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Generating Python Code from Docstrings using 
OpenNMT 
Sayok Kumar Bose 

X20187688 

 
Abstract 

 
In the last two years with the birth of large language models we have seen some 
great advancements in the area of code generation in the past 2 years. With more 
years to come it is expected to rake in more developers from the current statistics 
of 26 million and stats show an exponential increase of code commits to GitHub 
every day. Which brings us to the idea considering writing code or a piece of a 
software can be scaffolded with the help of AI assisted systems. This following 
piece of article deals with the use two techniques firstly Neural machine 
translation and Decoder only Language Model built from scratch using 
OpenNMT Toolkit to generate python code from the docstrings that is scraped 
out of public GitHub repositories. The data source that we use for the research 
is CodeSearchNet (CSN) which is a cleaned dataset of code and docstring pairs. 
Moreover, the performance of the model is evaluated by human intervention, 
BLEU scores, Language Linting Tools and IDEs. 

   
 

1. Introduction 
 
 Software development through the history of time has evolved as a tool that became 
necessary and highly entangled in today’s way of existence. The exponential growth in the 
field of technology and the constant human and machine reliance has led to a demand of 
continuous improvements in the field of computer research and also the tool that can aid the 
researchers much more effective in this journey of technologically evolving world. The rapid 
advancements in the field of Artificial Intelligence (AI) showed once again that an independent 
artificial cognitive was capable of identifying patterns within the data and became great when 
it came to generate and predict new information based on the historical data. What became 
obvious beyond this was the step of evolution to make the tools that we use in everyday life 
for building software to be upgraded with the assistance of an AI. Thus, the compounding 
knowledge led to more research to understand how an AI perceives code and what generative 
patterns it can find when trained over large volumes of code bases.   
 Program synthesis using machine learning is set to bring revolutionary changes to the 
way how code is perceived in the community as it is to be believed that a code synthetically 
generated by an AI would bring more agility, better quality, remove impediments and reduce 
vulnerabilities when it comes to software development. Generating code that solves a specific 
task is the ultimate way forward as it reduces the human dependency in building better 
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software. The work of an AI assistant to generate code not only help the enterprises looking 
for skilled developers but also helps an individual to improve on the existing style of 
development as well as bring in agility by presenting code snippets predicting on the writing 
of a developer thus reducing many computational hours in context switching in search of the 
right documentation. Moreover, the code built by the AI could be more resilient when it comes 
to code recommendations from previously tested code which has been already written and 
tested. Doing so bring more time back to the developers as they can now focus more on building 
the desired software and incorporating the business needs rather than looking though code 
manuals and identifying the ways to write a code. This brings in a layer of abstraction between 
the developer and the software and gives more flexibility to a developer to even code in the 
programming language which is not native to them. One way how we perceive interactions 
between a human and an artificial cognitive has always through natural language. which is 
similar to the way how we have always queried the web or even asked anyone for help. Thus, 
using natural language processing (NLP) has always seemed more efficient when we think of 
information retrieval and hence is a perfect option to fit in when generating code snippets. 
 With every research demands the question of why the research is needed. To simply 
understand that we need to look into some statistics that has been put out by Evans Data Corp1 
that predicts that as of today there are 27 million software engineers in this world and by the 
end of 2030 the world would have produced over 45 million people who deal with software or 
software building day to day. Which shows that there is a huge skill gap that needs to be 
identified and moreover what we understand that to incorporate new developers the tooling 
should be scalable and more efficient and resilient. With more numbers of developers pouring 
in and more demand in software brings in new code vulnerabilities and more time spent in 
building the same code which has been already built earlier. In order to ensure transparency 
and agility we need to bring in AI to generate code for us in the future.  

If in past 2 years a lot more money is spent in building an AI that can understand code 
and can generate them on command as of today there are major corporations such as Microsoft, 
Google and Tesla are building their own language models that can build software just on 
command. Moreover, with disruption in cloud driven solutions we see more adoption of 
service-based infrastructure, platform, and deployments as code in order to maintain a version 
history and we see more and more GitHub commits every day. Companies like DeepMind (Li 
et al., 2022), Microsoft (Svyatkovskiy et al., 2020) OpenAI (Chen et al., 2021) has all invested 
in building an ultimate state of the art machine learning model that delivers software on demand 
based on NLP using “Transformers” as it has been shown that they are significantly better in 
writing code when it comes to RNNs (Chernyavskiy et al., 2021). This proves that the idea is 
backed by the industry experts who see great value and potential in this field of work. Most of 
the above-mentioned research is based on recent years mainly from 2020 to 2022 which shows 
that there are more areas to explore in the similar domain space. 
 
