~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Data Analytics

Ibrahim Rinub Babu
Student ID: X19207387

School of Computing
National College of Ireland

Supervisor: Giovani Estrada

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ibrahim Rinub Babu
Student ID: X19207387
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Giovani Estrada
Submission Due Date: 31/01/2022
Project Title: Configuration Manual
Word Count: XXX
Page Count: S

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Ibrahim Rinub Babu
X19207387

1 1. Introduction

The setup manual covers all important information on the research project’s software and
hardware. It also lists the key libraries that were utilized, and section 3 contains the data
description. Furthermore, it explains numerous actions that must be followed in order to
recreate the work in any machine that meets the requirements outlined in the following
sections. This document explains how to create a Hand gesture Recognition ATM in a
clean environment.

2 System Configuration

2.1 Hardware Requirements

Hardware Configuration
RAM 24 GB
Hard Disk 1TB, 256 SSD
P AMD Ryzen 5 3550H with Radeon Vega
Mobile Gfx 2.10 GHz
GPU 4 GB Nvidia GeForce GTX 1650

Figure 1: Project management objective

2.2 Software Requirements

Softwares Configurations
Operating System Windows 10
Integrated Development Environment VS code editor
Cloud environment Google Colab
language & versions Python 3.6.9 ,HTML 5, CSS, JS
Frameworks OpenCV, Flask, Tensorflow, Keras

Figure 2: Project management objective

2.2.1 Local Integrated Development Environment

Visual Studio Code by Microsoft is an open-source code editor and compiler for opera
Windows, Linux, and macOS. Among the features are debugging, syntax highlighting,
intelligent code completion, snippets, code refactoring, and embedded Git. The front end
of the web application is built with VS code, and the exported model hb file from the
colab is merged with the front end of the website using the Flask framework. Users can
customize the theme, keyboard shortcuts, and preferences, as well as install extensions
that offer new features.

2.2.2 Cloud Integrated Development Environment

Google Colab is a cloud-platform for Collaborator Deep learning research programs. This
is akin to a Jupiter notebook environment, which does not require installation and op-
erates totally in the cloud. It makes combining executable code and rich content into a
single document easier. It can be used to store images, HTML, LaTeX, and a variety of
other files. Figure 1 depicts the appearance of a Google collaboration once you’ve logged
in. 1- Login to Google. 2- Open Google colab and login into it using the email address
3- This online IDE also allows you to import code from GitHub, Google Drive, or just
upload it. Any data file you want to use for the learning process and created model can
be uploaded to the generated data file using OpenCV. Once the data is mounted on the
drive, it can be accessed at any time by simply copying its path.

2.2.3 Languages and Framework

To implement the proposed idea, the programming languages such as Python, HTMI,
CSS, and JS are used. HTML, CSS, and JS are used to implement the front end of
the web application, Python Flask is used to host the server and to integrate the model
exported as H5 file form google colab.

2.2.4 Library’s

All the libraries listed below in the figure |3| are imported to execute every task in this
research.

Figure 3: Library Packages

3 Dataset Description

OpenCV is used to generate real-time hand gesture and face authentication dataset by
accessing the camera for training and testing all the models proposed in this research
paper. If the code is executed, it captured 20 images per second. The app.py file should
be executed to generate the dataset.

leoCapture(e)

*check account balance’

"‘withdraw_cash’

.read()

cv2.imshow(" Test™,

ase

stroyallWindows

Figure 4: Open CV

3.1 Hand gesture Datasets

The hand gesture data collection for training the DNN model to perform different jobs in
the ATM is created using the OpenCV framework. For hand movements, the webcam’s
input video stream source is read and processed into individual images. For a single
execution of code with the wait key one, it captures 600 photographs of each hand gesture
from the background. The display window will open, and the photos will start to be taken
In the directory where the path was assigned, the hand gesture dataset is produced.
Back, Cancel, Check Account Balance, Deposit cash, Next, Withdraw Cash are the six
directories that were generated based on the labels assigned to them.

3.2 Face Authentication Datasets

In this data collection, openCV was used to Programmatically construct over 13,000
photographs of faces. On each image, the name of the person pictured has been labelled.
There are 400 distinct photos of two of the people in the data set. This data-set will
be used to train the model that will be used to authenticate financial transactions 7 at
ATMs using facial recognition. The built DNN model assesses numerous elements of your

face, such as eye placement and nose width, and combines all of this data into a single
code that identifies and authenticates you.

