~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
MSc. Data Analytics

Nikhil Awachat
Student ID: x21100446

School of Computing
National College of Ireland

Supervisor: Dr. Christian Horn

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nikhil Awachat
Student ID: x21100446
Programme: MSc. Data Analytics
Year: 2021 - 2022
Module: MSc. Research Project
Supervisor: Dr. Christian Horn
Submission Due Date: 15/08/2022
Project Title: Plant Disease Classification Using Transfer Learning Methods
Word Count: 1039
Page Count: [

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Awachat

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Nikhil Awachat
21100446

1 Introduction

The main objective of making this configuration manual will be to give all the details
required to create this research with all the results obtained. To reproduce the results,
this document includes snapshots of all the processes, including preprocessing, EDA, data
augmentation, and model building, plus a summary and the design specification of all the
models. The report follows a systematic structure to explain the research methodology.
Section two gives all system hardware specifications for the main computer used for this
study. Section three gives details about the dataset and the source information, with a link
to the original dataset. Section four contains the snapshots of the data preprocessing and
EDA. Section five deals with data augmentation and data split information. Section six
has a detailed model building and specification and section seven consists of an evaluation.

2 Environment

2.1 Hardware Specification

The main system for this research has an AMD Ryzen 5 5500U Core CPU at 2.10 GHz,
8 GB of DDR4 RAM Memory with overclock at 3200 MHz, an AMD Radeon 6 Graphics
card, SSD with 512 GB total memory, and has a Windows 10 64-bit OS.

View basic information about your computer

Windows edition

Windows 10 Home Single Language -- .
© Microsoft Corporation. All rights reserved. .. Wl n d OWS 1 O
System
Manufacturer: ASUSTek COMPUTER INC.
Processor: AMD Ryzen 5 5500U with Radeon Graphics 210 GHz isus
Installed memory (RAM): 800 GB (740 GBusable) o
System type: 64-bit Operating System, x64-based processor
Pen and Touch: No Pen or Touch Input is available for this Display
ASUSTek COMPUTER INC. support
Website: Online support
Computer name, domain, and workgroup settings
Computer name: LAPTOP-DL8PLDI) Qchange settings
Full computer name: LAPTOP-DL8PLDI)
Computer description: ik
Workgroup: WORKGROUP

Figure 1: Specification for Hardware of the computer

2.2 Software Specification

1. Python (Version 3.8.12)

2. Jupyter Notebook (Version 6.4.8)

3 Data Collection

The dataset used for the entire research was taken from the Kaggle dataset repository.
The link for the mentioned dataset is https://www.kaggle.com /datasets/shadabhussain /cgiar-
computer-vision-for-crop-disease. There are 1486 raw pictures in the data, that are di-
vided into training and validation sets categories. 876 pictures from three classes make

up the training data. Although the images are accessible, they are not all the same
size or shape. The dataset is collected from Ethiopia and Tanzania by an international
organization on wheat crops.

4 Data Pre-processing and EDA

4.1 Data Balancing

The images are in jpg and jfif format which needs to be converted to a single format for
better consistency, so the images were converted to the png format. The orignal data
includes 3 classes—Healthy wheat, Steam rust, and Leaf rust and they are uniformly
distributed. There is an imbalance because both the rust classes contain approximately
twice as many photos as the Healthy wheat pictures.

'"'Creating the balance dataset using flipping and rotating'"’

c=0
List = os.listdir(source_path)
print(List)

balanced dataset folder=r'balanced dataset’
for x in List:
folder= balanced dataset folder+r'/'+x+r'/’
if os.path.exists(folder):
pass
else:
os.makedirs(folder)
path=os.path.join(source_path,x)
images_folder = os.listdir(path)
for images in images_folder:
image_path = path + /' + images
if x == "healthy wheat':
imagel = cv2.imread(image path)
cv2.imwrite(folder+x+str(c)+r' .png’,imagel)
c+=1
if c»=17:
image2 = cv2.flip(imagel,1)
cv2.imwrite(folder+x+str(c)+r'_.png',image2)
c+=1

image3 = cv2.cvtColor(imagel, cv2.COLOR_BGR2RGB)
cv2.imwrite(folder+x+str(c)+r’'_.png',image3)
c+=1
else:

image = cv2.imread(image path)

cv2.imwrite(folder+x+str(c)+r' .png’,image)

c+=1

print(‘Count of total images in balanced dataset is: {}'.format(c))

Figure 2: Code to balanced data equally in all classes

To solve this issue, the 3 classes need to be balanced into an equal distribution, the
remaining added images are augmented by a color change and flipping, which can be seen
in the above image.