 
 
 

 
1 https://evansdata.com/press/viewRelease.php?pressID=278 
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2. Related Work 
 
Use of NLP in Program Synthesis:  

 
Synthesis of programs usually defines the generation of executable code that can run 

on desired specifications and perform the expected task. Even though the synthesizing the 
executables has stirred many debates among the researchers the occurrence of the first ever 
artificially generated code was dated 1971 when the researchers (Manna & Waldinger, 1971) 
extracted the idea of generating looping algorithms over contiguous data structures like arrays, 
queues, and stacks as well as nonlinear data structures such as trees and lists. Over the years 
the interactive medium in the world of computers evolved and commanding over generating a 
program based on an instruction set given as input became more popular. From the years 2008 
to 2011 monumental progress was made where synthesis of program could generate multiple 
algorithms and then rank them based on the complexities of the generated code.  

What showed great promise was the initial business implementation of such artificial 
synthesis was used to generate and fill out empty cells in the tool MS-Excel (Gulwani, 2011). 
The tool was great in extracting patterns from the data in the cells and synthetically generate 
the empty cells with predicted values. Thus, autocomplete became the niche market of research 
and by the year 2017 the idea of autocompleting in program synthesis evolved and the work of 
(David & Kroening, 2017) from Oxford University led the examples of how code synthesizers 
would help software developers using inductive synthesis. On similar grounds the research 
from (Gulwani et al., 2017) elaborated the challenges interacting between the domain of 
program space and intention of the user. The state of the art of code generators even though 
were able to generate code snippets they were nowhere close to production ready codes and 
sometimes were a complete miss in terms of domain knowledge. Gulwani pointed out that these 
synthesizers took configuration as input to generate code which was far more difficult to write 
than the actual code. 

  
 During the similar time the research of deeplearning was going in parallel track and 
huge progress was made in the field of Natural Language processing. In 2010 the deep learning 
had outstanding results in language processing where the research (Torfi et al., 2020)    
identified that language parsers could understand tokenized sentences and following that came 
the birth of code synthesizers based on NLP in 2017 (Victoria Lin et al., n.d.) used the RNN 
model trained on bash commands scraped form the internet which had natural descriptors 
depicting the purpose of the methods. The model showed great success in generating 80% in 
producing syntaxes that we correct and was production ready. The tool was built on the “RNN-
Encoder-Decoder model” which later was made the standard for machine translations in future. 
This style of decoder encoder model should provide a boost to our research question which 
tries to generate python code from the source of docstrings written in natural English language.   
 
 
 



 4 

Use of language modelling using Transformers: 
 
 The previous section talked about the good and the bad of NLP used on program 
synthesis the challenges of RNN Encoder-Decoder in program synthesis which used the 
concept of context vectors which held the information of the whole input sequence which was 
used to target the output sequence. Despite the advantages of the architecture using internal 
weighted attentions the network degrades over long range dependencies due to the problem of 
vanishing gradients. This study by (Pascanu et al., 2012) shows that this drawback of vanishing 
gradient started affecting the NLP with long sequences as well as the choice of architecture 
prevents parallelization. 
 
 Challenges of our research question of generating codes from docstrings sometimes 
may have multiline comments or might have comments which are very long hence using such 
an architecture would degrade the translation of text to code. LSTMs and GRUs are also often 
considered rigid thus will not allow us to scale and parallelize if needed. Such challenges can 
be overcome by the use of the new transformer architecture which removes the recurrent 
architecture and relies on “attention” mechanism (Vaswani et al., 2017). 
This research removed the bound of parallelization and now the training of source data can be 
scaled over broader networks. Transformers come with their own set of drawbacks and 
limitations (Fan et al., 2020) which is a missing feedback loop. The feedforward feature makes 
the transformer very efficient but also pushes back when it comes to exploit the advantages of 
the input sequence. Thus, one study to enhance quality of large language models can be done 
by incorporating a feedback loop and shown in the study (Jain et al., 2021) called the Jigsaw 
model. The choice of often whether to use a pretrained model and leverage the benefits of 
transfer learning or to build a model from scratch. The idea of picking the right approach for 
the project comes from the work of (Min et al., 2021) which describes that transfer learning 
over the years has become cheaper, faster, and easier to implement. The study by Zhuang et al. 
(2021) on transfer learning shows that be it any domain of data the pre trained model have 
always outperformed the models built from scratch but transfer learning on pre trained models 
requires resources that are expensive and exhaustive in nature. 
 
