~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Chetan Bhardwaj
Student ID: 20176724

School of Computing
National College of Ireland

Supervisor: Dr. Mohammed Hasanuzzaman

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Chetan Bhardwaj
Student ID: 20176724
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Mohammed Hasanuzzaman
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 722
Page Count: Bl

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Chetan Bhardwaj
Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Chetan Bhardwaj

1 Introduction

20176724

This configuration manual is a formal document that contains parts that explain the hard-
ware and software requirements, design details, operational information, implementation

phases, and project settings.

2 System Configuration

2.1 Hardware Configuration

The research was conducted on local machine with the following hardware specifications
AMD Ryzen 9 5900HS with Radeon Graphics 3.30 GHz, RAM 16.0 GB, System type
64-bit operating system, x64-based processor. Storage 1TB SSD.

@ DirectX Diagnostic Tool

each page in sequence.

System Information
Current Date/Time:
Computer Name:
Operating System:
Language:
System Manufacturer:
System Model:
BIOS:
Processor:
Memory:
Page file:
DirectX Version:

Check for WHQL digital signatures

Help

System Display 1 Display 2 Sound 1 Sound 2 Sound 3 Input

This tool reports detailed information about the DirectX components and drivers installed on your system.

If you know what area is causing the problem, click the appropriate tab above. Otherwise, you can use the "Next Page" button below to visit

16 December 2021, 10:22:31 AM
LAPTOP-DEE73BCA

Windows 10 Home 64-bit (10.0, Build 19043)
English (Regional Setting: English)
ASUSTeK COMPUTER INC.

ROG Zephyrus G15 GAS03QR_GAS03QR
GAS03QR.413

AMD Ryzen 9 5900HS with Radeon Graphics
16384MB RAM

28139MB used, 6370MB available

DirectX 12

(16 CPUs), ~3.3GHz

DxDiag 10.00.19041.0928 64-bit Unicode Copyright © Microsoft. All rights reserved.

Exit

| Next Page I Save All Information_..

Figure 1: Hardware Configuration

2.2

Software Configuration

The research was conducted on Windows 10 Home, with Anaconda environment setup.
Complete list of software is listed below.

Windows specifications

Edition
Version
Installed on
0S build

Experience Windows Feature Experience Pack 120.2212.3920.0

Figure 2: Windows Specification

Anaconda for Windows (Version 2.0.1)

Jupyter Notebook (Version 6.4.0)

Python (Version 3.7.0)

Tensorflow (Version 1.15)

Stable Baselines(Version 2.10.2)

OpenAl Gym (Version 0.21.0)

3 Setting up Environment

Installing the libraries for this research is a tricky task to accomplish. The version for
Stable baselines 2.10.2 only works with tensorflow 1.x which was supported till Python
3.7.x hence the specified versions of the libraries were used. To install box2D-py on win-
dows, it is essential to first build wheel for swig library, then only we can install box2d
which is a dependency for gym library. This was done using the commands mentioned
below:

e conda install swig

e pip install box2d-py

4 Open AI Gym Environment

4.1 Imports

To get started with the development, following modules from respective libraries were
imported.

1 Imports

import time

import gym
import numpy as np

from
from
from
from
from
from
from
from
from
from
from

stable baselines

stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.
stable baselines.

import os

import
common

DON, DDBEG, SAC

.vec_env import DummyVecEnv, VecFrameStack, SubprocVecEnv
common import set global seeds

common.evaluation import evaluate policy

common.cmd_util import make vec env

bench import Monitor

results plotter import load_results, ts2xy

common.noise import AdaptiveParamNoiseSpec

common.cmd util import make atari env

common.policies import CnnPolicy, MlpPolicy, FeedForwardPolicy
common.noise import NormalActionNoise, OrnsteinUhlenbeckActionNoise, AdaptiveParamMoiseSpec

executed in 4.32s_ finished 14:50:41 2021-12-14

The environment used for simulation was taken from OpenAl Gym library, one of
the biggest open-source library that provides simulation environments for Reinforcement
Learning. To setup the environment we used below code, the environment used for DDPG
and SAC were continuous state environments while it was a discrete state environment

for DQN model.

Figure 3: Required Imports

env 2 = gyn.make (env_id)
e 2= Monitortenv_Z, loq_dir, allow early resets=True)
env_2 = DumryVecEnv ([lambda: env 2])

n actions = env_2.action space.shape(-1]
param noise = None

action noise = OrnsteinUhlendeckActionNoise (mean=np.zeros(n actions), siqma=float(0.5

) * np.ones(n actions))

executed in 4ms, finshed 16:04.26 2021-12-14

Figure 4: Code snippet to define Gym Environment

The image below shows a sample visual of the Lunar Lander environment.