400

350
350

300
300

0 250

200 200

150 150

100 100

healthy_wheat leaf_rust stem_rust leaf_rust stem_rust healthy_wheat

Figure 3: Dataset Distribution before and after balancing

4.2 Data Splitting

Due to the dataset’s lack of a separate testing folder for each of the 3 categories, a process
was introduced by creating two training and testing folders. The initial data was then
divided between training and testing sets groups in a ratio of 75:25.

categories=["healthy wheat', 'leaf rust', 'stem rust']
try:
for category in categories:
path = os.path.join("./train", category)
os.makedirs(path)
path = os.path.join("./test”, category)
os.makedirs(path)
print(“"Folders created™)
except:
print(“"Folders already created")

Folders created

source_path=r"C:/Users/Nik/Desktop/Plant Disease/balanced dataset/"
def generateData(lst,fnm):
for i in range(len(lst)):
if i<=len(1st)*0.75:
destination="./train/"+fnm
folder=fnm+"/"
else:
destination="./test/"+fnm
folder=fnm+" /"
shutil.copy(os.path.join(source_path,folder,1st[i]), destination)

Figure 4: Code for data split into train and test

The above code helps in splitting the data into train and test, first by creating folders
for three classes in each of the train and test folders. The images are then split into a
ratio of 75:25 into train and test folders. This is useful as the validation set is necessary
to get the validation accuracy for all our models which is an important metric to check
model performance.

5 Data Augmentation

5.1 Image Resize

Various data enhancement methods were performed on train data to achieve accurate
results on the validating test set while preventing the model from overfitting. The original
pictures were all in various dimensions, making it harder to train and test and requiring a
lot of computing resources. As a result, all of the images were reduced to one size of 224
*224. The images will be multiplied by 255 during the normalization procedure, which
will replicate the image and utilize a scale of 0 to 1.

TRAIN DIR = 'train/’'
TEST_DIR = ‘"test/’

gen = ImageDataGenerator(rescale=1./255)
train = gen.flow from directory(directory=TRAIN DIR, target size=(224,224), batch size=32,shuffle=True)

Found 848 images belonging to 3 classes.

gen = ImageDataGenerator(rescale=1./255)
test = gen.flow_from_directory(directory=TEST_DIR, target size=(224,224), batch_size=32, shuffle=True)

Found 280 images belonging to 3 classes.

Figure 5: Code for image resize and rescalet

5.2 Augmentation

To check if augmentation would help in improving model efficiency, images are augmented
by changing the color of the images to RGB and then by finding contours and doing a
grayscale conversion which is shown in the code below.

count = 1

f = plt.figure(figsize=(50,20))

for file in leaf_rust_images[:8]:
img = cv2.imread(file)
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
ax = f.add_subplot(2, 4,count)
ax = plt.imshow(img)
ax = plt.title('Leaf Rust’,fontsize= 30)
count = count + 1

plt.show()

Leaf Rust e Rust Z
»

Leaf Rust Leaf Rust
3\

Figure 6: Image RGB conversion

count = 1
f = plt.figure(figsize=(50,20))
for file in healthy_wheat_images[:8]:
img = cv2.imread(file)
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
adapimg = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN C, cv2.THRESH BINARY_INV,11,3)
cnts = cv2.findContours(adapimg, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[@] if len(cnts) == 2 else cnts[1]
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
for ¢ in cnts:
X,Y,W,h = cv2.boundingRect(c)
img ROI = img[y:y+h, x:x+w]
break
f.add_subplot(2, 4,count)
ax = plt.imshow(img_ROI)
ax = plt.title('Healthy Wheat',fontsize= 30@)

count = count + 1
; Healthi Wheat B Healthi Wheat Healthi Wheat

plt.show()
Figure 7: Image contours and Grayscale conversion

ax

Healthy Wheat

6 Model Building

The model is developed in this stage using various different approaches. CNN, VGG16,
GoogleNet, and AlexNet are the four models created in this study. Certain parameters
are set untrainable in order to reduce the complexity and computing power required for
the algorithms, which reduces the total model parameters that may be used.