 Some models like BERT (Devlin et al., 2018) was trained over 3.3 billion tokens and 
almost 110 million parameters this was a significant breakthrough in the field of NLP. The 
palce where BERT outshined GPT was that BERT uses Bi-Directional Encoders this fused the 
idea of multi-head attention layers which lead to great GLUE score of 80% (Wang et al., 2019) 
and the MiltiNLI (Williams et al., 2017) was increased by 5%. This led to the rush of using 
BERT to push boundaries of down streaming tasks such as “VideoBERT” (Sun et al., 2019)  
and “CodeBERT” (Feng et al., 2020). New advances in BERT led to a lot of close-knit research 
that pushed the boundaries of the model to explore how the baseline model could be 
extrapolated and finetuned to perform specific tasks. Such working examples were explored 
when language models were trained on code. Research was conducted such as AlphaCode (Li 
et al., 2022), PYMT5 (Clement et al., 2020) and CodeBERT clearly showed some progress 
when it came to synthesizing code from natural language. CodeBERT and PYMT5 showed 
great predictions outcomes in terms of BLEU scores of 19.06 and 16.3 for python code 
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generations respectively. While CodeBERT was approximately 82% accurate while generating 
a valid python code. 
 Each of these models had their unique approaches to solve code generation challenges, 
PYmt5 is the first ever python code completion tool that leverages on T5 transformer 
architecture (Raffel et al., 2019) which has been seen to outperform the GPT2 generators in 
terms of code generators. 
 
OpenNMT: An Open-Source Toolkit for Neural Machine Translation: 
 

The OpenNMT for neural machine translation(NMT) is a modern, efficient, and 
extensible toolkit that was built to help and support NMT research into a model architecture 
and feature representations without losing the competitive performance. The toolkit comes with 
modelling and translation out of the box with detailed descriptions of the underlying technique 
that has been used. 
 NMT is considered as the modern de facto standard when it comes to machine 
translation, as it has shown great improvements in the domain of human evaluations compared 
to rule based statistical approaches used in SMT systems (Johnson et al., 2016). The NMT 
approaches are standardized when it comes to NLP community for developing open translation 
systems for researchers to set benchmarks, learn and extend. OpenNMT can be used for 
multiple language modelling techniques such as dialogue generation like chats, parsing a text 
sequence and also can be used to summarize long passages. 
 Currently there a multiple NMT toolkits many of which are developed by industry 
leaders such as Google and Microsoft but are mostly closed for public use and will not be used 
as free license software. 
 
 

3. Research Methodology 
 
For this research we have selected Knowledge Discovery in Database (KDD) methodology as 
the base driver for the overall procedure of data collection, preprocessing, feature engineering, 
data modeling, evaluation, and visualization. The idea of KDD fits perfect here as KDD is an 
iterative process that allows to extract useful information form large data corpuses running an 
iterative process of modeling, data cleaning and engineering to foster better results. 
 
3.1 Dataset Selection 
 

The data that we are using for this research is code that is scrapped out of public 
repository like GitHub. This includes code from different programming languages such has 
Go, Python, Java, JavaScript, PHP, and Ruby. Details of the dataset with breakdown of 
language and their respective number of functions are displayed in Table-1. CSN (Husain et 
al., 2019) dataset which is available for public use has over a million commented code pairings. 
The median code length for the corpus is around 60-100 text tokens. This dataset is set as a 
benchmark that explores the problem of code retrieval using natural language processing. This 
dataset was presented as a joint collaboration between GitHub and Microsoft’s Research team 
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at Cambridge. The data is segregated into Test, Train and Validation and the quality was 
ensured that code form similar repositories existed in only one partition.  
 

