~

\" National
College
Ireland

Configuration Manual for A Machine
Learning Framework for Prediction of
Empathy through Evye-tracking and Speech
Analysis

MSc Research Project
Data Analytics

Rahul Badarinath
Student 1D: 20247702

School of Computing
National College of Ireland

Supervisor: Dr. Anu Sahni
Supervisor: Dr. Paul Stynes

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Rahul Badarinath
Student ID: 20247702
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Dr. Anu Sahni
Submission Due Date: 15/08/2022
Project Title: Configuration Manual for A Machine Learning Framework for
Prediction of Empathy through Eye-tracking and Speech Ana-
lysis
Word Count: 1665
Page Count: O

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | (I
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual for A Machine Learning
Framework for Prediction of Empathy through
Eye-tracking and Speech Analysis

Rahul Badarinath
20247702

1 Introduction

This document is to provide details about the steps involved in the implementation of the
research project - ’A Machine Learning Framework For Prediction of Empathy Through
Eye Tracking and Speech Analysis’.

The configuration manuals provides a detailed step-by-step process of how the research
was conducted and how the results were procured. The research aims to determine how
efficiently can you measure the level of empathy in humans through Eye-tracking and
Speech Analysis?

This implementation involves the use of a YOLOv5 model in conjunction with a
ResNet50 model.

The structure of this research is presented in the phases through which this research
was conducted. They are:

e Section 2: Hardware and Software requirements - This section comprises of the
system specifications, tools and techniques used.

e Section 3 Data Collection - This section will comprise of the process adopted to
collect data from the participants.

e Section 4 Data Pre-Processing - This section will comprise of the various ways in
which data extraction, data transformations, exploratory data analysis, and mod-
elling was done.

e Section 5 Implementation - This section outlines the implementation overview of
this project.

e Section 6 Conclusion - This section will comprise of the findings and the conlcusion
of this manual.

2 Hardware and Software Requirements

The research project used multiple devices with various hardware and software configur-
ations. Each of these is mentioned below.

e Eye-tracking: Eye-tracking glasses were provided by the National College of Ireland.
This device was manufactured by SensoMotoronic Instruments(SMI) who had also
provided a Dell Laptop and a Samsung Note 4 as an interface with the device.
The glasses comprised of 3 cameras, two inward of the glasses to track the retina
and presence of the eye, on in between the eyes outward of the glasses to track
the gaze behavior of the participants. This device is a wired setup and requires
to be connected to a smartphone to be used. The use of these glasses is highly
popular in the research community and has been used by millions of users. These
glasses record the gaze at a sampling rate of 60 hertz. SMI’'s BeGaze software is
used to extract the eye-gaze features and other eye-tracking metrics such as blink,
saccades,etc.

e Speech Analysis: The speech samples are recorded using a standard voice recorder
embedded within the phone. The recorder in the phone records each of the samples
at 44.1Khz. Each of these samples is then processed using Matlab software where
they are re-sampled at 16khz for processing. The same software has a wide array of
auditory analysis options such as extraction of MFCC features, extraction of logar-
ithmic spectral amplitude (LSA), de-noising using Short-time Spectral Amplitude
algorithms (STSA), resampling of the speech signals, etc.

e Storage: The data that was collected, analyzed or procured from various sources
were stored in OneDrive by Microsoft. This central data repository was provided
by the National College of Ireland.

e Machine Learning (ML): There were precisely two model built, one was the YOLOv5
and the other was the Resnet50 model. THe YOLO model was built on top of GPUs
in Google Colab, due to the need for high computing power to train the model. The
Resnet model was built on the local machine with Nvidia 1660 TT gpu, and an Intel
i7 9th gen processor with python and jupyter as the coding mediums.