4 Environment Setup

Stepl A google colab notebook is opened in the name Hand_Gesture_Recognition_ ATM.ipynb.
The generated data-set is uploaded to the google drive, this is done to give google colab
access to the code. In the figure 1, shows that the data in the google drive is accesses pro
grammatically in the google colab using drive library.

° 1 google.colab drive
2 drive.mount (" /content/drive")

Mounted at /content/drive

otlib.pyplot

seaborn sns

3. Data Collection

ds_asl_dir “/content/drive/MyDrive/asl_dataset™

" asl_ds tf.keras.preprocessing.image_dataset_from_directory(ds_asl_dir)

Figure 5: Data collection

Step 2 After building different DNN models such as custom CNN and 3 transfer learn-
ing models such as MobileNet, VGG16 and ResNet50. The best model (Resnet50) is
selected with different evaluation matrices and factors. And exported as H5 file which
is model_dl.h5. The exported model_dl.h5 file is generated in google dive in the selected
path as shown in the figure 2.

1 model_d1.save("/content/dr Iriy o rinub/model _dl.h5")

? model_dl - keras.models.lo nt/ s_thesis_rinub/model_dl.h5")

Figure 6: Model path

Step 3 The exported model_dl.h5 file is integrated with the front-end web application
with the flask framework. This is done by loading the hb file in app.py file by giving its
directory. The code snippet is shown in the below figure 3.

. , render

filename

Flask(

MODEL_PATH ‘model_dl.hs"

load_mode ODEL_PATH)

f model_pr 3):
ad img((224, 224))

to_array()

.predict(.
.predict_pr
List(r I [e]*100))
)

Figure 7: Flask Integration

Step 4 The file structure of the micro web application framework is shown in the
below figure 9. The h.5 file is loaded with this file structure in the VS code editor and the
file path is rendered in the app.py file. while executing the app.py file the web application
gets hosted in the local browser which is shown in the figureS8.

* Restarting with windowsapi reloader

p021-12-16 ©6:45:22.468780: I tensorflow/core/platform/cpu feature guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network
Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX AVX2

o enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

* Debugger is active!

* Debugger PIN: 141-027-58@

* Running on http://127.9.9.1:5000/ (Press CTRL+C to quit)

ARNING:tensorflow:From c:\Users\Asus TUF\Downloads\DL-Project-For-Beginner-master\app.py:4@: Sequential.predict proba (from tensorflow.python.keras
.engine.sequential) is deprecated and will be removed after 2021-e1-@1.

Instructions for updating:

Figure 8: Hosting Local Server

5 Training and Evaluating the model

Step 1 After accessing the data, some of the important aspects are carried out such as
data prepossessing and data augmentation. Using the library imagedatagenerator from
keras all the above-mentioned process are carried which is clearly shown in the below
figure 2.

Step 2 After data prepossessing and splitting the image data set for testing and training.
The model has been trained and evaluated using different matrices which is shown in the

asl_train_ds data_a

data

Figure 9: Data Pre-processing

figure [10] All the 4 models matrices are taken into consideration. By comparing the
epochs, Precision, recall, validation accuracy and number of epochs, run time and real
time performance using OpenCV the best model is exported.After evaluating, the best
model is exported as model_dl.h5 file.

se_learning_rate

! vgg_model.compile(loss-"binary_crossentropy’,
metri ["accuracy’, "Precision’, "Recall’],
optimizer-tf.keras.optimizers.Adam(learning_rate-base_learning_rate))

1 model_historyl-vgg model.fit(train_dataset,
validation_data-validation_dataset,
epochs)

Figure 10: Model Export

6 Making Predictions

The exported model_dl.h5 file is integrated with the OpenCV framework. The OpenCV.py
file should be executed to capture live image and loaded to the exported ResNet50 model.
The predicted value is shone as the message in the front end.

Figure 11: Prediction

	1. Introduction
	System Configuration
	Hardware Requirements
	Software Requirements
	Local Integrated Development Environment
	Cloud Integrated Development Environment
	Languages and Framework
	Library’s

	Dataset Description
	Hand gesture Datasets
	Face Authentication Datasets

	Environment Setup
	Training and Evaluating the model
	Making Predictions