Table 1: Statistics of the dataset used for 
training  
  
Programming 
Language 

Number of Functions 
with documentation 

Go 347789.00 

Java 542991.00 

JavaScript 157988.00 

PHP 717313.00 

Python 503502.00 

Ruby 57393.00 

  2326976.00 
  

Figure 1: Share of functions available in the CSN dataset 
 
As described in Chen et al., (2021) when scraping public repositories, the problem arises when 
the repos are cloned and are non-forked there could be a lot of duplication the repositories 
should have higher star ratings to ensure that the algorithm has a cleaner data to start with. 
Lastly the corpus should be avoiding docstrings with large comments which is exactly what we 
do in our experiments or code files as this would affect the modeling technique due to 
scaffolding issues. 
 
3.2 Data Extraction 
 
The CSN data corpus is already filtered and gives us multiple ways to unpack the data one of 
the simple ways to unpack the data is to download the zip files from Amazon (AWS) S3 bucket. 
The CSN also provides us with scripts to download the code base as a part of the initial setup 
script and also provides with API endpoints to download the code-corpus. The folder structure 
is quite simple to understand, and we can specifically download the code corpus for our python 
code. Once we download the corpus, we have uploaded the following code corpus to google 
drive so that we can easily access the corpus within google collab session. 
 

 
Figure 2: Folder Structure for python code in CodeSearchNet 

 
 

3.3 Feature Selection 

Go
15%

Java
23%JavaScript

7%
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The data is stored as jsonlines for all programming languages where each individual lines are 
uncompressed files that denotes one example along with its associated docstrings. The 
breakdown of this jsonline shows the following details: 

• repo: The actual owner of the repository (user who checked in the code) 
• path: The complete path for the code file inside the repo 
• func_name: The name of the function 
• original_string: The complete raw string in original format 
• language: The programming language in which the code is written 
• code: the part of the original_string that is code 
• code_tokens: code tokens 
• docstring: The comment that describes the code written in original string 
• docstring_tokens: doctsring tokens 
• partition: This identifies what segment the data lies into (test, train, validation). 
• url: the complete url for the for the code present in GitHub along with the line 

numbers 

From this data of jsonl we would be taking the function name as the source and the original 
string as the target for our OpenNMT. Rest of the data could be ignored as the OpenNMT needs 
a source and target in a single line of records. Since original string contains newlines with 
indentations in order to make them serialized we removed the instatement docstring the form 
the original string and then appended the function name and the code to into a single line by 
removing the “\n” characters and replacing them with a token “NMTNL” just to understand 
where the newline in a sequence exists. 
 
 
3.4 Modelling Technique 
 
Here in this research we have kept two different choice of modelling techniques both using 
OpenNMT Toolkit: 

• Encoder Decoder Model Used For Translation 
• Decoder Only Language Model  (Radford et al., 2018) 

 
 
3.5 Evaluation Metrics 
 
Evaluation techniques for language models generating code is quite difficult when considered 
in parallel to simple machine translation as code generation cannot be quantified based on 
translation metrices. Usually, language models trained on code face challenges to evaluate on 
machine generated code pieces as well and something like BLEU (Papineni et al., 2002) does 
not fit the overall objective. Researchers have shown how BLEU scoring for code evaluation 
is fuzzy as precision (Chen et al., 2021) cannot be the only criteria to validate a code snippet.  
Thus, for this research we would be using a comprehensive 3 step approaches. 
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• Human Evaluation (with help of PyLance + VSCode editor) 
• Linting scores based PyLint (code quality check) 
• BLEU scores (using SacreBLEU2) 

 
 
4.  Exploratory Data Analysis 
   
Once	we	have	downloaded	the	python	corpus	the	next	step	in	the	data	mining	process	is	
to	 perform	 exploratory data analysis (EDA) on the existing corpus as this allows us to 
understand the data better before we move into data modelling while check for data outliers or 
any abnormalities in the data. The source string, which is the docstrings for us, will be the 
primary natural English language input and the following are the few observations from that. 
 
Exploratory analysis of the docstring shows that the length of the scraped strings varies in size 
and some of them are huge sentences with over 190 words in them and the sentence length of 
these docstrings are also nearing 1000 letters. Now these are quite lengthy strings that should 
be remove and truncated for the model training. 
 

  
Figure 3: Frequency of senetcne length and word counts 

 
To check the frequency of the choice of words by developers in their docstrings we tried to 
implement a word cloud removing the stop words completely. This shows that some of the 
prominent words used in docstrings are “Return”, “Create”, “List”, “Delete”. This shows that 
the docstrings are usually filled with verbs that demand a specific task form the subsequent 
method. 

