"'""
\ National

Collegeof
Ireland

Developing an Artificial Agent to play
Games using Deep Reinforcement Learning

MSc Research Project
Data Analytics

Chetan Bhardwaj]
Student ID: 20176724

School of Computing
National College of Ireland

Supervisor: Dr. Mohammed Hasanuzzaman

‘-
National College of Ireland \ National

Project Submission Sheet Co]]ege of
School of Computing Irel and
Student Name: Chetan Bhardwaj
Student 1D: 20176724
Programme: Data Analytics
Year: 2021
Module: MSec Research Project
Supervisor: Dr. Mohammed Hasanuzzaman
Submission Due Date: 16/12/2021
Project Title: Developing an Artificial Agent to play Games using Deep Re-
inforcement Learning
Word Count: 6017
Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Chetan Bhardwaj
Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U
Attach a Moodle submission receipt of the online project submission, to | [
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if applicable):

Developing an Artificial Agent to play Games using
Deep Reinforcement Learning

Chetan Bhardwaj
20176724

Abstract

In Reinforcement Learning, Deep Q-Learning agents have seen great success
with popular agents such as Alpha GO and Alpha Zero, these agents are constrained
to discrete state space environments and are even prone to overestimation bias. To
address these restrictions, we deployed Deep Deterministic Policy gradient and Soft
Actor Critic off-policy algorithms in the Lunar Lander environment described in
Zhao et al.| (2020) research and compared their performance to Deep Q-Networks.
We observed that out of the three implemented algorithms, SAC outperformed both
DQN and DDPG algorithms with a huge margin.

1 Introduction

1.1 Motivation and Background

The gaming industry, which is approximately worth $159 billion[T]is one of the largest in
the entertainment industry. An ever-expanding sector that seeks to provide something
exquisite and intriguing to the world’s 2.7 billion players, each game unique and superior
to the others, encouraging creators to seek out more complex and novel game structures
that can compete in this competitive environment. Developers are continually attempting
to create agents capable of rivalling human strategic tendencies and assisting players in
Player vs Player (PvP) matches. This investigation led the developers to Reinforcement
Learning, a deep learning technique.

“Reinforcement learning is aimed at controlling a computer agent so that a target task is
achieved in an unknown environment” [Sugiyama, (2015). A simple but effective method
of accomplishing this goal is through trial and error. Each goal achieved by the Al is
rewarded, while each error is punished by a negative score or a penalty.

Thttps://techjury.net/blog/video-games-industry-statistics /#gref

action

>| Agent
state reward
R
5., | Environment]4—

Figure 1: Interaction of RL agent with environment

The figure above explains the interaction of a RL agent in the environment. The
agent takes an action in the environment in turn the environment rewards the agent and
gives a feedback of the updated state of the environment.

The applicability of reinforcement learning models is strongly dependent on the envir-
onment in which they are deployed, and building such environment is a complex and
time-consuming process. The environments are incredibly dynamic and vary according
to the problem statement. For example, the simulation environment for an autonomous
car is considerably different from the simulation environment for a gaming simulation.
For this research, we will focus on the gaming environment.

In this study, we propose to train a Deep Q-Network (DQN) RL agent in the Lunar
Lander Environment using the OpenAl gym library, which was used by |Zhao et al.| (2020))
in their research to construct agents which could aid developers during game develop-
ment. We also compare its performance to that of newer, state-of-the-art algorithms such
as Soft Actor Critic and Deep Deterministic Policy Gradient.

1.2 Research Question and Objectives

“How can we overcome the shortcomings of the Deep Q-Networks method by employing
the Deep Deterministic Policy Gradient and Soft Actor Critic algorithms in the environ-
ment exploited by Zhao et al.| (2020) in Lunar Lander?”

The remainder of the paper is organized as follows. The next part digs into earlier re-
search on DQN’s accomplishments and limits, as well as a discussion of both the DDPG
and SAC algorithms. Sections 3 and 4 of the paper present the environment as well as
the technique for deploying agents in the environment. Sections 5 and 6 of the paper offer
a description of the project’s implementation, evaluation methodologies, and outcomes.
Section 7 closes the work by providing an overall overview as well as recommendations
for additional research.

2 Related Work

This section’s topic is linked to the previous reinforcement learning literature related to
their implementation in the gaming domain. It is divided into four sections: 1) Deep
Reinforcement Learning in Games using Deep Q-Networks 2) Reinforcement Learning
with DDPG and SAC 3) Comparison and summary.

2.1 Deep RL in Games using Deep Q-Networks

The development of reinforcement learning agents began with TD-gammon in 1995, when
an agent trained through self-play achieved superhuman level performance in the back-
gammon game (Tesauro (1995])). In addition to game-playing agents, another technique
is Imitation learning which was investigated by Gorman and Humphrys| (2007)) . In the
conducted research,the agent was trained using features extracted from an extensive data-
set gathered from the gameplay of actual players of the game Quake 2, and the agent was
assessed on the basis of its ability to play the game comparable to that of a human player.

