"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Pramod Belur Ramesh
Student ID: 19211015

School of Computing
National College of Ireland

Supervisor: Dr. Athanasios Staikopoulos

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Pramod Belur Ramesh
Student ID: 19211015
Programme: Data Analytics
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Athanasios Staikopoulos
Submission Due Date: 31/01/2022
Project Title: Configuration Manual
Word Count: 758
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Pramod Belur Ramesh
19211015

1 Introduction

This is a configuration manual designed to provide all the configuration and installations
required to run the project, ” Automated Code Summarization of Program Subroutines
Using Deep Learning Technologies”. The reminder of this manual is divided into the
following,

2 Hardware Requirements

Although it is recommended that this project be run on a cloud provider such as Google
Collaboratory, it is also possible to run this project but the following hardware configur-
ations are assumed to be bare-minimum. Table [1] shows the list of hardware required.

Table 1: Hardware Requirements.

Hardware Specification 1
RAM 8gb
Processor Intel(R) Core(TM) i5-8300H
Operating System | Windows 10, 64 Bit or Ubuntu 18.04
Storage 1 TB HDD
GPU NVIDIA GeForce GTX1650

3 Software Requirements

This section covers the software that is needed for the reproduction of this project.

1. Github Desktop: The project was developed using github as a repository, for the
maintenance of files, in local laptop as well as to connect to Colaboratory, it is best
to install github desktop[!}

2. Anaconda Distribution: Anaconda is a popular distribution framework that can
host a number of software products such as Jupyter notebook and other visualiza-
tion tools, this framework will help in running the projects locally.

Thttps://desktop.github.com/

3.1 Google Colaboratory

Colaboratory is software service where in Jupyter notebook can be run with GPU services,
this project vastly used this feature to run the code from github as well as maintain data
in google drive. The following shows steps to connect colab to github and gdrive.

3.1.1 Connect to github from Google Colaboratory
1. Open google Colaboratory and click on the three lines as shown in Figure

h Code + Text & Copy to Drive

Q,
€O Whatis Colaboratory?
<
Colaboratory, or "Colab” for short, allows you to write and execu
tx} + Zero configuration required
s Free access to GPUs
O

s Easy sharing

Whether you're a student, a data scientist or an Al researcher, C
just get started below!

~ Getting started

The document you are reading is not a static web page, but an i
code.

For example, here is a code cell with a short Python script that «

[1 seconds_in_a day = 24 * 6@ * 68
seconds_in_a_day

20480

To execute the code in the above cell, select it with a click and t

Figure 1: Step 1 to connect to drive from colab.

2. Click on the folder icon as shown in Figure
3. Click on the google drive logo as indicated in Figure

4. The code that needs to be run for the drive to be mounted gets added to the cell
of the notebook, running which will mount the drive to the colab, shown in [4]

3.1.2 Connect to github from Google Colaboratory

1. Click on file open new notebook on colab

‘= Table of contents

Q, Getting started
Data science

<> . .
Machine learning

{x) More Resources

Machine Learning Examples

Section

Figure 2: Step 2 to connect to drive from colab.

‘= Files

o B 2

<>
» [sample_data

{}

Figure 3: Step 3 to connect to drive from colab.

° from google.colab import drive
drive.mount('/content/drive")

Figure 4: Step 4 to connect to drive from colab.

. In the pop up choose 'github’ and make sure to check 'include private repo’, if the

repository is private.

Github will ask for permission to share repo with google, saying yes to which code
can be pushed directly from colab to github repo.

The github account will be connected to colab and all the files, branches and repos from
the github repo user will start to show in colab as shown in Figure ?7.

4

Examples Recent Google Drive GitHub Upload
Enter a GitHub URL or search by organization or user Include private repos
pramx19211015 Q,
Repository: [F Branch: [£
pramx19211015/msc-research-project-pramod v main v

Path
0 0_data_extraction.ipynb B =z
O 1_explore_funcom_basic.ipynb B =z
0 2_code_gnn_bilstm.ipynb B &z
() AttentionLayer ipynb B @
Cancel

Figure 5: github connected to colab.