  
Figure 4: Mostly commonly used word-cloud and stowords frequency 

 

 
2 https://github.com/mjpost/sacrebleu 
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Building on top of that when we look into the stop words and their frequencies and plot the 
most common ones, we could see that the frequency of the articles such as “the” and “a” are 
quite massive when it comes in comparison with others. 
 
 

5. Implementation and Evaluation 
 
 This section is broken into two separate experiments as based on two different choices 
of modelling techniques used as mentioned in section 3.4. This gives an in-depth understanding 
of the individual implementation of the choices made in each step as they differ from one 
another. 
 
 
5.1 Experiment 1 
 
The first experiment is conducted by using the standard. OpenNMT seq-2-seq translation on 
the python docstring corpus as the source and the code body as the target. For our experiments 
we have used the Pytorch version OpenNMT-py. The toolkit that was released in 2017 and 
further updated in 2020 (Klein et al., n.d.). Installation of this toolkit is fairly simple and can 
be downloaded using latest pip installer. 
 
5.1.1 Preparing Data 
 
In order to use the translation OpenNMT translation model we need to prepare the data 
accordingly just so that we can use the “onmt_train” tool and for that the primary step is to 
prepare the data. So, for our experiment we would move all the “docstring” from jsonl files 
and move them to train.src and “original_string” which contains the code corpus was then made 
into a single line as the onmt_train expects the translated text also to be in a single line. To 
achieve that we have removed the newline characters with “NMTNL”.    
 

The following image shows the glimpse of the training source used where each line is 
a docstring while fig 5 shows the function definition and the code for the respective docstrings 
with the filler word NMTNL for newline characters. For training we have removed the 
docstrings that are greater than 100 characters long as according to good programing practices 
and the industry standards the maximum suggested length of a docstring should be less than 72 
characters3. 

 

 
3 http://docs.bigchaindb.com/projects/contributing/en/latest/cross-project-policies/python-style-
guide.html#maximum-line-length 
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Figure 5: Source corpus or NMT  

 

 
Figure 6: Target corpus or NMT  

 
 
5.1.2 Setup 
 
The setup for using OpenNMT-Py training needed a config.yaml file that needed to be created 
that would hold the details of the architecture that is needed to run the training for the 
translation model. For a baseline the configuration was kept simple with transformer-based 
encoder decoder architecture running for 100000 steps with a batch size of 2048 and a learning 
rate of 2. Validation was carried out after every 1000 steps and the model was also saved as 
checkpoints at every 1000 steps. The model training was also configured to have Adam 
Optimizer and to avoid extensive training we have used early stop if there is no improvement 
on last 3 validation checkpoints. The following table shows the details of the configuration 
setup for the baseline experiments. 
 

Table	2	:	Configuration	Details	of	the	NMT	Experiment	
	
Config	 Value	
	 	
Validation Steps 1000 

Warmup Steps 4000 

Batch Size 2048 

Validation Batch Size 2048 

Optimization Algorithm Adam 

Early Stopping True (up to 3 validations) 

Checkpoints 1000 (save up to 3) 

Learning Rate 2 

Encoder Decoder Type Transformer 

Layers 6 

Transformer Feed Forward 2048 

Word Vector Size 512 
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Heads 8 

Dropout 0.1 

 
 
5.1.3 Training 
 
Using OpenNMT toolkit has the advantage of using the nmt-train which utilizes the 
“tensorboard” feature which logs the whole training runtime. This shows the model trained on 
the test data for 34000 steps before it made an early stop with a progress accuracy of 73.27 
while the progress perplexity for the same training batch reduced to 3.3. On the validation data 
set we can see that the accuracy has reached 64.27 whereas the perplexity reached 7.4 after the 
end of 34k steps. 
 
 

 
(a) Training Accuracy vs steps 

 

 
(b) Training Perplexity vs steps 

 
(c) Validation Accuracy vs steps 

 
(d) Validation Perplexity vs steps 

 
Fig 7: The following are the figures from tensorboard trainign logs 

  
 
5.1.4 Evaluation 
 
As explained in the methodology standard NLP scoring such as BLEU cannot be the only 
metric that can account for an evaluation thus, we categorized it into 3 categories Human 
Evaluation, BLEU score and PyLint Scores. 
If we see the code that the machine learning model writes on the test docstring set, we can see 
they all look very similar to a python function definition and with some closer evaluation we 
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can see that the Pylance tool in Visual Studio Code shows that the top 5 methods generated has 
4 warnings and 0 errors syntactically which makes the research output quite optimistic.  
 Some problems that we see with the output is that the translation model generates 3 
methods with the exact same name and also the method generated are quite small and concise. 
 

