Transformer Feed Forward 2048

Word Vector Size 512

Heads 8

Dropout 0.1

5.2.3 Training

This shows the model trained on the test data for 29000 steps before it made an early stop with
a progress accuracy of 65.92 while the progress perplexity for the same training batch reduced
to 4.46. On the validation data set we can see that the accuracy has reached 61.94 whereas the
perplexity reached 8.5 after the end of 29k steps.

 14

(a) Training Accuracy vs steps

(b) Training Perplexity vs steps

(c) Validation Accuracy vs steps

(d) Validation Perplexity vs steps

Fig 10: The following are the figures from tensorboard training logs for Language Model Building

5.2.4 Evaluation

In comparison to the NMT Translation and Experiment 1 here we see that the methods are
more well defined and long constructed sentences. The top 5 generated methods each have a
different method name as opposed to our Experiment 1. Along with better generated code
snippets when compared to NMT model what we see here is that there are many incomplete
methods after we de-subword and manually correct the indentations from the test output.
In first 5 methods generation there are 3 Errors and 14 warnings.

Fig 11: Cleaned and re-aligned code generated by the NMT model.

42

46

50

54

58

62

66

0 5k 10k 15k 20k 25k

4

8

12

16

20

24

28

0 5k 10k 15k 20k 25k

46

50

54

58

62

2k 6k 10k 14k 18k 22k 26k

10

15

20

25

30

35

2k 6k 10k 14k 18k 22k 26k

 15

The BLEU score for the top 50 records from the output generated by the Language Model
comes to an average of 1.1 which seems to be slightly better than our translation model has
performed on the similar dataset, but the flip side is that the Pylint did not generate any score
as the methods mostly did not compile due to syntactical errors.

6. Conclusion

In this research we have used two model building techniques such as OpenNMT Translation
and secondly the decoder only language model that we built from scratch using the OpenNMT
toolkit. The scores look very promising to begin with when we see that the training set ana
validation set accuracy are quite high for the NMT while the BLEU scores for the Transformer
Language Model is higher than the original baseline NMT model.

Table 3 : Overview of the two Models

Modelling
Technique

Training Data Validation Data Evaluation

Accuracy Perplexity Accuracy Perplexity BLEU PyLint
Pylance

Errors Warnings

NMT 73.27 3.3 64.27 7.4 0.7 2 0 4

Transformer LM 65.92 4.46 61.94 8.5 1.1 NA 3 14

In such scenarios there are no clear winners when it comes in deciding a choice of algorithms
as we have seen that the Language Model built from scratch even though has more errors in
Pylance scores but were better structured and well-formed code snippets when compared with
the ones generated by NMT.

7. Discussion

Some of the pretrained models when are generating code they have shown to have
very low BLEU scores Even the models such as GPT-2 which has over 1.5 billion parameters
and has over 8 million training parameters over multiple webpages produced a mere BLEU
score of 5.63 and another generative language model T5 which is specifically trained on CSN
dataset produces a BLEU score of 10 for python code corpus. This shows that even very large
models struggle hard to get decent scores when asked to generate code from docstrings even
though the generated code by GPT2 is 95% accurate by Human Evaluation. This shows that
BLEU scores are not that great when it comes to code generation.

How BLEU scores can be improved:

• Data Augmentation to sample more docstrings to make at least million training
records.

• Use a larger language pretrained model on code using higher computes from vast.ai

 16

• More data processing to re-engineer white spaces from the code as language model
often struggles with white spaces and stop words.

we have discussed majorly on the areas of why the BLEU scores are low for this
research the better alternative is a new evaluation metric that suits better for our research.

CodeBLEU for Evaluation:

 A much better way code evaluation which has slowly picked up popularity is using
CodeBLEU (Ren et al., 2020). In the era of multiple code generation models the most
common use evaluation metric is BLEU as this has been the standard translation evaluation
metric for natural languages. This way it neglects important syntactic and semantic features
for how code is written. As usually BLEU ignores the code semantic logic. On the flip side
CodeBLEU elevates the logic of n-gram evaluation by BLEU with the abstract syntax trees
(AST) and by checking the Data flow within the code. The output from the CodeBLEU has
better corelation with Human Evaluation.