Navigating Code and Data

This section shows how to navigate through the actual code base of the data and various
important steps in the code along with screen shots for facilitate reproduction (LeClair

and McMillan; 2019).

4.1 Dataset

1.

Dataset was downloaded from the funcomP|website provided by [LeClair et al/ (2019)
and also recommended in their seminal article that describes best practices in detail.
The dataset looks like as shown in Figure [0]

Downloaded dataset looks this way once it is extracted is shown in Figure [7]

Function in 'funcom_extraction.ipynb’ that downloads the data programatically for
exploration is shown in Figure

Dataset that is fed into a pandas dataframe, a section of function and comments is
shown in Figure [9]

2http://leclair.tech /data/funcom/

project_id function_id function

10536 9245436 * public void close() throws 10Exception {\n
input.close();\n }\n'

52274 50900999 “\tpublic void render(GameData data)
{\n\t\tsetText(Message.render(data, type.getPattern(),
attributes));\n\t}\n'

10536 9245436 "public void close throws ioexception input close’

52274 50900999 ‘public void render game data data set text message

render data type get pattern attributes’

comment

* /** By default, closes the input Reader. */\n'
“\t/**\n\t * Renders the message and updates the
message text.\n\t *\n\t * @param data The GameData
for replacing unit IDs and region coordinates\n\t */\n’

‘by default closes the input reader’

‘renders the message and updates the message text’

Figure 6: Funcom dataset.

]| | test

train

valid
|:] comments
| fid_pid
|:| functions
| | README
mj shuffle

Figure 7: Downloaded dataset.

def get_funcom_data(remove_id=True):
dataset = []

dataset_name = wget.download("https://s3.us-east-2.amazonaws.com/leclair.tech/data/funcom/funcom tokenized.tar.gz")

tar = tarfile.open("funcom_tokenized.tar.gz", "r:gz")
#print([member.name for member in tar.getmembers()])
for member in tar.getmembers():

data = []

if member.name == ‘funcom_tokenized/comments' or member.name == 'funcom_tokenized/functions':

file = tar.extractfile(member)

for line in file:
sentence = copy.copy(line.decode())
sentence = re.sub(r'~.*?\t', "', sentence)
sentence = re.sub(r'\n‘, '’
data.append(sentence)

dataset.append(data)

. sentence)

return dataset

Figure 8: Programmatic Downloaded dataset.

° dataset = get_funcon_data()

print("Comments:\n”, dataset[8][:5])
print("\nFunctions:\n", dataset[1][:5])

Comments:
['urites the specified character info the buffer’, 'create an ast node with the token type and text passed in but', 'changes the suit of the playing card', 'generates the most

Functions:
[* public void write int ¢ if ¢ 1 current append char ¢ If ¢ n current new string buffer lines add current’, ' public ast creste int type string txt token first token last ast

Figure 9: Programmatic exploration of dataset.

4.2 Modelling Code with keras and tensoflow

This section walks through the main parts of the code that is present in the notebook
'2_code_gnn_bilstm.ipynb’.

4.2.1 Importing libraries
The requried libraries are imported as shown in Figure

from keras import backend as K

from tensorflow.python.keras import backend as K
from tensorflow.python.keras.layers import Layer
import tensorflow as tf

import tarfile

!pip install wget

import wget

import

import

import numpy as np

import pandas as pd

from sklearn.model_ selection import train_test split

import re

import os

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from nltk.corpus import stopwords

from tensorflow.keras.layers import Input, LSTM, Embedding, Dense, Concatenate, TimeDistributed, Bidirectional
from tensorflow.keras.models import Model

from tensorflow.keras.callbacks import EarlyStopping

import warnings

pd.set_option{“display.max_colwidth™, 28a)

warnings.filterwarnings({"ignore™)

Figure 10: All imports that are needed.

4.3 Graph Layer

The graph layer implemented by [LeClair et al.| (2020) is used here, the model was better
for understanding. This model is placed in the ’custom’ folder and the file name is
"GCNLayer.py’.