 
Figure 8: Cleaned and re-aligned code generated by the NMT model. 

 
 
For evaluating the BLEU score we have used the ScareBLEU tool and form the predicted text 
the BLEU score for the following NMT translation evaluates to 0.7. 
The pyLint cli tool when ran on the manually cleaned output resulted a score of 2 out of 10 
which is quite impressive for an AI generated code snippet. 
 
 
5.2 Experiment 2 
 

The second experiment is conducted by creating a completely new language model 
(Radford et al., 2018) using OpenNMT toolkit using a decoder only architecture built from 
scratch. 
 
5.2.1 Preparing Data 
 
Preparing data for training the Decoder only Language model was quite different from that of 
the NMT translation model the reference of this data building was similar to building 
WikiText-1034. Here is the subword-ed corpus for the first 5 entries.  
 

 
4 https://blog.salesforceairesearch.com/the-wikitext-long-term-dependency-language-modeling-dataset/ 
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Figure 9: Code corpus for building the Language Model. 

 
5.2.2 Setup 
 
The setup for using building a completely new learning model using OpenNMT-py is also quite 
similar when it comes to designing a config.yaml file. The only change here was the Decoder 
type was set to Transformer_LM which signifies OpneNMT toolkit that this is a language 
model. The rest was straight forward and was kept similar to the baseline model. The following 
table shows the values in detail. 

Table	3	:	Configuration	Details	of	the	Language	Model		
	

Config	 Value	
	 	
Validation Steps 1000 

Warmup Steps 8000 

Batch Size 2048 

Validation Batch Size 2048 

Optimization Algorithm Adam 

Early Stopping True (up to 3 validations) 

Checkpoints 1000 (save up to 2) 

Learning Rate  2 

Encoder Decoder Type Transformer_LM 

Layers 6 

Transformer Feed Forward 2048 

Word Vector Size 512 

Heads 8 

Dropout 0.1 

 
5.2.3 Training 
 
This shows the model trained on the test data for 29000 steps before it made an early stop with 
a progress accuracy of 65.92 while the progress perplexity for the same training batch reduced 
to 4.46. On the validation data set we can see that the accuracy has reached 61.94 whereas the 
perplexity reached 8.5 after the end of 29k steps. 
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(a) Training Accuracy vs steps 

 

 
(b) Training Perplexity vs steps 

 
(c) Validation Accuracy vs steps 

 
(d) Validation Perplexity vs steps 

 
Fig 10: The following are the figures from tensorboard training logs for Language Model Building 

 
 
5.2.4 Evaluation 
 
In comparison to the NMT Translation and Experiment 1 here we see that the methods are 
more well defined and long constructed sentences. The top 5 generated methods each have a 
different method name as opposed to our Experiment 1. Along with better generated code 
snippets when compared to NMT model what we see here is that there are many incomplete 
methods after we de-subword and manually correct the indentations from the test output. 
In first 5 methods generation there are 3 Errors and 14 warnings.  
 

 
 

Fig 11: Cleaned and re-aligned code generated by the NMT model. 
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The BLEU score for the top 50 records from the output generated by the Language Model 
comes to an average of 1.1 which seems to be slightly better than our translation model has 
performed on the similar dataset, but the flip side is that the Pylint did not generate any score 
as the methods mostly did not compile due to syntactical errors. 
 

6. Conclusion  
 
In this research we have used two model building techniques such as OpenNMT Translation 
and secondly the decoder only language model that we built from scratch using the OpenNMT 
toolkit. The scores look very promising to begin with when we see that the training set ana 
validation set accuracy are quite high for the NMT while the BLEU scores for the Transformer 
Language Model is higher than the original baseline NMT model. 
 

Table 3 : Overview of the two Models 

Modelling 
Technique 

Training Data Validation Data Evaluation 

Accuracy Perplexity Accuracy Perplexity BLEU PyLint 
Pylance 

Errors Warnings 

NMT 73.27 3.3 64.27 7.4 0.7 2 0 4 

Transformer LM 65.92 4.46 61.94 8.5 1.1 NA 3 14 

 
In such scenarios there are no clear winners when it comes in deciding a choice of algorithms 
as we have seen that the Language Model built from scratch even though has more errors in 
Pylance scores but were better structured and well-formed code snippets when compared with 
the ones generated by NMT. 
 