6.1 VGG16 Model

The first approach used is built on CNN and contains 16 layers in total known as VGG16.
VGG16 is made up of 21 layers in total, but only 8 of them are trainable parameter layers.
It contains thirteen convolution layers, five max-pooling layers, three dense layers, one
SoftMax layer with three classes, and a flatten layer.

VGG16

model = Sequential()

#V6G16 Block 1

model.add(Conv2D(input_shape=(224,224,3),filters=64,kernel_size=(3,3),padding="same", activation="relu"))
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", trainable=False))

model . add(MaxPool2D(pool_size=(2,2),strides=(2,2)))

#VG6G16 Block 2

model.add(Conv2D(filters=128, kernel size=(3,3), padding="same", activation="relu"))
model.add(Conv2D(filters=128, kernel size=(3,3), padding="same”, activation="relu”, trainable=False))
model . add(MaxPool2D(pool size=(2,2),strides=(2,2)))

#6616 Block 3

model.add(Conv2D(filters=256, kernel_size=(3,3), padding="same”, activation="relu”, trainable=False))
model.add(Conv2D(filters=256, kernel size=(3,3), padding="same”, activation="relu”, trainable=False))
model.add(Conv2D(filters=256, kernel size=(3,3), padding="same", activation="relu", trainable=False))
model . add(MaxPool2D(pool size=(2,2),strides=(2,2)))

#V6G16 Block 4

model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same", activation="relu”, trainable=False))
model .add(Conv2D(filters=512, kernel_size=(3,3), padding="same", activation="relu”, trainable=False))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu", trainable=False))
model.add(MaxPool2D(pool size=(2,2),strides=(2,2)))

#VGG16 Block 5

model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu", trainable=False))
model.add(Conv2D(filters=512, kernel_size=(3,3), padding="same", activation="relu", trainable=False))
model.add(Conv2D(filters=512, kernel size=(3,3), padding="same", activation="relu", trainable=False))

model.add(Flatten(name="flatten"))

model.add(Dense(512, activation='relu’, trainable=False))
model.add(Dense(4096, activation='relu’, trainable=False))
model. add(Dropout(®.5))

model.add(Dense(units=3, activation="Softmax"))

import tensorflow as tf

opt = Adam(1lr=0.01)

loss = tf.keras.losses.CategoricalCrossentropy()
model.compile(optimizer=opt, loss=loss, metrics=[‘accuracy'])

Figure 8: Code for VGG16 model

Tayer (type) Ojatput Shape ¥
conv2d_13 ([Conv2D) (None, 224, 224, 64

conv2d 14 (Conw2D) (None, 224, 224, €4)
gg?_;:n;lngzd_4 (MaxPcoling (None, 112, 112, 64) 0
conv2d_15 (Conv2D) (Nome, 112, 112, 128) 73856
convzd_1€ (Conw2D) (Nene, 112, 112, 128) 147584
max_pooling2d 5 (MaxPooling (None, 56, 5€, 128) 0

z0)

convad 17 (ConvaD) (None, 56, 56, 258) 295168
convid_18 [Conv2D) (None, 56, 56, 258) 590080
conv2d_1% [Conv2D) (None, 56, 56, 258) 590080
max_pooling2d € (MaxPooling (None, 28, 28, 258) 0

zD)

conwzd_20 (ConwZD) (Nene, 23, 28, 512) 1180160
convad 21 (Conw2D) (None, 28, 28, 5l12) 2358808
convid_22 [ConviD) (None, 28, 28, 512) 2358808
Jg;;{;p:n'_lngzd;’ (MaxPocoling (NMone, 14, 14, 512) 0
convzd_23 (Conw2D) (None, 14, 14, 512) 2358808
convid_24 ([Conv2D) (None, 14, 14, 512) 2358808
cenvid_25 ([CenviD) (Nene, 14, 14, 512) 2358808
flatten (Flatten) (None, 100352) 0
dense_3 (Dense) (None, 512) 5138073¢
dense_4 (Dense} (None, 4098) 3101248
dropout_1 (Dropout) (None, 408%€) 0
dense_5 (Dense} (None, 3) 12291

Total params: 68,208,963
Trainakle params: 87,938
Nen-trainable params: 8,121,024

Figure 9: Summary VGG16 model

6.2 CNN Model

The next model that is built has 10 layers overall and is known as CNN. The CNN
framework includes ten layers in total: Three convolutional layers, Three max-pooling
layers, Two dense layers, a SoftMax layer with three classes, and a dropout layer.