The reason for not including this metric in the research was out of pure lack of time
and knowledge gap at the time of research. The Language model that we have built usually
translates code into single lines treating it as a translated text which needs a dedicated
workflow to clean it before we could process it for CodeBLEU evaluation. BLEU scoring
was quick and easily available on existing language model outcome. Even none of the Large
Language models that are trained on code are yet to be evaluated on CodeBLEU.

8. Future Work

Even though there was a lot that was achieved in this research but there is always a lot of scope
for improvement. Just with limited resource we were able to achieve fully generated python
code and got good view on human evaluation. But mostly due to lack of time and the scope of
this solo project there could be many aspects that could be improved in future that can be
categorise into few major areas of improvements.

• Better parsing of data during the data preparation of by removing spaces in the code
but since in python whitespaces have significant meaning hence we can try to clean up
white spaces from the code and replace them with specific words like we did for
newline characters. In doing that the expected output could be a much better structure
when de-serialised.

• Using transfer learning from latest transformer based models for hugging face like OPT
(Zhang et al., 2022) and GPT-Neo (Black & Gao, 2021). Tried to incorporate a transfer-
learning using GPT-Neo and GPT-J but the major drawback was because of the GPUs
burning out during training itself. Hence on of the future work would be definitely
trying out generative models which are trained on billions or parameters using better
resources.

 17

• Using data augmentation techniques such as using T5 (Ganguli et al., 2021) model to
synthetically generate more data that could be randomised and fed into the training loop
again.

• Using a feedback loop with adjusted weights to improve the performance of the model
by removing the human evaluation and implementing a reinforcement learning using a
linting tool score.

• Running the training for longer period of time to see if the number of steps would have
improved the training and the validation score. Right now the whole model was running
on a Google Collab Pro session with 16Gb GPU which took longer hours to run. So a
dedicated compute with higher GPUs would give us an edge in trying out multiple
scenarios.

• Use multiple Data sources other than just CSN. By doing so we could implement more
real-time scenarios. There we more datasets showing up that could be used merging
with the existing corpus. The existing corpus contained half a million trainable lines of
code which could be less when we see language modelling.

Overall generating code using NLP on code comments is a very promising direction of work
which makes me optimistic about future prospects in using machine learning to synthesize
programs.

REFERENCES

Black, S., & Gao, L. (2021). GPT-Neo: Large Scale Autoregressive Language Modeling with

Mesh-Tensorflow.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O., Kaplan, J., Edwards, H., Burda,

Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H.,
Sastry, G., Mishkin, P., Chan, B., Gray, S., … Zaremba, W. (2021). Evaluating Large
Language Models Trained on Code. http://arxiv.org/abs/2107.03374

Chernyavskiy, A., Ilvovsky, D., & Nakov, P. (2021). Transformers: “The End of History”

for NLP? http://arxiv.org/abs/2105.00813

Clement, C. B., Drain, D., Cloud, M., Timcheck, J., Svyatkovskiy, A., & Sundaresan, N.

(2020). PYMT5: multi-mode translation of natural language and PYTHON code with
transformers.

David, C., & Kroening, D. (2017). Program synthesis: challenges and opportunities.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 375(2104). https://doi.org/10.1098/rsta.2015.0403

 18

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding.
http://arxiv.org/abs/1810.04805

Fan, A., Lavril, T., Grave, E., Joulin, A., & Sukhbaatar, S. (2020). Addressing Some

Limitations of Transformers with Feedback Memory. http://arxiv.org/abs/2002.09402

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang,

D., & Zhou, M. (2020). CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. http://arxiv.org/abs/2002.08155

Ganguli, I., Bhowmick, R. S., Biswas, S., & Sil, J. (2021). Empirical Auto-Evaluation of

Python Code for Performance Analysis of Transformer Network Using T5 Architecture.
2021 8th International Conference on Smart Computing and Communications: Artificial
Intelligence, AI Driven Applications for a Smart World, ICSCC 2021, 75–79.
https://doi.org/10.1109/ICSCC51209.2021.9528123

Gulwani, S. (2011). Automating String Processing in Spreadsheets Using Input-Output

Examples. In ACM SIGPLAN Notices (Vol. 46).
https://doi.org/10.1145/1926385.1926423

Gulwani, S., Polozov, A., & Singh, R. (2017). Program Synthesis. In Foundations and

Trends in Programming Languages (Vol. 4). NOW. https://www.microsoft.com/en-
us/research/publication/program-synthesis/

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2019).