However, the research did not take off in the gaming domain until 2013, when |Bellemare
et al. (2013) developed a 2600 Atari emulator for reinforcement learning and Hausknecht
et al.| (2014) contributed to this emulator by using HyperNEAT architecture, which fur-
ther evolved the emulator’s opening. Mnih et al| (2013) developed the world’s first deep
learning model capable of learning policies straight from raw sensory inputs from envir-
onments. This model uses a Q-learning variation, stochastic gradient descent, to update
the weight and a memory replay method to randomly sample past events and improve
training over time. The Atari 2600 provided a complex environment for the agent, and
despite not being given any game-related information, the agent excelled any previous
implementation and surpassed human level in three of those games. Another feat this
state of art model achieved was no architectural or hyperparameter change was made to
the model before deploying in different environments. Finally, in 2015 Mnih et al.| (2015)
developed novel Deep Q-Network an upgrade from the previous version and used the
algorithm to train on 49 of those Atari games. The research by |Jaderberg et al.| (2019)
lauds the improvements in the development of RL agents but notes that because games
are no longer 2D, agents should experience more complex settings, necessitating the need
to extract additional features from the environment. The researchers successfully imple-
mented RL on the Quake 3 game, this 3D game that is similar to real life.

Reinforcement learning models seek all feasible ways to gain greater and greater rewards,
revealing previously unknown pathways. [Silver et al. (2018) presented Alpha Zero, a
newer, better and a generic variant of Alpha Go that mastered Go, chess and Shogi.
Alpha Go and its suc-cessor The difference between the two was: Alpha-Go calculates
the winning probability of each possible move before making one while Alpha-Zero Go
estimated and optimized the expected outcome of the move.

Researchers are increasingly focusing their efforts on generic RL agents, which should
be able to operate in a variety of situations without requiring significant changes in
hyperparameters. DeepMind’s Alpha Zero is one such example. Researchers such as
de Almeida and Thielo| (2020) and Zhao et al.| (2020) have effectively trained agents to
earn rewards in a variety of environments. Zhao et al. (2020) conducted research on the
development of a generic agent to facilitate game development during the testing phase
and even realistic participants in a PvP fight, which is similar to the goal of this suggested
research.

Jager et al.| (2021) addresses some crucial limitations of DQN networks like Q-learning is
prone to selecting overestimated actions and adopting overoptimistic value estimations
because it uses the same estimate for action selection via the max operator as well as

for evaluating this action, which makes DQN affected by the problem of overestimation
bias. Q-learning is prone to selecting overestimated actions and adopting overoptimistic
value estimations because it employs the same estimate for action selection via the max
operator as well as for evaluating this action [Van Hasselt et al.| (2016]).

Since targets are computed based on subjective estimates, training frequently becomes
unstable, manifesting as a decline in performance and forgetting of previously acquired
tasks, a phenomenon known as catastrophic forgetting. This difficulty is produced by
learning on correlated samples because the environment’s transitions are sequentially ex-
perienced and the Q-network’s parameters I indirectly predict the next samples, which
is somewhat solved using experience replay. Shortcomings like these motivates us to ex-
plore more algorithms in Reinforcement Learning like Deep Deterministic Policy Gradient
(DDPG) and Soft Actor Critic (SAC), off-policy algorithms like DQN.

2.2 Reinforcement Learning with DDPG and SAC

Lillicrap et al.| (2015) asserts that while DQN is able to solve problems involving high-
dimensional observations, it is limited to discrete and low-dimensional action spaces,
whereas many real-world situations include continuous and high-dimensional action spaces.
To deal with continuous space difficulties, DQN discretizes the action space first. How-
ever, the problem of dimensionality arises as the number of actions increases exponentially
with increase in the number of degrees of freedom. Hence proposing a new algorithm
named Deep Deterministic Policy Gradient (DDPG). DDPG is an approach for off-policy
reinforcement learning that combines Q-learning and Policy gradients. As an actor-critic
technique, DDPG has two models: Actor and Critic. Instead of a probability distribution
of actions, the actor is a policy network that takes the state as input and outputs the
exact action (continuous). The critic is a Q-value network that accepts state and action
as input and returns the Q-value as output. The approach’s simplicity is a significant
feature: it requires only a fundamental actor-critic architecture and learning algorithm
with few "moving parts,” making it simple to deploy to more complex situations and
larger networks.

The model-free approach, dubbed Deep DPG (DDPG), enabled the researchers to de-
velop competitive policies for all tasks using low-dimensional observations (e.g. cartesian
coordinates or joint angles), while maintaining the same hyper-parameters and network
topology. They were also able to learn effective rules directly from pixels in many cases,
while maintaining the hyperparameters and network structure unchanged. The proposed
algorithm DDPG used fewer steps to achieve same level of experience than used by DQN
for Atari Environment but still requires a large number of training steps to find solu-
tions. Hence considering the amount of time consumed while training, a new and better
algorithm was needed which could achieve better results in fewer training episodes.