3 Data Collection

The Eye-tracking experiment was performed on 50 participants all directly linked to the
university. Proper ethical considerations were taken prior to the experiments. Out of
the 50 participants, there were a total of 14 female participants, and a total of 36 Male
participants between the ages of 19 to 30 years old. The participants were asked to watch
video-based stimuli for which their eyes were tracked. Each participant was asked to
self-report their sadness level on a scale of 1-10 before the start of the experiment. This
data was taken into an excel sheet, along with their Name, Age, and Sex. The participant
was then made to sit in front of the screen and a 3-point calibration was performed using
the eye-tracking glasses. The participants were then asked to watch the videos was their
eye-gaze was tracked. On completion, they were asked to self-report their sadness levels
after watching the videos. The participants were then tasked with a 10 questions based
Memory Test, which carried 1 mark each. Post which, the participants were asked to
answer any one of the two questions asked, to record their speech sample, in under 1
minute. On completion of this, the participants were asked to fill out an empathy-based
questionnaire which comprised of 10 questions each marked based on a 7-point likert scale.
The total time duration for this experiment was between 25-30 minutes per participant.
The list of features extracted is provided below:

Age - Age of the participant (Self Reported)
Sex - Gender of the participant (Self Reported)

Sadness Level Before Experiment - Sadness level before watching the stimuli video
(Self Reported)

Sadness Level After Experiment - Sadness level after watching the stimuli video
(Self Reported)

Difference in Sadness - Differences in self reported sadness level before and after
watching the video (Calculated Field)

Memory test - 10 Multiple Choice-based questions based on the visual stimuli.

Average Distance from Right Eye - The average distance from right eye of the actor
on screen. To derive this, dlib library was used to identify the coordinates of the
corner of the eye. Further, the center-points for both eyes (iris) were calculated, and
the average distance of the point-of-gaze from the centre of the eye was calculated.

Average Distance from Left Eye - The same process as above was repeated for the
left eye.

blink mean - Average duration of blinks of the participant (Obtained from SMI
BeGaze Analysis Software)

Blink Std - Standard deviation of blink duration (Obtained from SMI BeGaze
Analysis Software)

Blink Percentage - The percentage of the total number of blinks (Obtained from
SMI BeGaze Analysis Software)

Saccade mean - Average Saccade duration (Obtained from SMI BeGaze Analysis
Software). Saccades are defined as the rapid movement of eyes away from a fixed
point which is commonly termed as a Distraction. For this experiment, the laptop
screen was the field of view, and any gaze pattern outside the screen was deemed
as a saccade.

Saccade standard deviation - Standard deviation of the saccade duration (Obtained
from SMI BeGaze Analysis Software)

Saccade Percentage - The total number of Saccades expressed as a percentage (Ob-
tained from SMI BeGaze Analysis Software)

Heat Maps - A heatmap essentially highlights the area of higest concentration over
a given period of time. For this experiment, the highest concentration of the parti-
cipant for the entirety of the visual stimuli was drafted in the form of a heatmap.
The Heatmap was generated using python based numpy libraries and seaborn for
visualization. A YOLO model was trained to depict the circles attributed to the
point of gaze and the pattern of occurence of the gaze on to a laptop screen. (Python
calculated field)

e Most Frequent Emotion : The speech sample was processed to depict the most
frequent emotion. Each speech sample was split into 25ms chunks and a speech
emotion recognition model was deployed to predict the emotion in that chunk. On
completion of the entire sample, the most frequent emotion predicted was taken.
(CNN based calculated feature)

4 Data Pre-Processing

This section comprises of various methods deployed for data pre-processing, extraction,
and exploratory data analysis.

4.1 Data Preparation

The eye-tracked videos were fed into BeGaze software and extracted. These extracted
videos were sampled at 1000 frames per second. To convert it to 25 frames per second, a
python script was deployed, as shown in Figure[2] The name of the python file containing
the code for extraction is convert_25fps.py. The obtained file is in Mp4 format.

: | Amport time

import cw2
def process{input_dir, output_dirl):

cap = cv2.VideoCapture(input_dir)
fps = cap.get{cv2.CAP_PROP_POS_FRAMES)
fourcec = cw2.Videowriter_fourcc({ X', W', ‘'I', "'D")

H
2]

int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
int{cap.get(cv2.CAP_PROP_FRAME_WIDTH))

out_1 = cv2.VideokWriter(output_dirl ,fourcc, 25,.(W.H))
start_time = time.time()
c=0

while cap.isOpened():

Cc+=1

ret, frame = cap.read()

if ret:
out_l.write(frame)

else:
cap.set{cv2.CAP_PROP_POS_FRAMES, @)
break

if cv2.waitKey(15) & @xFF == ord("'q"'): # Press 'Q" on the keyboard to exit the playvback
break

cap.release()
out_1.release()

f_time = time.time()
print{(f_time-start_time)
cw2.destroyal lWindows ()

Figure 1: Script to convert 1000fps to 50fps

The speech samples recorded were all under 1 minute and hence, a maximum buffer
of 60 seconds was created to store the speech sample during analysis.

