
Configuration Manual

MSc Research Project

Data Analytics

Abhinav Bhardwaj
Student ID: x20100906

School of Computing

National College of Ireland

Supervisor: Prof Aaloka Anant

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhinav Bhardwaj

Student ID: x20100906

Programme: MSc Data Analytics

Year: 2021-22

Module: MSc Research Project

Supervisor: Prof Aaloka Anant

Submission Due Date: 31/01/2022

Project Title: Configuration Manual

Word Count: 1409

Page Count: 12

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:
Abhinav Bhardwaj

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Abhinav Bhardwaj
x20100906

1 Introduction

The actions taken to carry out this research’s implementation are described in full in
this configuration manual. Data collection and processing, feature extraction, and model
creation are all part of this process. In order to assure reproducibility, the code samples,
screenshots, and step-by-step instructions are also included.

2 Hardware and Software configurations

Host ma-
chine/Operating
System:

MacBook Pro/MacOS Catalina AndWindows Machine (AMD
Ryzen 9 5900HS with Radeon Graphics 3.30 GHz)/Windows
10 Home

RAM 8 GB, M1 chip processor And 16 GB (For Windows).

Hard Disk 256GB And 1TB SSD (For Windows)

Cloud compute
(GPU)

Free GPU Tesla K80 offered by Colab with 2496 CUDA cores
and 12GB RAM.

Table 1: Hardware specifications

Programming
language

Python (Anaconda distribution)

IDE Jupyter notebook.

Cloud environ-
ment

Google Collaboratory

Browser Google chrome

Table 2: Software specifications
Data is first processed on the local workstation and saved as .tar.gz files before being

transferred to Google Colab for modeling.

3 Data Preparation

The author has used self-created data. The file, post the split in training and testing,
has been saved on Google Drive. Please follow the link to download the same.

Weapoon dataset link : https://drive.google.com/drive/folders/1zLBJ099QElaai0tSVLBwpdvfL8yGEnaw?usp=sharing

1

https://drive.google.com/drive/folders/1zLBJ099QElaai0tSVLBwpdvfL8yGEnaw?usp=sharing


3.1 Creating Environment

Open Terminal/Comman Window

• Set up a new environment with name tfod using the following command:

• !conda create –name tfod python=3.8 ; when asked for procced : press Y

• !conda activate tfod

• !python -m pip install –upgrade pip

• !pip install ipykernel

• python -m ipykernel install –user –name=tfodj

Steps to install Tensorflow :

• Kindly refer the foot note for Tensorflow Github repository1

• !git clone https://github.com/tensorflow/models.git

• !pip install –ignore-installed –upgrade tensorflow==2.5.0

• verify your installation :

• python -c ”import tensorflow as tf;

• print(tf.reduce sum(tf.random.normal([1000, 1000])))”

You can skip steps 15 to 21 if you only want to run the second section of the code on
google colab. Disclaimer: The last piece of the code, where one have to detect an object
using a live feed from one’s webcam. Code only run on one’s local machine. Google
Colab does not have any solutions in which one may attach a webcam and execute object
detection on a live feed.

• To install the CUDA Toolkit as per the local machine’s requirement and built follow
the link: https://developer.nvidia.co-11.2.2-download-archive?targetos = Linuxtargetarch =
x8664

• To install the CUDNN follow : https://developer.nvidia.com/rdp/cudnn-download

• Create a user profile if needed and log in to select archive file for Cudnn: https://developer.nvidia.com/rdp/cudnn-
archivea-collapse810-111

• Extract the contents of the zip file (i.e. the folder named cuda) inside INSTALL PATH
NVIDIA GPU Computing Toolkit CUDA v11.2 where INSTALL PATH points to
the installation directory specified during the installation of the CUDA Toolkit. By
default INSTALL PATH CDrive :Program Files.

• Download the latest protoc-*-*.zip release from https://github.com/protocolbuffers/protobuf/releases

• Extract the contents of the downloaded protoc-*-*.zip in a directory PATH TO PB
of your choice (e.g. C drive Program FilesProtobuf)

1Tensorflow Github repository : https://github.com/tensorflow/models

2

https://developer.nvidia.com/cuda-11.2.2-download-archive?target_os=Linux&target_arch=x86_64
https://developer.nvidia.com/cuda-11.2.2-download-archive?target_os=Linux&target_arch=x86_64
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-archive#a-collapse810-111
https://developer.nvidia.com/rdp/cudnn-archive#a-collapse810-111
https://github.com/protocolbuffers/protobuf/releases
https://github.com/tensorflow/models


• Add PATH TO PB bin to your Path environment variable.

• In a new Terminal 1, cd into TensorFlow/models/research/ directory and run the
following command:!protoc object detection/protos/*.proto –python out=.

We have to download Tensorflow 2 Object Detection API.For the same please follow
the step under the same terminal/ command prompt:

• Kindly refer the foot note for Tensorflow API2

• Download the COCO API : !git clone https://github.com/cocodataset/cocoapi.git

• cd cocoapi/PythonAPI

• !cp -r pycocotoolsPATH TO TF¿/TensorFlow/models/research/

• From within TensorFlow/models/research/

• cp object detection/packages/tf2/setup.py .

• python -m pip install –use-feature=2020-resolver .

• Test the installation : From within TensorFlow/models/research/

• !python object detection/builders/model builder tf2 test.py

• If everything goes fine run : jupyter notebook

• Post that run the first files Image Collection.