Soft Actor Critic (SAC), a Reinforcement Learning model developed by |[Haarnoja et al.
(2018)), highlighted the problems with on-policy algorithms rigorously. The author dis-
cusses the issue of poor sampling efficiency in on-policy algorithms such as PPO (Schul-
man, Wolski, Dhariwal, Radford and Klimov| (2017)) and A3C (Mnih et al| (2016))),
claiming that samples must be gathered after every gradient step, which becomes in-
creasingly expensive as task complexity increases. It also raises the issue of dealing with

high-dimensional problems using off-policy algorithms like DQN Mnih et al. (2015)), as
stability is reduced in such cases. For its extreme brittleness and sensitive hyperpara-
meters, DDPG is difficult to train Henderson et al.| (2018]). SAC was designed to address
challenges in continuous state and action spaces, resulting in a stable method that also
delivers sample-efficient learning.

Three critical components comprise the soft actor-critic algorithm: an actor-critic ar-
chitecture with distinct policy and value function networks, an off-policy formulation
that allows efficient reuse of previously gathered data, and entropy maximization for
stability and exploration.Maximum entropy reinforcement learning improves policies to
maximize both anticipated return and expected entropy. The maximum entropy distribu-
tion is utilized in guided policy search |Levine and Koltun (2013) to drive policy learning
towards high-reward regions. Several articles have lately emphasized the relationship
between Q-learning and policy gradient approaches in the context of maximum entropy
learning Schulman, Chen and Abbeel (2017)).

In terms of sample efficiency, the SAC algorithm outperformed the DDPG algorithm,
demonstrating that stochastic, entropy-maximizing reinforcement learning algorithms
can provide a viable route for better robustness and stability, as well as future study
of maximum entropy approaches.

2.3 Comparison and Summary

According to the research papers analyzed, it is clear that, while DQN is a cutting-edge
model, it falls short in situations with high dimensions and continuous state space, so a
newer and better method, DDPG, was proposed. However, due to the highly sensitive
hyperparameters and brittleness of DDPG, SAC was proposed. For this study, we propose
to build all three algorithms in the environment described by Zhao et al. (2020)) and
compare their performance.

3 Methodology

The research incorporates the development of an RL Agent with Deep Q-Networks trained
in the Lunar Lander environment, as well as the deployment of DDPG and SAC in the
same environment, therefore a large number of experiments were carried out, and the
research was organised in a similar fashion. Despite the fact that the industry primarily
employs one of the three major approaches, KDD, CRISP-DM, and SEMMA (Azevedo
and Santos| (2008)), we present a new methodology that is more appropriate for this
research. Keeping this in mind, the research will be carried out in the following steps.

Figure 2: EMMA Structure for RL Agent Training

3.1 Explore

Extensive exploration was carried out to comprehend the game’s number of actions, as
well as the environment’s input space. For neural networks, the number of output layers
is based on this information.

The landing pad in Lunar Lander is always at the same location (0,0). About 100 to
140 points are awarded for going from the top of the screen to the landing pad at zero
speed. If the lander goes away from the landing pad, it loses the reward it had previously
received. If the lander crashes or comes to a halt, the episode is over, and the player
receives an additional -100 or +100 points. 410 for each leg’s touch with the ground.
Every frame when the primary engine is firing costs you -0.3 points. It’s worth 200 points
to get it right. It is possible to land away from the landing pad. It’s possible for an agent
to learn to fly and land on its first attempt because the fuel supply is endless. Action
is a two-dimensional vector of real numbers ranging from -1 to +1. -1 to 0 off, 0 to +1
throttle from 50% to 100% power are the first controls for the primary engine. The engine
can’t function at less than half its capacity. Fire the left engine from -1.0 to -0.5 and the
right engine from +0.5 to +1.0qz|.

Zhttps://gym.openai.com/envs/LunarLanderContinuous-v2/

Figure 3: Lunar Lander Environment

3.2 Modify

The DummyVecEnv function from the stable baselines package was used to vectorize
the environment prior to installing DDPG and SAC in a continuous state environment.
Instead of training on one environment at a time, the RL agent can train on a stack of
environments at once. The vectorized environment would not operate with continuous
state environments since DQN from stable baselines library has a limitation of only
working in discrete environments.

RL algorithms, like as DQN, DDPG, and SAC, do not require a training dataset; rather,
every experience they encounter in the environment serves as their training dataset. For
this study, the replay episodic memory for each algorithm was set at 50000 episodes,
which can be lowered if we want the model to just use recent encounters. However, after
this prior episodes will be erased and replaced by new encounters.

3.3 Model

The selected models DQN, DDPG, and SAC are deployed in the environment in the
following step. We used the default hyperparameters for all three algorithms. In addition,
we updated the batch size and the number of hidden layers for each of these techniques
to improve the models” mean rewards. The stable baselines library’s MlpPolicy, which
has two layers of 64 nodes each, is used in all six models, although the tuned models have

256 nodes instead of 64.

