~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Merve Baskan
Student ID: 20238096

School of Computing
National College of Ireland

Supervisor: Paul Stynes, Musfira Jilani and Pramod Pathak

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Merve Baskan
Student ID: 20238096
Programme: Data Analytics
Year: 2021-22
Module: MSc Research Project
Supervisor: Paul Stynes, Musfira Jilani and Pramod Pathak
Submission Due Date: 19/09/2022
Project Title: Configuration Manual
Word Count: XXX
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual: A Machine Learning
Framework to Address Customer Churn Problem
Using Uplift Modelling and Prescriptive Analysis

Merve Baskan
20238096

19/09/2022

1 Introduction

This document provides an overview of all the processes followed in the research project.
The performance of each machine learning model is assessed, and the best model is chosen.
The tools, approaches, and libraries utilized are explained in the following sections of this
document. This research aims to compare the uplift model and the conventional customer
churn prediction model. The ability to target the right customer group is evaluated for
both models.

As stated in the research report, Experiment 1 is a replica of state-of-the-art research
and the implementation is provided in open source by the author. Fxperiment 2 and
Experiment 3 were explained in this document. [[]

2 Hardware and Software Specifications

Software Specifications: The Integrated Development Environment (IDE) used for
the implementation of this research is Google Colaboratory and the programming lan-
guage used is Python (v.3.7.13). The main libraries that utilized are:Matplotlib (v.3.2.2),
Pandas (v.1.3.5), Xgboost (v.0.90), Seaborn (v.0.11.2) and Sci-kit learn (v.1.0.2)

Hardware specifications: ASUS ZenBook UM425UA-AM164T, Storage: 512GB
M.2 NVMe™ PCle®) 3.0 SSD, RAM: 8.0 GB, Processor: AMD Ryzen™ 5 5500U Mobile
Processor (6-core/12-thread, 11MB cache, up to 4.0 GHz max boost), Operating System:
Windows 10 Home.

3 Data Preprocessing

Figure 1| shows the Python libraries and packages required for the project. Since the
code block belongs to Experiment 2.2, it contains the XGBoost package. ”from sk-

lwebsite: https://www.kaggle.com/code/davinwijaya/why-you-should-start-using-uplift-modeling/
notebook

https://www.kaggle.com/code/davinwijaya/why-you-should-start-using-uplift-modeling/notebook
https://www.kaggle.com/code/davinwijaya/why-you-should-start-using-uplift-modeling/notebook

learn.linear_model import LogisticRegression” is used in Experiment 3.1 and 3.2, which
includes Logistic Regression application.

° fi# Importing the packages and libraries
import matplotlib as mpl, matplotlib.pyplot as plt, \
pandas as pd, seaborn as sns, xgboost as xgb, sklearn as sk
from sklearn.metrics import accuracy score, \
confusion_matrix, multilabel_confusion_matrix
from sklearn.model_selection import train_test_split

Figure 1: Python libraries and packages

In [Figure 2| 21572 null values in "reamining contract”, 381 null values in ”download
avg” and "upload avg” can be seen. Columns that will not be used for analysis and
381 null values are cleaned. "reamining contract” means that the customer has never
preferred the contract. Therefore null values can be filled with 0. Also, a new column
"has contract” is created to show whether the customer has already selected the contract

or not (0 or 1). The new dataset consists of 71893 non-null rows and 11 columns. ([Figure 3))

[] df.isna().sum()

a test_cols = df.columns.tolist(}
test_cols.insert(5, "has_contract')

57 - - .
4 ; ining_contract®].apply(lasbda x: @ if pd.isna(x) else 1)
3\
381 3, inplacesTrue)
8 i
- @ test_prepared = df[test_cols]
dtype: intsd . e s . P
column_names = ['is_tv_subscriber',"is_movie_package subscriber',”subsc
‘has_contract’, "service_failure_count’, *download 3
import numpy as np
dF[* dowr . ("', np.nan, inplace=True) dF = dF.reindex(colums=column_nases

dF["L
df .dropna(subsets[
df.dropna(subset=[‘upload_ave'],

nan, inplace=True)
*1, inplaces=True)
inplace=True)

Figure 2: Data Cleaning and Feature Engineering

[1 df.info()

<class 'pandas.core.frame.DataFrame'>
Inte4Index: 71893 entries, © to 72273
Data columns (total 11 columns):