4 Project Development

PYTHON programming was used exclusively in the implementation. This research pro-
ject is divided into three stages: data preparation, modeling, and evaluation. The first
stage consists of data preprocessing and data selection, followed by the modeling stage,
which consists of model implementation using TensorFlow, Keras, and Tensorflow Zoo
model2, and finally, model evaluation using performance metrics such as average preci-
sion, average recall, and localization loss.

4.1 Data collection

• First, we will start importing the required libraries such as OpenCV2 and Time,
which will help us capture the live images using our webcam. Kindly refer the
figure 1

• In the following section, we will be setting up folders on our local machine. Where
all our images, pre-trained models, and trained models will be saved. Kindly refer
the figure 2

3



Figure 1: Import Lib

Figure 2: Setting up folders

Figure 3: Image capture for Data collection

4



Figure 4: Image labelling

Figure 5: Labelling tool

• In this step, we are ready to capture the live images from our webcam using the
open CV2 library. We can set up the timer as per our need for capturing the
images.Kindly refer the figure 3

• We have to label the captured image using a graphical image annotation tool created
by Darren Tzutalin from his public GitHub repository named LabelImg. On saving
the each labbeled image it will also save the xml file with the same name as of file.
The file will contains the x and y coordinates of the labelled image. Kindly refer
the figure 4. Kindly refer the footnote for git hub repo 3.

• Referring the figure 5, is an example of how one can access the local directory and
start labelling the images.

• Finally we have images in our said folders of Knife, Key, Pen, Vape. We have to
move them into the testing and training folders Manually along with their XML

2Tensorflow API installation : https://tensorflow-object-detection-api-tutorial.

readthedocs.io/en/latest/install.html
3Image labelling: https://github.com/tzutalin/labelImg

5

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html


Figure 6: Moving to Test and train

Figure 7: Setting up paths for Pre-Trained models

files. For this project the was a split of 75 training and 25 testing data split.

Using the step 7 is only for those who are running the code on google colab. This
will create an archive forlder for your test and train dataset. Which needs to be
uplodaed on colab.Kindly refer the figure 6

4.2 Training and Detection

• Starting with importing the required library and the pre-trained model from the
Tensorflow zoo github repository. Paths has been defined for all the pre-trained
models. Kindly refer the figure 7 and figure 8

• Downloading the pre-trained models from and setting up on the paths and location
for extraction. Kindly refre the figure 9

• running the verification script for TensorFlow, will give us go ahead of rest of the
code. We need OK from post we execute the script.Kindly refer the figure 10

• Finally one can extract the pre-trained models it will look like the one in referred
the figure 11

• This step required to create the label maps for all the object. please note that
this is case-sensitive and make sure one should use the same name as it has been

6



Figure 8: Part 2 of setting up paths for Pre-Trained models

Figure 9: setting up paths for Pre-Trained models

Figure 10: Verification Script

7



Figure 11: setting up paths for Pre-Trained models

Figure 12: Creating label maps and TF records

used while creating the folders and labelling them. WE are also creating the TF
records and setting up tf training and testing scripts for the model. Kindly refer
the figure 12

• once we have the tf scripts for testing and training data. we need to now configure
the pre-tranined models to the refereed paths.Kindly refer the figure 13

• Training of model will require the command prompt to see the process of model
training. Once we have the command printed paste it on the Tensflow terminal.
Kindly refer the figure 14 and figure 15

• Under the evualtion part we have to follow the procecess of copying the command
to the tensorflow terminal which will generate the following optput. Kindly refer
the figure 16 and figure 17

• To visualize TensorBoard from Train folder kinldy follow the path:
Tensorflow workspace models my ssd mobnet train¿tensorboard –logdir=.

• To visualize TensorBoard from Eval folder kindly follow the path: Tensorflow
workspace models my ssd mobnet eval tensorboard –logdir=.

8



Figure 13: Configuring Pre-trained models

Figure 14: Model Traning

Figure 15: Traning Steps

9



Figure 16: Evaluation

Figure 17: Evaluation on Terminal

• For Google Colab to run Tensorboard from train folder kindly follow the path:
reload ext tensorboard
load ext tensorboard
!cd
/Tensorflow/workspace/models/ssd 640 640/train/
tensorboard –logdir .

• For Google Colab to run Tensorboard from eval folder: reload ext tensorboard
load ext tensorboard

!cd /Tensorflow/workspace/models/ssd 640 640/eval/
tensorboard –logdir .

• Kindly refer the following figure 18 and figure 19 to see the TensorBoard outputs.

• We can even detect the object by inputting an image. Kindly refer the figure 20

• In the final portion of the code we can run our our live feed cam to detect an image
using our webcam. Kindly refer the figure 21, figure 22 and figure 23

• we can finally save the model and the checkpoint so that one dose not have to run
the complete program again. Kindly refer the figure 24

10



Figure 18: Tensorboard Loss and Learning graph

Figure 19: Testing using an image from test folder

Figure 20: Detecting the object from an image

11



Figure 21: Detecting and object using live feed 1

Figure 22: Detecting and object using live feed 2

Figure 23: Detecting and object using live feed 3

Figure 24: Load the checkpoints and save model

12


	Introduction
	Hardware and Software configurations
	Data Preparation
	Creating Environment

	Project Development
	Data collection
	Training and Detection