 

7. Discussion  
 

Some of the pretrained models when are generating code they have shown to have 
very low BLEU scores Even the models such as GPT-2 which has over 1.5 billion parameters 
and has over 8 million training parameters over multiple webpages produced a mere BLEU 
score of 5.63 and another generative language model T5 which is specifically trained on CSN 
dataset produces a BLEU score of 10 for python code corpus. This shows that even very large 
models struggle hard to get decent scores when asked to generate code from docstrings even 
though the generated code by GPT2 is 95% accurate by Human Evaluation. This shows that 
BLEU scores are not that great when it comes to code generation.   
 
How BLEU scores can be improved: 
 

• Data Augmentation to sample more docstrings to make at least million training 
records. 

• Use a larger language pretrained model on code using higher computes from vast.ai 



 16 

• More data processing to re-engineer white spaces from the code as language model 
often struggles with white spaces and stop words. 

we have discussed majorly on the areas of why the BLEU scores are low for this 
research the better alternative is a new evaluation metric that suits better for our research. 

 
CodeBLEU for Evaluation: 

 A much better way code evaluation which has slowly picked up popularity is using 
CodeBLEU (Ren et al., 2020). In the era of multiple code generation models the most 
common use evaluation metric is BLEU as this has been the standard translation evaluation 
metric for natural languages. This way it neglects important syntactic and semantic features 
for how code is written. As usually BLEU ignores the code semantic logic. On the flip side 
CodeBLEU elevates the logic of n-gram evaluation by BLEU with the abstract syntax trees 
(AST) and by checking the Data flow within the code. The output from the CodeBLEU has 
better corelation with Human Evaluation.  

The reason for not including this metric in the research was out of pure lack of time 
and knowledge gap at the time of research. The Language model that we have built usually 
translates code into single lines treating it as a translated text which needs a dedicated 
workflow to clean it before we could process it for CodeBLEU evaluation. BLEU scoring 
was quick and easily available on existing language model outcome. Even none of the Large 
Language models that are trained on code are yet to be evaluated on CodeBLEU. 

 
 

8. Future Work  
  
Even though there was a lot that was achieved in this research but there is always a lot of scope 
for improvement. Just with limited resource we were able to achieve fully generated python 
code and got good view on human evaluation. But mostly due to lack of time and the scope of 
this solo project there could be many aspects that could be improved in future that can be 
categorise into few major areas of improvements.  
 

• Better parsing of data during the data preparation of  by removing spaces in the code 
but since in python whitespaces have significant meaning hence we can try to clean up 
white spaces from the code and replace them with specific words like we did for 
newline characters. In doing that the expected output could be a much better structure 
when de-serialised. 

• Using transfer learning from latest transformer based models for hugging face like OPT 
(Zhang et al., 2022)  and GPT-Neo (Black & Gao, 2021). Tried to incorporate a transfer-
learning using GPT-Neo and GPT-J but the major drawback was because of the GPUs 
burning out during training itself. Hence on of the future work would be definitely 
trying out generative models which are trained on billions or parameters using better 
resources. 



 17 

• Using data augmentation techniques such as using T5 (Ganguli et al., 2021) model to 
synthetically generate more data that could be randomised and fed into the training loop 
again. 

• Using a feedback loop with adjusted weights to improve the performance of the model 
by removing the human evaluation and implementing a reinforcement learning using a 
linting tool score. 

• Running the training for longer period of time to see if the number of steps would have 
improved the training and the validation score. Right now the whole model was running 
on a Google Collab Pro session with 16Gb GPU which took longer hours to run. So a 
dedicated compute with higher GPUs would give us an edge in trying out multiple 
scenarios. 

• Use multiple Data sources other than just CSN. By doing so we could implement more 
real-time scenarios. There we more datasets showing up that could be used merging 
with the existing corpus. The existing corpus contained half a million trainable lines of 
code which could be less when we see language modelling. 
 

Overall generating code using NLP on code comments is a very promising direction of work 
which makes me optimistic about future prospects in using machine learning to synthesize 
programs.     
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