Column Non-Null Count Dtype
®@ is_tv subscriber 71893 non-null int64
1 is_movie_package_subscriber 71893 non-null int64
2 subscription_age 71893 non-null float6éd
3 bill_avg 71893 non-null int64
4 reamining_contract 71893 non-null float6d
5 has_contract 71893 non-null int64
6 service_failure_count 71893 non-null int64
7 download_avg 71893 non-null floated
8 upload_avg 71893 non-null floated
9 download_over_limit 71893 non-null int64
1@ churn 71893 non-null int64

dtypes: float64(4), int64(7)
memory usage: 6.6 MB

Figure 3: Processed Data Before Uplift Model Applications

As a requirement of the uplift model, there should be a control group and a treat-
ment group. In the dataset in this research, churn(1) and not churn(0) already serve as

control groups. However, the treatment group should be selected. The treatment group
to be selected should also provide a binary classification as yes=1, no=0. As seen in
the first selected treatment column is "has contract” and the second is ”is tv
subscriber”. These two treatments were used in experiments independently of each other,
and treatment correlations(%) were compared in the research report.

[1 def correlation_treatment(df:pd.DataFrame):
"""Function to calculate the treatment's correlation

correlation = df[['treatment’,churn’]].corr(method =*pearson‘)

print(correlation)
return(pd. DataFrame(round(correlation.loc[' churn'] * 100,2)))

Modification in addition to previous uploaded code: Pearson correlation function from Pandas is used. The results that are in the range are
provided in the matrix. Then treatment correlation score as a percentage is provided.

[] print("Treatment correlation in dataset 1 (%):", correlation_treatment(df).iloc[6,0])

treatment churn
treatment 1.000000 -0.472771
churn -0.472771 1.000000

Treatment correlation in dataset 1 (%): -47.28

Figure 4: Treatment identification and treatment correlation of "has contract” (The
percentage print code was revised after the first submission

© def correlation_treatment(df:pd.DataFrame):
"""Function to calculate the treatment's correlation

correlation = df[['treatment’, churn’]].corr(method ='pearson’)

print (correlation)
return(pd.DataFrame(round(correlation.loc[*churn'] * 100,2)))

Modification in addition to previous uploadded code: Pearson correlation function from Pandas is used. The results that are in the range are
provided in the matrix. Then treatment correlation score as a percentage is provided.

L

print("Treatment correlation :", correlation_treatment(df).iloc[0,0])

treatment churn
treatment 1.000000 -0.329417
churn -0.329417 1.600000

Treatment correlation in dataset 1: -32.94

Figure 5: Treatment identification and treatment correlation of ”is tv subscriber” (The
percentage print code was revised after the first submission

After determining the control and treatment groups, the next step is to determine
the 4 target classes. In the research report, it is explained how the target classes are

determined. (Figure 6))

[] def declare_target_class(df:pd.DataFrame):
"""Function for declare the target class
#CN:
df['target_class'] = ©
#CR:
df.loc[(df.treatment == @) & (df.churn == @), "target class'] = 1
#TN:
df.loc[(df.treatment == 1) & (df.churn == 1), "target_class'] =
#TR:
df.loc[(df.treatment == 1) & (df.churn == @), "target_class'] =
return df

I
=]

I
[°8)

Figure 6: Identification of target classes

4 Machine Learning

shows that 30% of the data used for testing, and the remaining 70% of the data
for training. XGBoost training-test steps for both the uplift model and the conventional
churn model are shown. ”prediction_results” output can be seen in

In the conventional churn model, ’prediction_churn’ is used for accuracy. However,
’proba_churn’ is used to calculate the uplift for prescriptive analysis. For the Uplift
modeling prediction analysis, 4 different confusion matrixes are created for 4 different
target classes. Also, while XGBoost is used for Experiment 2, Logistic Regression is used

for Experiment 3. (Figure 8))

| def split_data(df:pd.DataFrame):
"==5plit data into training data and testing data