4.2 Data Extraction

The feature extraction methodologies for this research is discussed below. For the ex-
traction of the heatmap of point of gaze of the eye, two YOLOv5 models were deployed,
one fore determining the point of gaze circle and the other for detecting the laptop screen
coordinates. First, the YOLOv5’s folder present on Github, hosted by Ultralytics was
cloned on the local system. The data required to train this model was acquired from
taking screenshots of the frames of raw data present (visual stimuli). From the raw data

(without eye-gaze), the coordinates of the laptop screen were determined, and for the
gaze data, the 1000fps data was leveraged. A total of 124 images were used to train the
YOLO model for circle detection, and a total of 215 images were used to train the YOLO
model for the laptop screen detection. These data points were annotated using the la-
belimg software, present in the open source domain. The trained YOLO model would
provide weights in the form of a.pt format. The training was simultaneously performed
for a total of 300 epochs with a batch size of 8.

A python command which was :

python detect.py —weights
path to model weights
best circle weight.pt —img 640 —conf 0.25 —source
path to video
participant 1.avi —save-trt —nosave —save-conf —name participant 1 —project circle or
screen/

was passed to detect the point of circle or screen. The output of this command would
be the generation of a text file in the same folder as the sample (unless explicitly changed)
with the coordinates of the circle or screen for each frame of the video.

Next, the generation of the average distance from the eye. To achieve this, the dlib
library was used. This library provides a coordinates of the face of the actors narrating the
story on screen. A jupyter notebook was created which contains the script to generate the
data points. The name of the file is “face_data_generation.ipynb”. The weights for running
this model is in the file called as “shape_predictor_68_face_landmarks.dat”. The obtained
results is in the form of a comma seperated file (csv) comprising of the coordinates for
the eyes of the actors on screen.

Since, there exists multiple files, a single jupyter notebook was created to call of these
commands in one file. The only dependency is to ensure the weights and other files for
the models are present in the respective directories.

In []:|inp € = "participant 1"
inp ¢ label = "participant 1"
inp s = "participant 1"

start = 53
end = 1426

start

= (int(start//188)*80*24)+(int(start¥180)*24)
and = (1

{in
nt(end//188)*66*24)+(int(end¥%168)*24)

print(start,end)

heatmaps(inp c,inp c label,inp s,inp s,inp s,start,end)

|dlib_|:li stance(inp c,inp c_label,inp s,start,end)

Figure 2: Script to Generate HeatMaps

A Speech Emotion Recognition (SER)-based model was procured from Github, which
was used to derive the Most Frequent Emotion for the entire speech sample. The com-

mands used to derive the speech emotion are :
python model_inference.py

path to the pre-trained model

option for how many features to extract (3,5,7)

path to audio file

4.3 Exploratory Data Analysis

The exploratory data analysis performed indicated certain attributes of the data such as
the number of female participants were 14, the number of male participants were 36, the
total range of their ages were between 19 to 30 years, of which majorly, the participants
were between 25-28 years of age. The average level of sadness for participants before
watching the videos was 2.5, while the level of sadness after watching increased to 4.06,
indicating that on an average the participants felt sad after watching the videos.The
average score secured for the memory test was 8 out of 10.

EEQ His}ogram ‘ Age His‘iogram
18 30
25
20
(15
. |
Log00r (007,094 [084,181 (181268 (266355 [19,21.3] [213,236] (236,259] (259,282] (28.2,30]
(a) Empathy-Score distribution (b) Distribution of Ages

Figure 3: Exploratory Data Analysis

5 Implementation

The final approach was to implement 3 different machine-learning models. All of these
model contained hyper-parameter tuning, randomized search and a 3-fold cross-validation
parameters. The 3 model deployed were Random Forest, Gradient Boosting, and Logistic
Regression. The research was conducted with 3 different machine learning models used.
All models were built using 3-fold cross validation and hyper-parameters were tuned
using randomized-search. Logistic Regression, Random Forest and Gradient Boosting
were used as part of this research.