Figure 5: Lunar Lander environment of OpenAl Gym

5 Model Implementation

5.1 Implementing DQN Models

DQN class from stable_baselines was imported to create a DQN model. We used below
code snippets to create models figure [6] with default hyperparameters while the model
defined in figure [7] has tuned hyperparameters and an architecture of 256*256 Nodes in
two hidden layers and a learning rate of 0.0001.

dqn model 1 = DQN('MIpPolicy', env, verbose=l,
tensorboard log=model prog dir, seed = 42)

executed in 742ms, finished 14:50:41 2021-12-14

Figure 6: DQN with default hyperparameters

dgn model 2 = DQN('MlpPolicy', env, learning rate=0.0001, train freg=l,
batch size=256, policy kwargs=dict(layers=[256,256]),
verbose=1, tensorboard log=model prog dir,
seed = 42)

executed in 599ms, finished 14:50:42 20211214

Figure 7: DQN with Tuned hyperparameters

5.2 Implementing DDPG Models

We used DDPG class from stable_baselines library to create an object of DDPG model.
Following code snippets show definition of models with default and tuned hyperparamet-

ers.

ddpg medel 1 = DDPG('MlpPolicy', env 2, verbose=l, param noise=param noise,
action noise=action noise, tensorboard log=model prog dir,
seed = 42)

executed in 453ms, finished 15:04:26 2021-12-14

Figure 8: DDPG with default hyperparameters

ddpg model 2 = DDPG('MlpPolicy', env_2, param noise=param noise,
action noise=action neise, batch size=256, buffer size=50000,
verbose=1, tensorboard].og:modeliprog dir, seed = 42,
policy kwargs=dict (layers=[256, 256])
)
executed in 438ms, finished 15:04:26 2021-12-14

Figure 9: DDPG with Tuned hyperparameters

5.3 Implementing SAC Models

We used SAC class from stable_baselines library to create an object of SAC model. Fol-
lowing code snippets show definition of models with default and tuned hyperparameters.

sac model 1 = SAC('MlpPolicy', env_2, wverbose=l,
tensorboard log=model prog dir,
seed = 42)

executed in 841ms, finished 15:18:10 2021-12-14

Figure 10: SAC with default hyperparameters

sac_model_2 = SAC('MlpPolicy', env_2, batch_size=256, wverbose=1,
learning_rate=0.0001, buffer_size=50000,
policy kwargs=dict (layers=[256, 256]1),
seed=42, tensorboard log=model prog dir

)
executed in 836ms, finished 15:18:11 2021-12-14

Figure 11: SAC with Tuned hyperparameters

6 Model Training

After defining the models, the models were trained for 100000 episodes. To prevent loss
of training progress in models, a callback function was defined which helped in saving
model checkpoints at interval of a number of episodes.

#Crcatc a callback funtion to save chcckpoints for modcls during training timc

best_mean_reward, n_steps = -np_inf, 0

def callback(_locals, _globals):

llback called at each step (for DQN an others) or after n steps (see ACER or DPPO2)
5 -

53 (dicl)

bal n_steps, best_mean_reward
nt s every

if (n_s
i te po ne
x, ¥ = ts2xy(load_results(log_dir), 'timesteps’)
if len(x) > O:
mean_reward = np.mean (yl-100:])
print(x[-1], 'timesteps')
print("Best mean reward: {(:.2f} - Last mean reward per episode: (:.2f}".format(best_mean_reward, mean_re

ing
_locals['self'].save(log_dir + 'best model.pkl’)

n_steps += 1

return True

crea g dir
log dir = "/tmp/gym/"
meeall mmen ChE = O caoemREnEEl 0

os.makedirs(log_dir, cxist_ok=True)
Os.makedirs (model prog_dir, exisL_ok=True)

<
executed in 14ms. finished 14:50:41 2021-12-14

Figure 12: Callback function

The following code snippet shows training of a DQN model for specified number of
episodes. A similar code was used to train both DDPG and SAC models for same number

of episodes.

n_timesteps = 100000

###DON Training

start_time = time.time ()
dgn_model_1.learn(n_timesteps, callback=callback)
total_time single = time.time() - start_time

print("Took {:.2f}s for 1st DQN model - {:.2f} FPS".format(total_time_single, n_timesteps / total_time single))

executed in 4m 46s, finished 14:55:29 2021-12-14

Figure 13: Training for DQN model

7 Model Evaluation and Visualizations

To evaluate the model performance in reinforcement learning, we compared mean reward
earned by the models over a period of 100 episodes. The code snippet below shows the

evaluation for the final three models.