X = df.drop(["churn®, "target_class'],axis=1}
y = df.churn
z = df.target_class
X_train, X_test, \
y_train, y_test, \
z_train, z_test = train_test_split(X,
¥s

z,
test_size=0.3,
random_state=42)

return X_train,X_test, y_train, y_test, z_train, z_test

def machine_learning({X_train:pd.Dataframe,
X_test:pd.DataFrame,
y_train:pd.DataFrame,
y_test:pd.DataFrame,
z_train:pd.DataFrame,
z_test:pd.DataFrame):
"*“Machine learning process consists of

data training, and data testing process (i.e. prediction) with XGBoost (XGB) Algorithm

prepare a new DataFrame
prediction_results = pd.DataFrame(X_test). copy()

training of the conventional churn model

model_tp

= xgb.XGBClassifier().fit(X_train.drop(treatment', axis=1), y_train}
prediction steps of the conventional churn medel

prediction_tp \

= model_tp.predict(X_test.drop(' treatment’,axis=1))

probability_ tp \

= model_tp.predict_proba(X_test.drop('treatment”, awis=1))
prediction_results['prediction_churn'] = prediction_tp
prediction_results['proba_churn'] = probability_ tp[:,1]

training of the uplifted churn model

model_etu \

= xgb.XGBClassifier().fit(X_train.drop(’treatment’, axis=1), z_train)
prediction steps of the uplifted churn model

prediction_stu \

= model_etu.predict(X_test.drop{'treatment’, axis=1})
probability__etu \

= model_etu.predict_proba(X_test.drop(’treatment’, axis=1))
prediction_results['prediction_target_class'] = prediction_etu
prediction_results['proba CN'] = probability__etu[:,8]
prediction_results['proba CR'] = probability_ etu[:,1]
prediction_results['proba_TH'] = probability__etu[:,2]
prediction_results['proba_TR'] = probability_ etu[:,3]

Figure 7: Machine Learning using XGBoost

D def

X = df .drop([churn’, "target_class’],axis=1)

y = df.churn

z = df.target_class

¥_train, X_test, \

y_train, y_test, \

z_traln, 1_test = train_test_split(X,
¥e
test_size=0.3,
random_state-12,
stratify=df[treatnent’])

return K_train, X_test, y_train, y_test, r_train, z_test

with Logistic Regression Algorithn

prepare a new DataFrame

prediction_results = pd.DataFrame(X_test).copy()

#training of the conventional churn madel

model_tp \

= LogisticRegression(max_iter-1000) . Fit(X_train. drop(treatment’,
prediction steps of the conventional churn model

axis=1), y_train)

#training of the conventional churn model

model_tp \
= LogisticRegression(max_iter=1808) . fit(X_train.drop('treatment', axis=1), y_train)
prediction steps of the conventional churn model

prediction_tp \

= model_tp.predict(X_test.drop('treatment’,axis=1))
probability__tp \

= model_tp.predict_proba(X_test.drop(’treatment’, axis=1))
prediction_results[prediction_churn'] = prediction_tp
prediction_results['proba_churn'] = probability_ tp[:,1]

training of the uwplift model

model_etu \

= LogisticRegression(max_iter=10008).fit(X_train.drop(treatment’,
¥ prediction Process for ETU model

axis=1), z_train)

prediction_etu

= model_etu.predict(X_test.drop('treatment’, axis=1))
probability__etu

= model_etu.predict_proba(X_test.drop(treatment’, axis=1))
prediction_results[‘prediction_target s'] = prediction_etu
prediction_results[‘proba_CN'] = probability_ _etu[:,®]
prediction_results['proba_CR'] = probability etu[:,1]

prediction_results[proba_TN'] = probability_ etu[:,2]
prediction_results[‘proba_TR'] = probability__etu[:,3]

prediction_results['score_etu’] = prediction_results.eval("\

Figure 8: Machine Learning using Logistic Regression (revised after first submission)

At first, logistic regression models do not converge, therefore, the maximum number of
iterations for logistic regression are increased to solve this problem (1000 max. iterations
for the conventional churn model, and 10000 max. iterations for the uplift model)|Figure 8

After the iteration change, model fitting is provided. Also, ”stratify” parameter is added
in order to avoid bias. One of the disadvantages of logistic regression emerges as the
dataset is linearly separable. As seen in in the application performed with
treatment 1, 7CN” and "CR” probabilities are close to 0, while "TN” and "TR” has

values close to 1. Although using ”stratify” mitigates this condition, negative uplift
scores still occur.

prediction_results['score_etu'] = prediction_results.eval('\
proba_Cl/ (proba_Cl+proba CR) \

+ proba_TR/(proba_Th+proba TR) \

- proba_TN/(preba_TN+proba_TR) \

~ proba CR/(proba_Ch+proba CR)')

add the churn and target class into dataframe as validation data
prediction_results['churn’] = y_test
prediction_results['target_class'] = z_test

return prediction_results, model_etu.feature_importances_, model_tp.feature_importances_

def predict(df:pd.DataFrame):
"""Combining data split and machine learning process with XGB