3.4 Assess

In the absence of a training dataset, metrics like accuracy, precision, recall become obsol-
ete to measure the model’s performance in Reinforcement Learning. Hence, we have used
mean reward and std. of rewards earned by the models over an interval of 100 episodes
as major metrics to assess the models’ performance. To select the best model amongst
default and tuned models, various loss metrics like value loss, policy loss entropy are
used.

4 Design Specification

In the Lunar Lander environment, the RL agents used DQN, DDPG, and SAC to auto
identify the policies and land the rocket between the two flags. The algorithms are
described in detail in the following section.

4.1 DQN

DQN estimates the Q-value function using a Neural Network. The input to a DQN is a
raw image of the current state of the environment, which is processed by many convo-
lution layers and fully connected dense layers. As output, Q-values for the agent’s next
best action are provided.

Additionally, two strategies are critical for DQN training:

1. Replay Experience: Because the training samples in a typical RL setup are highly
correlated and less data-efficient, the network will have a harder time convergent. Ad-
opting experience replay is one technique to overcome the sample distribution problem.
In essence, sample transitions are saved and then randomly picked from the ”transition
pool” to update the knowledge.

2. Separate Target Network: The target Q Network is structured identically to the value
estimation network. According to the pseudo code in figure 4| mentioned below, the target
network is reset every C steps. As a result, the fluctuation is reduced, resulting in more
stable training sessions.

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 6
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a; = argmax,Q(¢(s:),a; 0)
Execute action a, in emulator and observe reward r; and image x; + ;
Set s¢+1==5¢,8¢,%+1 and preprocess ¢, ; =@ (st41)
Store transition (¢vt,a,,rt,¢vr - J) inD
Sample random minibatch of transitions (qﬁj,aj,r},gﬁj +1) from D

T if episode terminates at step j+ 1
SeLy= i+ maxy Q(¢j+1,a’;9_) otherwise

2
Perform a gradient descent step on (yj -0 (qu,a}-; 9)) with respect to the
network parameters 0
Every C steps reset Q= Q

End For
End For

Figure 4: Pseudo Code for DQN(Mnih et al.| (2013))

4.2 DDPG

DDPG is a RL technique that combines Q-learning and policy gradients. As an actor-
critic technique, DDPG utilizes two models: the actor and the critic. Instead of a probab-
ility distribution of actions, the actor is a policy network that takes the state as input and
outputs the exact action (continuous). The critic is a network of Q-values that accepts
state and action as input and outputs the Q-value. DDPG is a "non-standard” policy
approach. DDPG is employed in the continuous action context, and the term ”determ-
inistic” refers to the actor computing the action directly, rather than using a probability
distribution over actions.

Algorithm 1 DDPG algorithm

Randomly initialize critic network @Q(s, a|60?) and actor u(s|##) with weights #% and 6.
Initialize target network @’ and g/ with weights 9" « 69, 94" «— g#
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = p(s¢|0%) + N} according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;44
Store transition (s¢, ar, ¢, S¢+1) In 17
Sample a random minibatch of N transitions (s;, a;, i, s;y1) from R
Set yi = r; +4Q' (si1, 1/ (si41]60*")|09)
Update critic by minimizing the loss: L = % S (wi — Q(si,a:]09))?
Update the actor policy using the sampled policy gradient:

1
VEN‘J ~ ?Z an(S‘a 'QQ) szsi.a:;e(si)vﬁ‘ﬂu(s 9#”5;

Update the target networks:
0% 709+ (1—7)0°
0 TO" + (1 — 7)o"

end for
end for

Figure 5: Pseudo Code for DDPG (Lillicrap et al.| (2015)))

4.3 SAC

The Soft Actor Critic (SAC) algorithm optimizes a stochastic policy in an ad hoc fash-
ion, bridging the gap between stochastic policy optimization and DDPG-style approaches.
Entropy regularization is a critical element of SAC. The policy is trained to optimize the
trade-off between expected return and entropy, which is a measure of the policy’s random-
ness. This is closely related to the exploration-exploitation trade-off: increasing entropy
results in increased exploration, which can speed up subsequent learning. Additionally,
it can prevent the policy from convergent prematurely to a sub-optimal local optimum.
Stable Baselines has employed an entropy coefficient (like in OpenAl Spinning or Face-
book Horizon) in the code implementation, which is similar to the inverse of the reward
scale in the original SAC work. The primary reason is that it prevents excessive mistake
rates when changing the Q functions. To match the original paper, Stable baselines has
used Relu activation function instead of default tanh activation function in MlpPolicy.

Algorithm 1 Soft Actor-Critic
1: Input: initial policy parameters ¢, Q-function parameters ¢,., ¢-, empty replay buffer D
2: Set target parameters equal to main parameters @uarg,1 <— @1, Drarg,2 < D2

3: repeat

4: Observe state s and select action a ~ mg(-|s)

5 Execute a in the environment

G: Observe next state s’, reward 7, and done signal d to indicate whether s’ is terminal
7: Store (s.a,r, s’,d) in replay buffer D

8: If s’ is terminal, reset environment state.