eval_env_dqn = gym.make ('Lunarlander-v2')

eval env = gym.make('Lunarlande rContinuous-v2')

eval env = Monitor(evalienv, logidir, allow early resets=True)
4 eval _env = DummyVecEnv ([lambda: eval env])

W R

mean reward dgn, std reward dgn = evaluate policy(dgn model 1, eval env dgn, n eval episodes=100)
& mean reward ddpg, std reward ddpg = evaluate policy(ddpg model 2, eval env, n eval episodes=100)
9 mean_reward_sac, std_reward sac = evaluate_policy(Sac_model_Z, eval _env, n_eval_episodes:lOD)

print (f'Mean reward for DQN: {mean_reward_dgn} +/- {std_reward_dgn:.2f}")
print (f£'Mean reward for DDPG: {mean _reward ddpg} +/- {std reward ddpg:.2f}")
print (f'Mean reward for SAC: {mean_reward_sac} +/- {std_reward_sac:.2f}")

executed in 2m 42s, finished 02:13:57 2021-12-15

Figure 14: Snippet to evaluate Model Performance

We also used Tensorboard integration provided by Stable Baselines library which en-
abled us to monitor the training progress of models over episodes. Tensorboard provided
with large number of loss visualisations for each algorithm, shown in the image below.

critic_target ent_coef ent_coef_loss entropy
tag: ‘oss/critic_target tag: loss/ent_coef tag: loss/ent_coe’_loss tag: loss/entropy
0 05
04 05
0+ 14
03 05
20
08
02
“5
-0 9
2 02
£ 0 25 0¢
0 20k 40k B0k 80k 100k 0 0k 40k 60k 8Ok 100k c Mk 40k 6Ok BOK 100K 0 20k 40k 6Ok Ok 100k
DEQ OE DEQ OE
policy_lcss qf1_loss qf2_loss

tag: loss/policy_less tag: loss/gf1 _loss. tag: loss/af2_oss

m
=
m
=
m
=

o=

=

value_loss
tag: ‘ossivalue_oss

20k 40k 6k 80k 10Dk

0
&

1

Figure 15: Loss Metrics across all models

learning_rate

tag: oss/l2arirg_rate

34

2e-4

1
b

td_error

— .

0 20k 40k 60k G0k 100k

tag: ‘oss/td_error

The graph below shows the progress of every model over the training period against

the reward earned by the model for every episode.

episode.reward

40

n "

0 -7.'.. A.‘I‘h L_ CN_LL L e m.:‘__ ‘L‘
o ‘i:n‘@‘" bt W (\W

) * /M K\}ﬁ ’1‘”

0k 3k 4k 0k 60¢ Tk 8k 90k 100k

(2]
7]

[L1]]
=

Figure 16: Rewards Earned by models during Training period

8 Saving and Simulating the model

After successful training, and selecting better performing model of the three algorithms,
we first saved all three models and reloaded the models after clearing up and memory
acquired by the older ones. Following code snippet depicts the same.

6 Saving the Best models

1 dagn model 2.save('DQN best model')
2 ddpg_1 model _2.save ('DDPG best model')
sac_model . 2. save ("SAC best model)

executed in 35ms, finished 17:20-31 2021-12-14

1 del dgqn model 1, dqn model 2, ddpg model 1, ddpg model 2, sac model 1, sac_model 2

Figure 17: Snippet to Save the model

After reloading the model, we simulated the agent in evaluation environment for 10000
iterations and visualize the model’s performance in the environment.

7 Load Model T

1 sac_model 2 = SAC.load("SAC best_model")
executed in 2885, finished 08-56-27 2021-12-16

Loading a model without an environment, this model cannot be trained until it has a valid environment.

8 Simulate Run in Environment

1 eval env = gym.make ('LunarLanderContinuous-v2')
2 eval_env = Monitor(eval env, log dir, allow _early resets=True)
3 eval env = DummyVecEnv([lambda: eval env])
4 obs = eval env.reset()
5 for _ in range(10000):
action, _states = sac model 2.predict (cbs)
obs, rewards, dones, info = eval env.step(action)
eval _env.render()
9 eval env.close()

executed in 1m 7.77s, finished 00-44-49 2021-12-15

Figure 18: Snipped to Simulate Model

9 References

Code Reference of Model Implementation
https://stable-baselines.readthedocs.io/en/master/
https://gym.openai.com/envs/LunarLanderContinuous-v2/

https://stable-baselines.readthedocs.io/en/master/
https://gym.openai.com/envs/LunarLanderContinuous-v2/

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Setting up Environment
	Open AI Gym Environment
	Imports

	Model Implementation
	Implementing DQN Models
	Implementing DDPG Models
	Implementing SAC Models

	Model Training
	Model Evaluation and Visualizations
	Saving and Simulating the model
	References