X_train, X_test, y_train, y_test, z_train, z_test = split_data(df)
prediction_results, feat_import_etu, feat_import_tp = machine_learning(X_train,
X_test,
y_train,
y_test,
z_train,
z_test)
print("Prediction succeeded")
return prediction_results, feat_import_etu, feat_import_tp

Figure 9: The rest of machine learning process and uplift score calculation for uplift
model

rtance manually
oadtxt
AGBClassifier
rt pyplot

rtance manually
rt loadtxt
XGBClassifier
ort pyplot

rt_tp)

plot
pyplot.bar(range(len(feat_impart_tp)), feat_import_tp) pyplot.bar(rar
pyplot.show()

ge(len(feat_inport_etu)), feat_import_etu)

pyplot. show()
[9.60219546 0.91518508 0.0167754 0.7482843 0.05948396 0.00524637 [[0.12755027 ©.02027129 0.0309301 ©.60202736 0.07955728 ©.0011285
0.11764301 0.03244858 ©.01043561] 0.10603130 8.0274068 0.08509698)

01

Figure 10: Feature Importance Plots

In the final part of the machine learning code block is presented and uplift
score is calculated for the uplift model using Lai’s generalized weighed uplift method

(LGWUM). In [Figure 10| feature importance plots for conventional churn prediction
model and uplift model are shown when XGboost is used. Although this step is not used

in research, this step will be important when a similar study is done with a dataset with
many attributes.

5 Evaluation

is shown to explain the results more clearly: The uplift score calculated from
the target class prediction probabilities for uplift model and the churn probability is used

[1 prediction_results

irvice_failure_count download_avg upload_avg download_over_limit prediction_churn proba_churn PREHSCERONIEAFESENCISSE proba CN proba CR proba TN proba TR Scorelctd churn [ESFESENEISES

0 106.3 142 0] 0.055426 3 0.000956 0.001095 0.068535 0.929414 0.794526 0 3
0 238 76 0 0 0.056250 3 0014565 0021434 0046430 0917572 0.712861 0 1
0 5.0 0.3 0 1 0.959713 2 0423940 0013739 0534654 0.027667 0.035619 1 0
0 310 49 [1 0.983340 2 0137084 0006705 0837242 0018969 -0.048946 1 2

Figure 11: Prediction Results

[] prediction_results

ice_failure_count download_avg upload_avg download_over_limit prediction_churn proba_churn prediction_target_class proba CN proba_CR proba_TN proba_TR score_etu churn target_class

0 1063 142 0 0 000623 3 14992820 2606178 0007206 0992774 0014451 0 3
0 238 76 0 0 0.041279 3 2308331 6 057866&; 0.056961 0943039 -0.113920 0 3
0 50 03 0 1 0982015 g 40800916 8836995 4 soug00 0008235 0007164 1 0
0 31.0 49 0 1 0.885177 2 2.48579%- 1 074265092' 0.633962 0.106716 0.205305 1 2
> 1209 54 0 0 0003905 3 2874503 1386699 (004332 0095668 -0.008663 1 2

Figure 12: Prediction Results- Logistic Regression (without stratify)

for the conventional model. ’churn’ and ’prediction_churn’ are used for conventional
customer churn prediction accuracy. ’target_class’ and 'prediction_target_class’ are
used for the uplift model accuracy. Therefore, while the conventional model predicts 2

outcomes, the uplift model predicts 4 outcomes.(Figure 13))

n{df :pd.DataFrame) :

akurasi_cp = accuracy_score(df['
£ m

" % (akurasi_cp * 180.8))

akurasi_uplift = accuracy_score(df[targ 1.
arget_class'])

int('Uplifted churn model accuracy: %.27%%° % (akerasi_uplift * 100.9))

[1 accuracy_evaluation{prediction_results)

Conventional churn model accuracy: B7.79%
Uplifted churn model acouracy: 79.B8%

Figure 13: Confusion matrix and accuracy results

In function ranks the churn probabilities and uplift scores to plot the Qini
curve, and the steps for obtaining the Qini curve, Qini coefficient are also shown. The
Qini-Coefficient is defined as the difference between the area under the Uplift Curve
and the area under the random curve. The calculation below is also included in the
code block. z= population with treatment, N= total number of customers, uplift(z) =
Nz[(TR/T)-(CR/C)] Calculating and adding the Qini value into dataframe in the code
block includes the formula below:

N-1
qini coef ficient = Z upli ft — random model curve

n=0

Finally, as seen in uplift model’s curve illustrated as "UPLIFT” with red
line and conventional customer churn model’s curve illustrated as ?CHURN” with blue

° def sorting_data(df:pd.DataFrame):
"""Function to sort data
Set up new DataFrames for the models
df_c = pd.DataFrame({'n":[], 'target_class':[]})
df_u = df_c.copy()
df_c['target_class'] = df["target_class”]
df_u["target_class'] = df["target_class']

Add quantiles

df_c['n'] = df.proba_churn.rank(pct=True, ascending=False)
df_u['n'] = df.score_etu.rank(pct=True, ascending=False)
df_c['score’] = df['proba_churn']

df_u['score’] = df['score_etu’]

Ranking the data by deciles

df_c = df_c.sort_values(by="n").reset_index(drop=True)
df_u = df_u.sort_values(by="n").reset_index(drop=True)
df_c['model’], df_u['model’] = 'CP', 'Uplift’

return df_c, df_u

’ def calculating qini(df:pd.DataFrame):

"""Function to measure the Qini value

Calculate the C, T, CR, and TR
C, T = sum{df['target_class'] <= 1), sum(df['target_class'] >= 2)

df[‘er'] = @
df["tr'] = @
df.loc[df.target_class == 1,'cr'] = 1
df.loc[df.target_class == 3,'tr'] = 1

df[‘erfc'] = df.cr.cumsum() / C
df['tr/t'] = df.tr.cumsum() / T

Calculate & add the qini value into the Dataframe

df[‘uplift'] = df['tr/t"] - df["cr/c’]

df['random’] = df['n"] * df[uplift’].ilec[-1]

qini_coef= df['uplift’].sum(skipna = True} - df['random’].sum(skipna = True)

Print the Qini coefficient
print(‘Qini coefficient = {} {}'.format(round(gini_coef, 2), '%'})

Add g2 into the Dataframe

q@ = pd.DataFrame({'n':@, 'uplift':@, 'target_class': None}, index =[@8])
qini = pd.concat([g@, df]).reset_index(drop = True}

return gini

Figure 14: Qini Curve Process and Qini coefficient Part 1

line.(’deepskyblue’). The random model is indicated by the gray line and is considered
the baseline for the evaluation section. shows the outputs of Qini curve plots,
Qini coefficient results for XGBoost with treatment 1(Experiment 2.1) and treatment

2(Experiment 2.2).

_data(df_c:pd.DataFrame, df u:pd.DataFrame):
nction to add the "Model” column and merge the dataframe into one

df_uf “model’] = "UPLIFT
df_cf "model’] = CHURN®

df = pd.concat{[df_u, df _c]).sort_values{by="n").reset_index{drop = True)

return df

def plot_gini{df:pd.DataFramse):
“""Function to plot the gini curwve

print(‘\nPlotting the ginl curve...®)

Define the data that will be plotted

ordeér = [UPLIFT", "CHURN"

ax = sng. lingplot(x="n", ye=df uplift, hug='model®, data=df,
style="model’, palette=['red”, “deepskyblus'],
style_ordersorder, hue_order = order)

Additiomal plot display settimgs

handles, labels = ax.get_legend_handles_labels()
plt.xlabel(Proportion targeted®,fontsizes38)
plt.ylabel{ uplift", fontsize=38)
plt.subplots_adjust({rightel)
plt.subplots_adjust{tep=1})

plt. legend({fontsizes30)

ax. tick params|labelsize=2d])
ax.legend(handles=handles[:], labels=labels[:])

ax.plot([@,1], [@,¢f.lec[len(df) - 1, uplife']],"--", colors'grey”})
{*Successfully plot the gini curve®)
n ax
def evaluation_gini{prediction_results:pd.DataFrame):

“*“Function to combine all ginl evalustion processes

df ¢, df_u = sorting_data(prediction_results)
print{"Conventional Model®)

qini_ caleulating gind(df c)

print{ \nUplifted model:')

qini_u = calculating qini(df_u)

qinil = merging_data{qind_c, gqind_u)

ax = plot_gini{gini)

return ao, qind

Figure 15: Qini Curve Process and Qini coefficient Part 2

As explained, the logistic regression models do not converge without editing, however,
results are stable, when the same steps as XGBoost are applied. Due to the large number
of poorly fitting observations, there is a lack of convergence, that means the data does
not fit the model properly. Therefore, the maximum number of iterations for logistic

regression are increased.