CNN
input_shape = (224, 224, 3)

model3 = Sequential()

model3.add(Conv2D(32, (3,3), input_shape=input_shape, activation='relu',data_format="channels last'))
model3.add(MaxPooling2D((2,2), strides=(1,1), padding='same'),)

model3.add(Conv2D(64, (3,3), activation="relu'),)
model3.add(MaxPooling2D((2,2), strides=(1,1), padding='same'),)

model3.add(Conv2D(128, (3,3), activation='relu’, trainable=False),)
model3.add(MaxPooling2D((2,2), strides=(1,1), padding='same’),)

model3.add(Flatten())

model3.add(Dense(128, activation='relu', trainable=False))
model3.add(Dense(64, activation="relu'))

model3.add(Dropout(0.5))
model3.add(Dense(3, activation='softmax'))

Figure 10: CNN model code

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 222, 222, 32) 896
max_pooling2d (MaxPooling2D (None, 222, 222, 32) 2]
conv2d_1 (Conv2D) (None, 220, 220, 64) 18496
max_pooling2d_1 (MaxPooling (None, 2208, 220, 64) 2]

2D)

conv2d_2 (Conv2D) (None, 218, 218, 128) 73856

max_pooling2d_2 (MaxPooling (None, 218, 218, 128) 4]

2D)

flatten (Flatten) (None, 6083072) 2]

dense (Dense) (None, 128) 778633344
dense_1 (Dense) (None, 64) 8256
dropout (Drapout) (None, 64) [4]
dense_2 (Dense) (None, 3) 195

Total params: 778,735,043
Trainable params: 27,843
Non-trainable params: 778,707,200

Figure 11: CNN model summary

6.3 AlexNet Model

The next model used is AlexNet and it has a total of 19 layers. The AlexNet model
includes Nineteen layers overall, including Three dropout networks, a SoftMax network
with three classes, Five convolutions, three max-pooling networks, Five batch normaliz-
ation networks, and two dense networks.

model5 = keras.models.Sequential([

keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.
keras.layers.

n

opt = tensorflow.

Conv2D(filters=96, kernel size=(11,11), strides=(4,4), activation="relu', input_shape=(224,224,3)),
BatchNormalization(),

MaxPool2D(pool size=(3,3), strides=(2,2)),

Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same", trainable=False),
BatchNormalization(),

MaxPool2D(pool_size=(3,3), strides=(2,2)),

Conv2D(filters=384, kernel size=(3,3), strides=(1,1), activation='relu’', padding="same", trainable=False),
BatchNormalization(),

Conv2D(filters=384, kernel size=(3,3), strides=(1,1), activation='relu', padding="same", trainable=False),
BatchNormalization(),

Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same", trainable=False),
BatchNormalization(),

MaxPool2D(pool_size=(3,3), strides=(2,2)),

Flatten(),

Dense(4096, activation='relu’, trainable=False),

Dropout(@.5),

Dense(4096, activation="relu', trainable=False),

Dropout(@.5),

Dense(3, activation="softmax")

keras.optimizers.Adam(learning_rate=0.001)

model5.compile(optimizer=opt,loss="categorical crossentropy”,metrics=["accuracy'])

model5. summary ()

Figure 12: AlexNet model code

Model: "sequential 17

Layer [typel Cusput Jhape Faram ¥
convad 3 [(ConvaD] (Hone, 54, 54, 3€] 24544
batch _normalization (Batch¥ (None, 54, 54, 26) 284
ormalization}

max_pooling2d 3 (MaxPooling (None, 26, 26, 06] 0

2o}

conv2d_4 [ConwiD) [None, 26, 26, 256) 614656
batch_normalization_1 (Batc (Wone, 26, 26, 256] 1024
h¥ormalization)

max_pooling2d_4 [MaxPooling (Nome, 12, 12, 25E) 0

20)

conv2d 5 [ComwiD) (None, 12, 12, 284) BB5120
batch normalization 2 (Bate (None, 12, 12, 384) 1536
h¥ormalization)