9: if it’s time to update then

10: for j in range(however many updates) do

11: Randomly sample a batch of transitions, B = {(s,a.r,s’.d)} from D

12: Compute targets for the QQ functions:

y(r.s',d) =7+ (1 — d) (ll_l]i[}) Qo (8'.a") — alog ﬁ,;(r}'|->')) . a ~ me(-|s")

13: Update Q-functions by one step of gradient descent using
1 . o 2 : _
Vs, 7!—3\ (Qus,(s,a) — y(r,s',d)) for z 1,2
(s.a,nr s’ d)ciB
14: Update policy by one step of gradient ascent using

1 — .
VHE ‘_Zn (]El“l’ Qu,(s,a5(8)) — avlog g (as(s)| s))

where agp(s) is a sample from mp(-|s) which is differentiable wrt 6 via the
reparametrization trick.

15: Update target networks with

Prarg,i € PPrargs + (1 2D for ¢ = 1.2
16: end for
17: end if

18: until convergence

Figure 6: Pseudo Code for SAC(Haarnoja et al. (2018))

5 Implementation

This section discusses how agents are implemented in the Lunar Lander environment. All
three algorithms begin with two fully connected layers of 64 nodes each with a batch size
of 32 by default and the tanh activation function, with the exception of SAC, which uses
the Relu activation function. The tuned models have a batch size of 256, 50000 episodes
of replay storage memory, and two layers of 256 nodes. The implementation is covered
in detail in the following section.

5.1 Environmental Setup

The models were trained on an AMD Ryzen5900HS 3.3GHz processor coupled with 16GB
DDR4 RAM. Python-3.7.11 was used to establish an anaconda environment via Jupyter
Notebook. The models were developed using the Stable Baselines library version 2.10.2,
which requires a base installation of tensorflow 1.15. The environment was produced
using the version 0.21.0 of the OpenAl Gym library. Due to the fact that the Lunar
Lander environment is a Box2D environment, installation of the Box2D library was also
required. Tensorboard was used to evaluate the models’ performance; it provides detailed
information about model losses.

5.2 Implementation of DQN in Lunar Lander

As mentioned above the base architecture of the first model was 64*64 nodes with tanh
activation function. DQN uses Adam optimizer to optimize the weights of the model. An
object of class of 'Lunar Lander’ environment was created and passed to the DQN model

10

object from Stable Baselines. Since DQN can operate on discrete environments hence we
generated discrete object for environment. The internal architecture for a DQN model is
shown below in figure [7]

beta2_power

beta2_power dam o Joup-de..

Adam group_de...
group_deps... S8

X N deepq
input_info betal_power dam beta_power 82005 Adam o ceps

loss

betal_power 11008 init
beta2_power £1700¢

Adam

deepq init

input

Figure 7: Architecture of a DQN Model

The input is the gym environment, raw pixels of the environment are directly fed
to the model shown as deepq in [7] the difference between the predicted Q-values and a
target Q-value from the current state of the environment creates loss, which is fed back to
the algorithm for the next iteration, and the Adam optimizer updates the weights based
on the information from loss.

5.3 Implementation of DDPG in Lunar Lander

init
model
target

Adam_mpi

loss

3
ety

model init target init input_info
input

Figure 8: Architecture of a DDPG Model

11

Just like DQN, DDPG also had a similar architecture but DDPG requires extra para-
meters deal with noise generated from actions made by agent while interacting with the
environment. OrnsteinUhlenbeckActionNoise function or the Ornstein-Uhlenbeck Pro-
cess generates noise that is correlated with the previous noise, as to prevent the noise
from canceling out or “freezing” the overall dynamics.

From the figure [8| we can observe that the critic and actor models are randomly initial-
ized based on the environment’s input state, and a target is also set. The model starts
a random process and decides what to do based on current policy and noise. The agent
obtains a reward and the current state of the environment as a result of its actions. The
Adam optimizer attempts to minimize the losses perceived by the critic throughout the
cycle and adjusts the actor’s policy.

5.4 Implementation of SAC in Lunar Lander

We used two models of SAC with 64*64 fully connected nodes and the other one with
256*256 fully connected nodes with Relu activation function. To tune the performance
of the model, we lowered the optimal learning rate from a default of 0.0003 to 0.0001 for
the second model.

loss init
model
target

loss init

model init - target init

input

Figure 9: Architecture of a SAC Model

From the figure [above, we can observe that based on the initial state of the en-
vironment, the model initializes a policy and a Q-value function. Then the model takes
an action after observing the state and collects the reward from the environment be it
negative or positive. The action taken changes the state of the environment hence this
is also taken as a feedback and the scenario is stored in the memory. Based on the state
of environment, the model calculates the losses and updates the Q-function to calculate
new target value.