Principal Component Analysis was performed on the heatmap data to depict the
correlated and necessary features to be used for the final prediction. The results showed
that 34 featuress of all the flattened pixels explained about 95% of the variance for the
heatmap, as shown in Fig 4| PCA was done to reduce the number of features from the
heatmap. it showed that 34 features from heatmap flattened pixels explain 95% of the
variance as shown in Fig.

11 The number of components needed to explain variance

10 4 ._._'_...-.-‘.-.
--r"'.‘.—
-
'.__.J
0.9 e ad
L
-
95% cut-off threshold -
o~
-
-
—= 08 P
W -~
-] -~
= wa
5 -
07
z e
= i
A
“ 06 ,J.
-
/
»
/
o5 K4
/
»
¥’
/
04 ,‘
i
J
I
J
»
03

i
012 3456 78 9101112131415161718192021222324252627282930313233 34353637 383940414243 44454647 4849
Number of Components

Figure 4: PCA Threshold for HeatMap features

5.1 Model 1 : Random Forest

A Random Forest model was built with hyper-parameter tuning, and cross-validation.
The cross-validation was kept to 3-fold, the hyper-parameters that were tuned were n-
estimators, maximum-depth, minimum-samples-leaf, minimum-samples-split. The model
was built using Random Search.

#RANDOM FOREST

Use the random grid to search for best hyperparameters

First create the base model to tune

rf = rfc()

Random search of parameters, using 3 fold cross validation,

search across 100 different combinations, and use all available cores

rf random = RandomizedSearchCV(estimator = rf, param distributions =
random_grid, n_iter = 100, cv = 3, verbose=2,
random state=42, n jobs = -1)

Fit the random search model

rf random.fit(X train, y train)

Figure 5: Code to initiate Random Forest mode

5.2 Model 2 : Gradient Boosting

A Gradient Boosting model was built with hyper-parameter tuning, and cross-validation.
The cross-validation was kept to 3-fold, the hyper-parameters that were tuned were n-

7

estimators, maximum-depth, minimum-samples-leaf, minimum-samples-split, and learn-
ing rate . The model was built using Random Search.

Use the random grid to search for best hyperparameters
First create the base model to tune
gradient boost = GradientBoostingClassifier()

Random search of parameters, using 3 fold cross validation,

search across 100 different combinations, and use all available cores

gradient_boost random = RandomizedSearchCV(estimator = ghc, param distributions =
parameters, n iter = 100, cv = 3,
verbose=1, random state=42, n_jobs = -1)

Fit the random search model

gradient_boost_random.fit(X train, y train)

Figure 6: Code to initiate Gradient Boosting model

5.3 Model 3 : Logistic Regression

A Gradient Boosting model was built with hyper-parameter tuning, and cross-validation.
The cross-validation was kept to 3-fold, the hyper-parameters that were tuned were solver,
penalty and C. The model was built using Random Search.

random search logistic regression model on the sonar dataset

log _regr = LogisticRegression()

define evaluation

cv = RepeatedStratifiedKFold(n splits=108, n_repeats=3, random_state=1)

define search space

space = dict()

space['solver'] = ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']

space['penalty'] = ['none', '11', '12', 'elasticnet’']

space['C'] = loguniform(le-5, 100)

define search

log_regr random = RandomizedSearchCV(log regr, space, n_iter=200, scoring='accuracy',
n_jobs=-1, cv=cv, random_state=1)

Figure 7: Code to initiate Logistic Regression

6 Conclusion

In conclusion, this report contains all the information pertaining to the procedures fol-
lowed in this research project. This ensures that the code is reusable. Everything per-
formed in this project is in the open-source domain, that can be reproduced. This report
is structured by the phases in which the research ensuring that the information is in
sequential format.

	Introduction
	Hardware and Software Requirements
	Data Collection
	Data Pre-Processing
	Data Preparation
	Data Extraction
	Exploratory Data Analysis

	Implementation
	Model 1 : Random Forest
	Model 2 : Gradient Boosting
	Model 3 : Logistic Regression

	Conclusion