conv2d € (Conv2D) (Fone, 12, 12, 384) 1327488
batch normalization 2 (Bate (None, 12, 12, 384) 1536
hNormalization]

conv3d_ 7 (ConviD) (None, 12, 12, 256) 884382
batch normalization 4 (Base (None, 12, 12, 25€) 1024
h¥ormalization)

max_pooling2d_§ (MaxFooling (Nome, 5, 5, 256 [

2o

flasten_1 (Flatten] (None, €400} a
den=e_2 (Den=e} [Hone, 402€] 26218496
dropous_1 [(Dropous] (Kome, 402€] 0
den=e_4 (Den=e} [Hone, 402€] 16781312
dropous_2 (Dropout] [Hone, 402€] 0
dense_5 [Dense] [(Hone, 2] 12281
Total params: 46,764,803

Trainable param=: 45,387

Won-trainable params: 46,714,816

Figure 13: AlexNet model summary

6.4 GoogleNet Model

GoogleNet is the last model developed, which is made up of 22 levels. The 22 levels that
make up the GoogleNet architecture are consisting of three dense fully connected layers, a
SoftMax Dense network with three classes, Five convolution networks, Four max-pooling
networks, Nine inception networks, and a dropout network.

def Inception_block(input_layer, f1, f2_convl, f2_conv3, f3_convl, f3_conv5, f4):
Input:
- f1: number of filters of the 1x1 convolutional Llayer in the first path
- f2 convl, f2 conv3 are number of filters corresponding to the 1x1 and 3x3 convolutional Llayers in the second path
- f3 convl, f3 conv5 are the number of filters corresponding to the 1x1 and 5x5 convolutional layer in the third path
- f4: number of filters of the 1x1 convolutional layer in the fourth path

1st path:
pathl = Conv2D(filters=f1, kernel_size = (1,1), padding = "same', activation = 'relu')(input_layer)

2nd path
path2 = Conv2D(filters

= t2_convl, kernel size
path2 = Conv2D(filters

t2_conv3, kernel_size

(1,1), padding
(3,3), padding

‘same', activation
‘same', activation

‘relu’)(input_layer)
‘relu’)(path2)

3rd path
path3 = Conv2D(filters

= (1,1), padding
path3 = Conv2D(filters

(5,5), padding

‘relu’)(input_layer)
‘relu”)(path3)

‘same', activation
‘same', activation

f3_convl, kernel_size
f3_conv5, kernel_size

4th path

path4 = MaxPooling2D((3,3), strides= (1,1), padding = ‘same’)(input_layer)

path4 = Conv2D(filters = f4, kernel_size = (1,1), padding = ‘'same', activation = 'relu')(path4)
output layer = concatenate([pathl, path2, path3, path4], axis = -1)

return output_layer

Figure 14: Inception block of the GoogleNet

def GoogleNet():
input Layer
input_layer = Input(shape = (224, 224, 3))

convolutional layer: filters = 64, kernel_size = (7,7), strides = 2
X = Conv2D(filters = 64, kernel_size = (7,7), strides = 2, padding = 'valid', activation = 'relu')(input_layer)

max-pooling Layer: pool_size = (3,3), strides = 2
X = MaxPooling2D(pool_size = (3,3), strides = 2)(X)

convolutional Llayer: filters = 64, strides = 1

X = Conv2D(filters = 64, kernel_size = (1,1), strides = 1, padding = ‘same’, activation = ‘relu’', trainable=False)(X)
convolutional layer: filters = 192, kernel size = (3,3)

X = Conv2D(filters = 192, kernel size = (3,3), padding = 'same', activation = 'relu’', trainable=False)(X)
max-pooling layer: pool size = (3,3), strides = 2

X = MaxPooling2D(pool_size= (3,3), strides = 2)(X)

1st Inception block

X = Inception_block(X, f1 = 64, f2_convl = 96, f2_conv3 = 128, f3 convl = 16, f3_conv5 = 32, f4 = 32)

2nd Inception block

X = Inception_block(X, f1 = 128, f2_convl = 128, f2_conv3 = 192, f3_convl = 32, f3_conv5 = 96, f4 = 64)
max-pooling layer: pool size = (3,3), strides = 2