4.4 Encoder & decoder

Encoder and decoder layer are added in the file "2_code_gnn_bilstm.ipynb’; this includes
an embedded layer, input layer and a bidirectional LSTM. GCNLayer is also added as an
input to the encoder. The decoder also contains embedded space, and takes in the initial
states of encoder as the input.

4.5 Attention Layer

The famous attention framework proposed by is present in ’AttentionLayer.ipynb’. This
attention layer is based on the paper by [Vaswani et al.| (2017)).

4.6 Running the model

The method 'decode_sequence’ needs to be run with the input sequence, this input se-
quence needs to be a tensor and should be reshaped using numpy as shown in Figure

results = pd.DataFrame(
{'Function': [], 'Original Comment': [], 'Predicted comment': []})

function, o_comment, p_comment = [], [], []

for 1 in range(len(x_validation)):
function.append(sequence_to_code(x_validation[i]))
o_comment . append(sequence_to_comment(y_validation[i]))
p_comment.append(decode_sequence(x_validation[i].reshape(1l, max_len_code)))

results['Function'] = function
results['Original Comment'] = o_comment
results['Predicted comment'] = p_comment

Figure 11: Running the model.

4.7 Evaluation

The code is evaluated by using the ’Evaluation.ipynb’, the code to separate id and com-
ment is shown in Figures [12] and

for result in results_list:
data = pd.read _csv(result)
hypotheses = data['Predicted comment']
references = data['Original Comment']
list_of_references = references.tolist()
list_of_hypotheses = hypotheses.tolist()

sentence_based_references = [reference.split(’ ') for reference in list_of references]
sentence_based_hypotheses = [hypothesis.split(" ') for hypothesis in list_of hypotheses]
print("\nFile name: ", result)

bleu_score_c = nltk.translate.bleu score.corpus_bleu(sentence_based_references, sentence_based_hypotheses)
print("\nBleu Score: ", bleu_score_c)

Figure 12: Evaluation code

File nams: results_ 2ok filtered 1508 _e58.csw
fusrflocal/lib/python3.6/dist-packages/nltk/translate/bleu_score.py:490: Userkarning:
Corpus/Sentence contains @ counts of 3-gram overlaps.
BLEUW scores might be undesirable; use SmoothingFunction().

warnings .warn{_msg)
Bleu Score: B.a85713205093790273
File name: results_28k_ tokenized_150@_b64.csv
fusrflocal/lib/python3.6/dist-packages/nltk/translate/bleu_score.py:496: Userkarning:
Corpus/Sentence contains @ counts of 2-gram overlaps.
BLEUW scores might be undesirable; use SmoothingFunction().

warnings .warn{_msg)
Bleu Score: B.426356756279426593
File nams: results_38k_tokenized_1508_b64.csv
Bleu Score: 2.4234159247388888

File nams: results_6@k_tokenized_150@_eS5@.csv

Bleu Score: 2.4168127493746352

Figure 13: Example of evaluation result during one of the epochs.

References

LeClair, A., Haque, S., Wu, L. and McMillan, C. (2020). Improved code summariza-
tion via a graph neural network, Proceedings of the 28th International Conference on
Program Comprehension, ICPC ’20, Association for Computing Machinery, New York,
NY, USA, p. 184-195.

URL: https://doi.org/10.1145/3587904.3389268

LeClair, A., Jiang, S. and McMillan, C. (2019). A neural model for generating nat-
ural language summaries of program subroutines, 2019 IEEE/ACM /1st International
Conference on Software Engineering (ICSE), IEEE, pp. 795-806.

LeClair, A. and McMillan, C. (2019). Recommendations for datasets for source code
summarization, arXw preprint arXiv:1904.02660 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.
and Polosukhin, I. (2017). Attention is all you need, Advances in neural information
processing systems, pp. 5998-6008.

	Introduction
	Hardware Requirements
	Software Requirements
	Google Colaboratory
	Connect to github from Google Colaboratory
	Connect to github from Google Colaboratory

	Navigating Code and Data
	Dataset
	Modelling Code with keras and tensoflow
	Importing libraries

	Graph Layer
	Encoder & decoder
	Attention Layer
	Running the model
	Evaluation