12

6 Evaluation

A series of experiments were conducted to select the best performing models. The models
were initially trained for 100,000 episodes. After implementing all six models in Lunar
Lander environment, we evaluated the performance of the models using evaluate_policy
which provides the mean of rewards earned by the model over a given number of epis-
odes. We tested the model’s performance for 10 episodes. After selecting the best model
amongst DQN, DDPG and SAC, the models were again trained for 1 million episodes
and best model was selected based on mean score earned over 100 episodes.

6.1 Default DQN vs Tuned DQN

After constructing models for DQN, we first evaluated the model’s performance before
training for 100,000 episodes. This was done to establish a baseline of scores for the models
before to training so that we could measure the models’ performance once training was
completed.

mean reward, std reward = evaluate policy(dgn model 1, env, n_eval episodes=10)
mean reward 2, std reward 2 = evaluate pclicy(dgn model 2, env, n_eval episodes=10)

print (f'Mean reward: {mean_reward} +/— {std_reward: .2f}")
print(f'Mean reward: {mean reward 2} +/- {std_reward 2:.2f}")

executed in 889ms. finished 14:50:43 2021-12-14

Mean reward: -456.3235224214692 +/- 114.15
Mean reward: -237.0796536180074 +/- 38.49

Figure 10: Initial Rewards for DQN before Training

After successful training over 100000 episodes, the first DQN model took 285.89s
while the tuned model took 520.20s to complete its training. The models were again
evaluated and it was observed that the tuned DQN model earned nearly 222 points in
the environment clearly outperforming the model with default hyperparameters by a huge
margin.

mean_reward, std reward = evaluate_policy(dqn_model_l, env, n_eval_episodes:lj]
mean reward 2, std reward 2 = evaluate policy(dgn model 2, env, n_eval episodes=10)
print (f'Mean reward: {mean reward} +/- {std reward:.2f}")

print (f'Mean reward: {mean reward 2} +/- {std reward 2:.2f}"')
executed in 16 5s, finished 15:04:26 2021-12-14

Mean reward: -4.184821519362525 +/- 21.47
Mean reward: 222.42588489069277 +/- 82.28

Figure 11: Final Rewards for DQN after Training

Figure [12] depicts the TD errors for the models during training. The TD error is how
far the current prediction function deviates from this condition for the current input,
and the agent works to reduce this error. As observed from the graph, the tuned model
has diverged the least across the training cycles, but the trend from the graph for the
first model shows a struggle to minimize error and has even departed from target more
frequently.

13

0s ‘
or
0s

N
M M‘, i 1_‘ ‘lw‘l ”i"""“ i
/L i

Figure 12: TD Error for Default DQN(orange) vs Tuned DQN Model(blue)

Figure[13|shows the improvement in rewards earned by the models during the training
period.

episode_reward

0 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Figure 13: Rewards earned by models over training period

6.2 Default DDPG vs Tuned DDPG

After building models for DDPG, we tested the model’s performance before training for
100,000 episodes. This was done to set a baseline of scores for the models before to
training so that we could measure the models’ performance once training was completed.

1 mean reward, std reward = evaluate policy(ddpg model 1, env 2, n eval episodes=10)
2 mean reward 2, std reward 2 = evaluate policy(ddpg model 2, env 2, n eval episodes=10)

4 print(f'Mean reward: {mean_reward} +/- {std reward:.2f}')
print (f'Mean reward: {mean reward 2} +/- {std reward 2:.2f}")

executed in 2.225, finished 15:04:29 2021-12-14

Mean reward: -271.21795654296875 +/- 101.47
Mean reward: -262.07061767578125% +/- 81.78

Figure 14: Initial Rewards for DDPG before Training

After successful training over 100000 episodes, the first DDPG model took 302.49s
while the tuned model took 492.24s to complete its training. The models were again
evaluated and it was observed that the models performed poorly and struggled to get a
good score. This could be because of the reason that the models required more training .

14

mean reward, std reward = evaluate_policy (ddpg_model 1, env 2, n_eval_episodes=l[])
mean reward 2, std reward 2 = evaluate_policy(ddpg_model_2, env_2, n_eval_episodes:l[])

L o

4 print(f'Mean reward: {mean reward} +/- {std reward:.2f}')

5 print(f'Mean reward: {mean reward 2} +/- {std reward 2:.2f}"')
executed in 26 0s, finished 15:18:09 20211214

Mean reward: -250.1200408935547 +/- 61.95
Mean reward: -160.09805297851562 +/- 78.48

Figure 15: Final Rewards for DDPG after Training

actor_loss critic_loss
tag: Adam_mpi/factor_loss tag: Adam_mpi/critic_loss

20
60
30
40

20

0] 20k 40k 50k B0k 100k 0 20k 40k 60k 80k 100k

(| £

ra
kd
r1
Ld

Figure 16: Actor and Critic losses for Default DDPG(red) vs Tuned DDPG Model(blue)

The losses generated by actor and critic models during training sessions are depicted
in figure The model’s goal is to reduce these losses as much as feasible. The tuned
model adjusts its weight quickly to reduce losses, making it a better model than the one
with default hyperparameters.

episode_reward

0

-100

" A
- W A

-500

600

-100
-600
-900

e Name Smoothed Value Step Time Relative

O LunarLancer\DDPG_1 -194.5 211 97.98k TueDec14,15:09:23 4mS5ds
LunarLancer\DDPG_2 -308.9 5023 97.83 TueDec14,1517:32 8m0s

11e+3

Figure 17: Rewards earned by DDPG models over training period

Figure |17 shows the improvement in rewards earned by the models during the training
period but the models fail to achieve better scores than DQN models.