X = MaxPooling2D(pool_size= (3,3), strides = 2)(X)

3rd Inception block
= Inception_block(X, f1 = 192, f2 _convl = 96, f2_conv3 = 208, f3_convl = 16, f3_conv5 = 48, f4 = 64)

> H

Extra network 1:

X1 = AveragePooling2D(pool_size = (5,5), strides = 3)(X)

X1 = Conv2D(filters = 128, kernel size = (1,1), padding = "same", activation = 'relu’, trainable=False)(X1)
X1 = Flatten()(X1)

X1 = Dense(1824, activation = 'relu’, trainable=False)(X1)

X1 = Dropout(@.7)(X1)

X1 = Dense(3, activation = 'softmax’)(X1)

4th Inception block
= Inception_block(X, f1 = 160, f2 convl = 112, f2 conv3 = 224, f3 convl = 24, f3 conv5 = 64, f4 = 64)

>

5th Inception block
X = Inception_block(X, f1 = 128, f2_convl = 128, f2_conv3 = 256, f3_convl = 24, f3_conv5 = 64, f4 = 64)

6th Inception block
= Inception_block(X, f1 = 112, f2 convl = 144, f2 conv3 = 288, f3_convl = 32, 3 _conv5 = 64, f4 = 64)

>X &

Extra network 2:

X2 = AveragePooling2D(pool size = (5,5), strides = 3)(X)

X2 = Conv2D(filters = 128, kernel_size = (1,1), padding = 'same’, activation = 'relu’, trainable=False)(X2)
X2 = Flatten()(X2)

X2 = Dense(1024, activation = 'relu’, trainable=False)(X2)

X2 = Dropout(0.7)(X2)

X2 = Dense(3, activation = 'softmax')(X2)

7th Inception block
X = Inception_block(X, f1 = 256, f2 convl = 16@, f2 conv3 = 320, f3 convl = 32,
f3_convs = 128, f4 = 128)

max-pooling layer: pool_size = (3,3), strides = 2
X = MaxPooling2D(pool size = (3,3), strides = 2)(X)

8th Inception block
X = Inception_block(X, f1 = 256, f2 convl = 160, f2 conv3 = 320, f3 convl = 32, f3 conv5 = 128, f4 = 128)

9th Inception block
X = Inception_block(X, f1 = 384, f2_convl = 192, f2_conv3 = 384, f3_convl = 48, f3_conv5 = 128, f4 = 128)

Global Average pooling Layer
X = GlobalAveragePooling2D(name = "GAPL')(X)

Dropoutlayer
X = Dropout(@.4)(X)

output Llayer
X = Dense(3, activation = 'softmax')(X)

model
model7 = Model(input_layer, [X, X1, X2], name = 'GooglLeNet')

return model?7

Figure 15: GoogleNet model code

10

7 Evaluation

The metrics used to evaluate the models and get the model performance are shown below,
including the train and validation accuracy and loss summary graph, and the confusion
matrix to check the true positive and negative values.

summarize history for accuracy
plt.plot(history.history["accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('model accuracy')

plt.ylabel(accuracy")

plt.xlabel('epoch")

plt.legend(["train', 'test'], loc="upper left')
plt.show()

Figure 16: Summary graph code for train and validation accuracy

from sklearn.metrics import confusion_matrix

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import classification_report
target_names=["healthy_wheat','leaf_rust’, 'stem_rust’]

plt.figure(figsize=(10,10))

cm = confusion matrix(y testl, y pred)

_=sns.heatmap(cm.T, annot=True, fmt='d', cbar=True, square=True, xticklabels=target_names,
yticklabels=target_names)

plt.xlabel(' Truth")

plt.ylabel(Predicted")

plt.savefig('./'+'confusion matrix onValidation.jpeg',dpi=93)

Figure 17: Confusion matrix code

8 Data Source

https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease

9 GitHub Code

https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/
blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb

11

https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease
https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb
https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb

	Introduction
	Environment
	Hardware Specification
	Software Specification

	Data Collection
	Data Pre-processing and EDA
	Data Balancing
	Data Splitting

	Data Augmentation
	Image Resize
	Augmentation

	Model Building
	VGG16 Model
	CNN Model
	AlexNet Model
	GoogleNet Model

	Evaluation
	Data Source
	GitHub Code