Conventional Model
Qini coefficient -

Uplifted model

-3672.73 X

Conventional
Qini coefficient =

Madel
-2536.44 %

Uplifted model:

Qini coefficient = 4207.1 % Qini coefficient = 2968.72 X
Plotting the gini curve... Plotting the gini curve...
Successfully plot the qini curve successfully plet the gini curve
Text(@.5, 1.0, '¢ini Curve - Experiment 2.1°) Text{8.5, 1.8, 'Qini Curve - Experiment 2.2°)
Qini Curve - Experiment 2.1 Qini Curve - Experiment 2.2
0.6 {— wur —_— B —
CHUR o e
HURN ~, 0.4 CHURN
&
0.0.2
=
0.0 -
0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Proportion targeted Proportion targeted

Figure 16: XGBoost - Qini Plot and Qini coeffficient Results

XGBoost successfully manages to deliver a positive uplift for the customer churn
without fail in all experiments. Even though the logistic regression models
have a successful uplift and Qini curve with the same application, the models do not
converge. The Qini curves and Qini coefficients of the logistic regression models before
convergence are shown in The convergence problem in logistic regression is
fixed and the effect of the stratify parameter on the result is examined. After adding the
parameter, approximately 129% Qini coefficient increase is observed in experiment 3.2,

therefore, it is used in the project[Figure 19|

Conventional Model
Conventional Model

Qini coefficient = -2438.44 %
Qini coefficlent = -14B7.49 %
upLift del: Uplifted model:
e Qini coefficient = 2138.9 %

Qini coefficient = 2782.11 X

Flotting the gini curve...
Plotting the gini curve... ; i
Successfully plot the gini curve

Successfully plot the gini curve Text(®.5, 1.0,

Text(@.5, 1.8, "Qini Curve -

Qini Curve - Experiment 3.1

"Qini Curve - Experiment 3.2')
P

Qini Curve - Experiment 3.2

Experiment 3.1°)

— 0.4 cumn — 7
0.3
502

=

0.1

0.0

0.00 025 050 0.75 100
Proportion targeted

0.00 0.25 050 0.75 1.00
Proportion targeted

Figure 17: Logistic Regression- Qini Plot and Qini coeffficient Results(before revision)

Conventional Model

Conventional Model
Qini coefficient = -3485.35 %

Qini coefficient = -2430.85 %
Uplifted model:

Uplifted model:
Qini coefficient = -36@7.03 %

Qini coefficient = 649.14 %
Plotting the gini curve...

Successfully plot the gini curve

Text(@.5, 1.8, 'Qini Curve - Experiment 3.1")

Qini Curve - Experiment 3.1

Plotting the gini curve...
Successfully plot the gini curve
Text(e.5, 1.@, 'Qini Curve - Experiment 3.2")

Qini Curve - Experiment 3.2

— 0.4~ qum
0.4 03 '/'
£ &
= 2.0.2
502)
0.1] ,
0.0 RS Pty g 0.0 A _,
0.00 0.25 0.50 0.75 1.00 0.00 025 050 0.75 1.00
Proportion targeted Proportion targeted

Figure 18: Logistic Regression- Qini Plot and Qini coeffficient Results (after the max-
imum iteration increase)

Conventional Model

Conventional Model
Qini coefficient = -3499.51 %

Qini coefficient = -2432.23 %

Uplifted model:

Uplifted model:
Qini coefficient = -3088.26 %

Qini coefficient = 778.8 &

Plotting the gini curve...

Plotting the gini curve...
Successfully plot the gini curve

Successfully plot the gini curve

Text(.5, 1.8, 'Qini Curve - Experiment 3.1°) Text(e.5, 1.@, 'Qini Curve - Experiment 3.27)
Qini Curve - Experiment 3.1 Qini Curve - Experiment 3.2
— o 0.4~ 4 —
0.4 0.3
£ £
= - 0.2
[e}
502 =
0.1
0.0 < . 0.0 A e
0.00 025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Proportion targeted Proportion targeted

Figure 19: Logistic Regression- Qini Plot and Qini coeffficient Results (after the max-
imum iteration increase and using stratify)

	Introduction
	Hardware and Software Specifications
	Data Preprocessing
	Machine Learning
	Evaluation

