
Configuration Manual

MSc Research Project

Data Analytics

Chetan Bhardwaj
Student ID: 20176724

School of Computing

National College of Ireland

Supervisor: Dr. Mohammed Hasanuzzaman

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Chetan Bhardwaj

Student ID: 20176724

Programme: Data Analytics

Year: 2021

Module: MSc Research Project

Supervisor: Dr. Mohammed Hasanuzzaman

Submission Due Date: 16/12/2021

Project Title: Configuration Manual

Word Count: 722

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Chetan Bhardwaj 



Configuration Manual

Chetan Bhardwaj
20176724

1 Introduction

This configuration manual is a formal document that contains parts that explain the hard-
ware and software requirements, design details, operational information, implementation
phases, and project settings.

2 System Configuration

2.1 Hardware Configuration

The research was conducted on local machine with the following hardware specifications
AMD Ryzen 9 5900HS with Radeon Graphics 3.30 GHz, RAM 16.0 GB, System type
64-bit operating system, x64-based processor. Storage 1TB SSD.

Figure 1: Hardware Configuration

2.2 Software Configuration

The research was conducted on Windows 10 Home, with Anaconda environment setup.
Complete list of software is listed below.

1



Figure 2: Windows Specification

• Anaconda for Windows (Version 2.0.1)

• Jupyter Notebook (Version 6.4.0)

• Python (Version 3.7.0)

• Tensorflow (Version 1.15)

• Stable Baselines(Version 2.10.2)

• OpenAI Gym (Version 0.21.0)

3 Setting up Environment

Installing the libraries for this research is a tricky task to accomplish. The version for
Stable baselines 2.10.2 only works with tensorflow 1.x which was supported till Python
3.7.x hence the specified versions of the libraries were used. To install box2D-py on win-
dows, it is essential to first build wheel for swig library, then only we can install box2d
which is a dependency for gym library. This was done using the commands mentioned
below:

• conda install swig

• pip install box2d-py

4 Open AI Gym Environment

4.1 Imports

To get started with the development, following modules from respective libraries were
imported.

2



Figure 3: Required Imports

The environment used for simulation was taken from OpenAI Gym library, one of
the biggest open-source library that provides simulation environments for Reinforcement
Learning. To setup the environment we used below code, the environment used for DDPG
and SAC were continuous state environments while it was a discrete state environment
for DQN model.

Figure 4: Code snippet to define Gym Environment

The image below shows a sample visual of the Lunar Lander environment.

Figure 5: Lunar Lander environment of OpenAI Gym

3



5 Model Implementation

5.1 Implementing DQN Models

DQN class from stable baselines was imported to create a DQN model. We used below
code snippets to create models figure 6 with default hyperparameters while the model
defined in figure 7 has tuned hyperparameters and an architecture of 256*256 Nodes in
two hidden layers and a learning rate of 0.0001.

Figure 6: DQN with default hyperparameters

Figure 7: DQN with Tuned hyperparameters

5.2 Implementing DDPG Models

We used DDPG class from stable baselines library to create an object of DDPG model.
Following code snippets show definition of models with default and tuned hyperparamet-
ers.

Figure 8: DDPG with default hyperparameters

Figure 9: DDPG with Tuned hyperparameters

5.3 Implementing SAC Models

We used SAC class from stable baselines library to create an object of SAC model. Fol-
lowing code snippets show definition of models with default and tuned hyperparameters.

4



Figure 10: SAC with default hyperparameters

Figure 11: SAC with Tuned hyperparameters

6 Model Training

After defining the models, the models were trained for 100000 episodes. To prevent loss
of training progress in models, a callback function was defined which helped in saving
model checkpoints at interval of a number of episodes.

Figure 12: Callback function

The following code snippet shows training of a DQN model for specified number of
episodes. A similar code was used to train both DDPG and SAC models for same number
of episodes.

Figure 13: Training for DQN model

5



7 Model Evaluation and Visualizations

To evaluate the model performance in reinforcement learning, we compared mean reward
earned by the models over a period of 100 episodes. The code snippet below shows the
evaluation for the final three models.

Figure 14: Snippet to evaluate Model Performance

We also used Tensorboard integration provided by Stable Baselines library which en-
abled us to monitor the training progress of models over episodes. Tensorboard provided
with large number of loss visualisations for each algorithm, shown in the image below.

Figure 15: Loss Metrics across all models

The graph below shows the progress of every model over the training period against
the reward earned by the model for every episode.

6



Figure 16: Rewards Earned by models during Training period

8 Saving and Simulating the model

After successful training, and selecting better performing model of the three algorithms,
we first saved all three models and reloaded the models after clearing up and memory
acquired by the older ones. Following code snippet depicts the same.

Figure 17: Snippet to Save the model

After reloading the model, we simulated the agent in evaluation environment for 10000
iterations and visualize the model’s performance in the environment.

Figure 18: Snipped to Simulate Model

7



9 References

Code Reference of Model Implementation
https://stable-baselines.readthedocs.io/en/master/

https://gym.openai.com/envs/LunarLanderContinuous-v2/

8

https://stable-baselines.readthedocs.io/en/master/
https://gym.openai.com/envs/LunarLanderContinuous-v2/

	Introduction
	System Configuration
	Hardware Configuration
	Software Configuration

	Setting up Environment
	Open AI Gym Environment
	Imports

	Model Implementation
	Implementing DQN Models
	Implementing DDPG Models
	Implementing SAC Models

	Model Training
	Model Evaluation and Visualizations
	Saving and Simulating the model
	References