6.3 Default SAC vs Tuned SAC

To assess the performance of SAC models, we have used value loss function, policy loss
function and entropy metrics.

15

value_loss policy_loss entropy
tag: loss/value_loss tag: loss/policy_loss tag: loss/entropy

08 22

06 1.6

04 1

02 0.4
0 12 0.2 ¥

0 20k 40k 60k 80k 100k 0 20k 40k 60k 80k 100k 0 20k 40k 60K 80k 100k

N

Figure 18: Loss Metrics for Default SAC(Pink) vs Tuned SAC(Green) models over train-
ing period

Entropy refers to the predictability of the agents action in the given environment.
This is closely related to the policy’s certainty about which action would provide the
greatest cumulative reward in the long run: lower the entropy higher the chances of
greater rewards.

Value Loss correlates to how well the model is able to predict the value for each state
in the environment. For a good model, the value loss should converge when the rewards
earned by the model stabilizes.

As value loss is about prediction of value for each state, Policy Loss correlates to how
well the model is able to follow the policies of the environment in its pursuit of the goal.
From the information above we were able to conclude that the second model outperforms
the first as the tuned model quickly converges its value losses, has lower entropy and has
even lower policy losses in later stages of training.

episode_reward

Figure 19: Rewards earned by SAC models over training period

The trends above conclude our analysis as the tuned model earns better rewards that
the first model over training period.

6.4 Best of DQN vs DDPG vs SAC

After training each of the model for initial 100000 episodes, best performing model from
DQN, DDPG and SAC was selected and trained again for a 1 million episodes. Their
performance was then compared against each other.

16

episode_reward

unarlanc 6.3

unarLanc 6: /\ /J/ W

Lunarlande\SAC.3 160.9 2221 9985 TueDec14,15:47:00 16m1s \/ \/\}
100 i

1
0 ALY R I h A] Y I
| |
I \

-200

-300

Figure 20: Rewards earned by each model over training period

The graph demonstrates that DQN initially outperforms DDPG and SAC, but SAC
gradually catches up to DQN. The models were then assessed for 100 episodes using the
evaluate policy function. The tuned SAC model outscored both DQN and DDPG by a
large margin, gaining roughly 202 points across 100 episodes.

print (f'Mean reward for DQN: {mean reward dgn} +/- {std reward dgn:.2f}"')
print (f'Mean reward for DDPG: {mean reward ddpg} +/- {std _reward ddpg:.2f}")
print (f'Mean reward for SAC: {mean reward sac} +/- {std reward sac:.2f}')

executed in 15ms, finished 02:14:08 2021-12-15

Mean reward for DON: -18.1435903768066%96 +/-— 41.324
Mean reward for DDPG: —-104.1529769897461 +/— 1332.30
Mean reward for SAC: 202.7703094482422 +/- 106.53

Figure 21: Average Rewards Earned by models over 100 episodes

6.5 Discussion

According to the results of the preceding studies, SAC outperformed the other two al-
gorithms tested. We chose DDPG and SAC for comparison against DQN because both
algorithms are off-policy and employ Q-values for estimation, precisely like the DQN
algorithm. We could have used on-policy algorithms such as Actor to Critic (A2C),
Proximal Policy Optimization (PPO), and so on, but on-policy algorithms are better
suited to places where the agent has more to explore about the environment, and since
the agent has very limited exploration tasks to do in the Lunar Lander, on-policy al-
gorithms were not used.

For this research, we had used Stable baselines library for the development of our agents
but a drawback of using this library was that a very few documentation is provided on
how to finely tune the hyperparameters of the models and even change the architecture
of the hidden layers in the model. Instead we can use Tensorflow’s reinforcement learning
library which gives more freedom to the users to play around with the layers and activ-
ation functions of the models. Given the time and effort for the research using Stable
baselines was a good choice as the models are quick to deploy and easy to save and load
for future use.

17

7 Conclusion and Future Work

This research sought to solve the limitations of Deep Q-Networks by utilizing other off-
policy algorithms, DDPG and SAC, and to provide a superior approach to [Zhao et al.
(2020) .’s research. To address this, we developed six models, two of each type of al-
gorithm, and determined the best model for each type. We then compared the per-
formance of the best DQN, DDPG, and SAC models. We successfully found that SAC
algorithm had an upperhand over DQN model as it performed well during evaluation
stage with a mean score of 202 while the best DQN and DDPG models secured -ve points
over 100 episodes of evaluation environment. The fall in performance of DQN model
could be because of the limitations mentioned in the paper above or training the model
for longer durations could have yielded better results but in a span of 1 million training
episodes, SAC outclassed DQN model. The two SAC models nearly scored same rewards
after training of 100000 episodes but the value losses, policy loss and entropy helped in
choosing a better model of the two. Thus proving that the tuned models performed much
superior to the ones with default hyperparameters.

