
Configuration Manual

MSc Research Project

MSc. Data Analytics

Nikhil Awachat
Student ID: x21100446

School of Computing

National College of Ireland

Supervisor: Dr. Christian Horn

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Nikhil Awachat

Student ID: x21100446

Programme: MSc. Data Analytics

Year: 2021 - 2022

Module: MSc. Research Project

Supervisor: Dr. Christian Horn

Submission Due Date: 15/08/2022

Project Title: Plant Disease Classification Using Transfer Learning Methods

Word Count: 1039

Page Count: 11

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Nikhil Awachat

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Nikhil Awachat
21100446

1 Introduction

The main objective of making this configuration manual will be to give all the details
required to create this research with all the results obtained. To reproduce the results,
this document includes snapshots of all the processes, including preprocessing, EDA, data
augmentation, and model building, plus a summary and the design specification of all the
models. The report follows a systematic structure to explain the research methodology.
Section two gives all system hardware specifications for the main computer used for this
study. Section three gives details about the dataset and the source information, with a link
to the original dataset. Section four contains the snapshots of the data preprocessing and
EDA. Section five deals with data augmentation and data split information. Section six
has a detailed model building and specification and section seven consists of an evaluation.

2 Environment

2.1 Hardware Specification

The main system for this research has an AMD Ryzen 5 5500U Core CPU at 2.10 GHz,
8 GB of DDR4 RAM Memory with overclock at 3200 MHz, an AMD Radeon 6 Graphics
card, SSD with 512 GB total memory, and has a Windows 10 64-bit OS.

Figure 1: Specification for Hardware of the computer

1



2.2 Software Specification

1. Python (Version 3.8.12)

2. Jupyter Notebook (Version 6.4.8)

3 Data Collection

The dataset used for the entire research was taken from the Kaggle dataset repository.
The link for the mentioned dataset is https://www.kaggle.com/datasets/shadabhussain/cgiar-
computer-vision-for-crop-disease. There are 1486 raw pictures in the data, that are di-
vided into training and validation sets categories. 876 pictures from three classes make
up the training data. Although the images are accessible, they are not all the same
size or shape. The dataset is collected from Ethiopia and Tanzania by an international
organization on wheat crops.

4 Data Pre-processing and EDA

4.1 Data Balancing

The images are in jpg and jfif format which needs to be converted to a single format for
better consistency, so the images were converted to the png format. The orignal data
includes 3 classes—Healthy wheat, Steam rust, and Leaf rust and they are uniformly
distributed. There is an imbalance because both the rust classes contain approximately
twice as many photos as the Healthy wheat pictures.

Figure 2: Code to balanced data equally in all classes

2



To solve this issue, the 3 classes need to be balanced into an equal distribution, the
remaining added images are augmented by a color change and flipping, which can be seen
in the above image.

Figure 3: Dataset Distribution before and after balancing

4.2 Data Splitting

Due to the dataset’s lack of a separate testing folder for each of the 3 categories, a process
was introduced by creating two training and testing folders. The initial data was then
divided between training and testing sets groups in a ratio of 75:25.

Figure 4: Code for data split into train and test

The above code helps in splitting the data into train and test, first by creating folders
for three classes in each of the train and test folders. The images are then split into a
ratio of 75:25 into train and test folders. This is useful as the validation set is necessary
to get the validation accuracy for all our models which is an important metric to check
model performance.

3



5 Data Augmentation

5.1 Image Resize

Various data enhancement methods were performed on train data to achieve accurate
results on the validating test set while preventing the model from overfitting. The original
pictures were all in various dimensions, making it harder to train and test and requiring a
lot of computing resources. As a result, all of the images were reduced to one size of 224
* 224. The images will be multiplied by 255 during the normalization procedure, which
will replicate the image and utilize a scale of 0 to 1.

Figure 5: Code for image resize and rescalet

5.2 Augmentation

To check if augmentation would help in improving model efficiency, images are augmented
by changing the color of the images to RGB and then by finding contours and doing a
grayscale conversion which is shown in the code below.

Figure 6: Image RGB conversion

4



Figure 7: Image contours and Grayscale conversion

6 Model Building

The model is developed in this stage using various different approaches. CNN, VGG16,
GoogleNet, and AlexNet are the four models created in this study. Certain parameters
are set untrainable in order to reduce the complexity and computing power required for
the algorithms, which reduces the total model parameters that may be used.

6.1 VGG16 Model

The first approach used is built on CNN and contains 16 layers in total known as VGG16.
VGG16 is made up of 21 layers in total, but only 8 of them are trainable parameter layers.
It contains thirteen convolution layers, five max-pooling layers, three dense layers, one
SoftMax layer with three classes, and a flatten layer.

5



Figure 8: Code for VGG16 model

Figure 9: Summary VGG16 model

6.2 CNN Model

The next model that is built has 10 layers overall and is known as CNN. The CNN
framework includes ten layers in total: Three convolutional layers, Three max-pooling
layers, Two dense layers, a SoftMax layer with three classes, and a dropout layer.

6



Figure 10: CNN model code

Figure 11: CNN model summary

6.3 AlexNet Model

The next model used is AlexNet and it has a total of 19 layers. The AlexNet model
includes Nineteen layers overall, including Three dropout networks, a SoftMax network
with three classes, Five convolutions, three max-pooling networks, Five batch normaliz-
ation networks, and two dense networks.

7



Figure 12: AlexNet model code

Figure 13: AlexNet model summary

8



6.4 GoogleNet Model

GoogleNet is the last model developed, which is made up of 22 levels. The 22 levels that
make up the GoogleNet architecture are consisting of three dense fully connected layers, a
SoftMax Dense network with three classes, Five convolution networks, Four max-pooling
networks, Nine inception networks, and a dropout network.

Figure 14: Inception block of the GoogleNet

9



Figure 15: GoogleNet model code

10



7 Evaluation

The metrics used to evaluate the models and get the model performance are shown below,
including the train and validation accuracy and loss summary graph, and the confusion
matrix to check the true positive and negative values.

Figure 16: Summary graph code for train and validation accuracy

Figure 17: Confusion matrix code

8 Data Source

https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease

9 GitHub Code

https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/

blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb

11

https://www.kaggle.com/datasets/shadabhussain/cgiar-computer-vision-for-crop-disease
https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb
https://nbviewer.org/github/nikhilawachat123/Resaerch_Project_x21100446/blob/main/Nikhil_x21100446_PlantDiseaseClassification_Final.ipynb

	Introduction
	Environment
	Hardware Specification
	Software Specification

	Data Collection
	Data Pre-processing and EDA
	Data Balancing
	Data Splitting

	Data Augmentation
	Image Resize
	Augmentation

	Model Building
	VGG16 Model
	CNN Model
	AlexNet Model
	GoogleNet Model

	Evaluation
	Data Source
	GitHub Code