CodeSearchNet Challenge: Evaluating the State of Semantic Code Search.
http://arxiv.org/abs/1909.09436

Jain, N., Vaidyanath, S., Iyer, A., Natarajan, N., Parthasarathy, S., Rajamani, S., & Sharma,

R. (2021). Jigsaw: Large Language Models meet Program Synthesis.
http://arxiv.org/abs/2112.02969

Johnson, M., Schuster, M., Le, Q. v., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F.,

Wattenberg, M., Corrado, G., Hughes, M., & Dean, J. (2016). Google’s Multilingual
Neural Machine Translation System: Enabling Zero-Shot Translation.
http://arxiv.org/abs/1611.04558

Klein, G., Hernandez, F., Nguyen, V., & Senellart, J. (n.d.). The OpenNMT Neural Machine

Translation Toolkit: 2020 Edition. https://opennmt.net

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling,

J., Gimeno, F., Lago, A. D., Hubert, T., Choy, P., d’Autume, C. de M., Babuschkin, I.,
Chen, X., Huang, P.-S., Welbl, J., Gowal, S., Cherepanov, A., … Vinyals, O. (2022).
Competition-Level Code Generation with AlphaCode. http://arxiv.org/abs/2203.07814

Manna, Z., & Waldinger, R. J. (1971). Toward Automatic Program Synthesis.

Communications of the ACM, 14(3), 151–165. https://doi.org/10.1145/362566.362568

 19

Min, B., Ross, H., Sulem, E., Veyseh, A. P. ben, Nguyen, T. H., Sainz, O., Agirre, E., Heinz,
I., & Roth, D. (2021). Recent Advances in Natural Language Processing via Large Pre-
Trained Language Models: A Survey. http://arxiv.org/abs/2111.01243

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: a Method for Automatic

Evaluation of Machine Translation.

Pascanu, R., Mikolov, T., & Bengio, Y. (2012). On the difficulty of training Recurrent Neural

Networks. http://arxiv.org/abs/1211.5063

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2018). Language

Models are Unsupervised Multitask Learners. https://github.com/codelucas/newspaper

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., &

Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. http://arxiv.org/abs/1910.10683

Ren, S., Guo, D., Lu, S., Zhou, L., Liu, S., Tang, D., Sundaresan, N., Zhou, M., Blanco, A.,

& Ma, S. (2020). CodeBLEU: a Method for Automatic Evaluation of Code Synthesis.

Sun, C., Myers, A., Vondrick, C., Murphy, K., & Schmid, C. (2019). VideoBERT: A joint

model for video and language representation learning. Proceedings of the IEEE
International Conference on Computer Vision, 2019-October, 7463–7472.
https://doi.org/10.1109/ICCV.2019.00756

Svyatkovskiy, A., Deng, S. K., Fu, S., & Sundaresan, N. (2020). IntelliCode compose: Code

generation using transformer. ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 1433–1443.
https://doi.org/10.1145/3368089.3417058

Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf, N., & Fox, E. A. (2020). Natural Language

Processing Advancements By Deep Learning: A Survey. http://arxiv.org/abs/2003.01200

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention Is All You Need. http://arxiv.org/abs/1706.03762

Victoria Lin, X., Wang, C., Pang, D., Vu, K., Zeelemoyer, L., & Ernst, M. D. (n.d.). Program

Synthesis from Natural Language Using Recurrent Neural Networks.
www.commandlinefu.com/

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE: A

MULTI-TASK BENCHMARK AND ANALYSIS PLATFORM FOR NATURAL
LANGUAGE UNDERSTAND-ING.

Williams, A., Nangia, N., & Bowman, S. R. (2017). A Broad-Coverage Challenge Corpus for

Sentence Understanding through Inference. http://arxiv.org/abs/1704.05426

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li,

X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P. S.,

 20

Sridhar, A., Wang, T., & Zettlemoyer, L. (2022). OPT: Open Pre-trained Transformer
Language Models. http://arxiv.org/abs/2205.01068

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A

Comprehensive Survey on Transfer Learning. In Proceedings of the IEEE (Vol. 109,
Issue 1, pp. 43–76). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/JPROC.2020.3004555