In future work, we intend to use the stable baselines 3 library to train DQN models
in parallel to accelerate the training process, as reinforcement learning agents frequently
require a large number of simulations in their environment to surpass human-level per-
formance, and multiprocessing the training could significantly reduce training time. We
even intend to combine stochastic variant Monte Carlo Tree search algorithm mentioned
by [Zhao et al. (2020) in their research with the SAC algorithm and compare the results
with the original ones. This would help the agent train with limited information available
about the environment which is close to real world gaming problems as in the scope of
this research, the model had complete information about the state of the environment
but with Monte Carlo Tree Search this information would be limited. This would be
beneficial because in real life gaming environments agents don’t have complete access to
the environments.

8 Acknowledgement

I would like to thank my supervisor Dr. Mohammed Hasanuzzamanfor his devoted guid-
ance and helping me with the chosen topic. I'd want to thank him for his regular assistance
and supervision, which helped the project’s execution go smoothly.

References

Azevedo, A. and Santos, M. F. (2008). Kdd, semma and crisp-dm: a parallel overview,
ISCAP - Sistemas de Informacgao - Comunicagoes em eventos cientificos .

URL: http://hdl.handle.net/10400.22/136

Bellemare, M. G., Naddaf, Y., Veness, J. and Bowling, M. (2013). The arcade learning en-
vironment: An evaluation platform for general agents, Journal of Artificial Intelligence
Research 47: 253-279.

de Almeida, L. A. and Thielo, M. R. (2020). An intelligent agent playing generic ac-
tion games based on deep reinforcement learning with memory restrictions, 2020 19th

18

Brazilian Symposium on Computer Games and Digital Entertainment (SBGames),
pp- 29-37.

Gorman, B. and Humphrys, M. (2007). Imitative learning of combat behaviours in first-
person computer games.

Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, International
conference on machine learning, PMLR, pp. 1861-1870.

Hausknecht, M., Lehman, J., Miikkulainen, R. and Stone, P. (2014). A neuroevolution
approach to general atari game playing, IEEE Transactions on Computational Intelli-
gence and Al in Games 6(4): 355-366.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and Meger, D. (2018). Deep
reinforcement learning that matters, Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castaneda, A. G.,
Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., Sonnerat, N., Green,
T., Deason, L., Leibo, J. Z., Silver, D., Hassabis, D., Kavukcuoglu, K. and Graepel,
T. (2019). Human-level performance in 3d multiplayer games with population-based
reinforcement learning, Science 364(6443): 859-865.

URL: https://science.sciencemag.orq/content/364,/6443/859

Jager, J., Helfenstein, F. and Scharf, F. (2021). Bring Color to Deep Q-Networks: Lim-
itations and Improvements of DQN Leading to Rainbow DQN, Springer International
Publishing, Cham, pp. 135-149.

URL: https://doi.org/10.1007/978-3-030-41188-6,2

Levine, S. and Koltun, V. (2013). Guided policy search, in S. Dasgupta and D. McAllester
(eds), Proceedings of the 30th International Conference on Machine Learning, Vol. 28
of Proceedings of Machine Learning Research, PMLR, Atlanta, Georgia, USA, pp. 1-9.
URL: https://proceedings.mir.press/v28/levinel3.html

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and Wi-
erstra, D. (2015). Continuous control with deep reinforcement learning, arXiv preprint
arXiw:1509.02971 .

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning,
International conference on machine learning, PMLR, pp. 1928-1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D. and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning, arXiv preprint
arXiw:1312.5602 .

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K. and Ostrovski, G. e. a. (2015). Human-level control
through deep reinforcement learning, Nature 518(7540): 529-533.

Schulman, J., Chen, X. and Abbeel, P. (2017). Equivalence between policy gradients and
soft g-learning, arXiv preprint arXiv:1704.06440 .

19

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017). Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 .

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D. and Graepel, T. e. a. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play, Science 362(6419): 1140
1144.

Sugiyama, M. (2015). Statistical reinforcement learning: modern machine learning ap-
proaches, CRC Press.

Tesauro, G. (1995). Temporal difference learning and td-gammon, ICGA Journal
18(2): 88-88.

Van Hasselt, H., Guez, A. and Silver, D. (2016). Deep reinforcement learning with double
q-learning, Proceedings of the AAAI conference on artificial intelligence, Vol. 30.

Zhao, Y., Borovikov, 1., de Mesentier Silva, F., Beirami, A., Rupert, J., Somers, C.,
Harder, J., Kolen, J., Pinto, J. and Pourabolghasem, R. e. a. (2020). Winning is not
everything: Enhancing game development with intelligent agents, IEEE Transactions
on Games 12(2): 199-212.

20

