

Configuration Manual

MSc Research Project Data Analytics

Ashwini Mohan Student ID: x19220618

School of Computing National College of Ireland

Supervisor: Prof. Athanasios Staikopoulos

National College of Ireland Project Submission Sheet School of Computing

Student Name:	Ashwini Mohan
Student ID:	x19220618
Programme:	Data Analytics
Year:	2022
Module:	MSc Research Project
Supervisor:	Prof. Athanasios Staikopoulos
Submission Due Date:	31/01/2022
Project Title:	Configuration Manual
Word Count:	1039
Page Count:	18

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	
	Ashwini Mohan
Date:	31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

 Attach a completed copy of this sheet to each project (including multiple copies).

 Attach a Moodle submission receipt of the online project submission, to

 each project (including multiple copies).

 You must ensure that you retain a HARD COPY of the project, both for

 your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into the assignment box located outside the office.

Office Use Only			
Signature:			
Date:			
Penalty Applied (if applicable):			

Configuration Manual

Ashwini Mohan x19220618

1 Introduction

This configuration handbook outlines both software and hardware requirements, as well as a step-by-step procedure for carrying out the research objective of implementing customer segmentation using RFM analysis with K-Means Clustering, multiclass classification model, and Market Basket Analysis.

2 Environment Specification and Configuration

Pre-requisite - Anaconda version 1.9.12 should already be installed with Jupyter Notebook. Installation link - https://www.anaconda.com/products/individual#windows

2.1 Hardware Configuration

The screenshot of hardware configuration of system details in 1 can be seen.

- Windows Edition: Windows 10 Home.
- Processor: Intel(R) Core[™] i5-8250U CPU @ 1.60GHz 1.80 GHz
- Installed Memory (RAM) : 8GB
- System type: 64-bit operating System, x64-based processor

2.2 Software Requirements

The specifications for software required is detailed below:

- Programming Language Python (version 3.7.6)
- IDE Jupyter Notebook version 6.0.3
- Browser Google Chrome

3 Environment Setup

The Jupyter Notebook is initiated from Anaconda to begin implementation execution.

Device specifications

HP Pavilion Laptop 14-ce0xxx

LAPTOP-04QPVT3P
Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
8.00 GB (7.88 GB usable)
A751A21F-638B-41E2-B023-00E7CD390C11
00325-96494-80191-AAOEM
64-bit operating system, x64-based processor
Touch support with 2 touch points

Figure 1: Windows Specification

💭 jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 2
□ 0 · ► / x19220618	Name Last Modified File size
C	seconds ago
Einal_Thesis_Coding_19220618.jpynb	2 days ago 7.84 MB

Figure 2: Jupyter Notebook on Initiation

4 Library Packages Required

Before importing any packages *!pip install* is used to install those packages. For example, to install NumPy, run the code as displayed in 13 To install any library, the code will

```
!pip install numpy
Requirement already satisfied: numpy in c:\users\ashwi\anaconda3\lib\site-packages (1.19.5)
```

Figure 3: !pip install code

also be available in the following url (just enter the package name) - https://pypi.org/ project/

5 Programming Environment Setup

The Jupyter Notebook is launched from the command prompt in order to start the execution environment for its implementation. Import all the libraries as displayed in Figure 4, Figure 5, Figure 6 and Figure 7

```
#importing required packages
import numpy as np
import pandas as pd
import datetime as dt
pd.set_option('display.max_colwidth', None)
                                                       # To display all the data in each column
                                                      # To display every column of the dataset in head()
pd.options.display.max_columns = 50
import warnings
warnings.filterwarnings('ignore')
                                                      # To suppress all the warnings in the notebook.
import pandas_profiling as ppf
from datetime import timedelta
from numpy import mean
from numpy import std
#Packages to plot graph
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(style='whitegrid', font scale=1.3, color codes=True)
                                                                  # To apply seaborn styles to the plots.
import plotly.graph_objects as go
import squarify
import plotly.express as px
from matplotlib.gridspec import GridSpec
from pandas.plotting import scatter_matrix
```

Figure 4: Libraries for Preprocessing

```
#Importing Feature Selection Package
#from sklearn.feature_selection import RFE
#Importing K-Fold validation packages
from sklearn.model_selection import KFold
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import cross_val_score
from time import time
# Import required libraries
from mlxtend.preprocessing import TransactionEncoder
from sklearn.metrics import f1_score
from sklearn.metrics import plot_roc_curve
from sklearn.model_selection import StratifiedKFold
```

Figure 5: Libraries for k-fold validation

Figure 6: Libraries for ML models and Evaluation Metrics

```
# borderline-SMOTE for imbalanced dataset
from collections import Counter
from sklearn.datasets import make_classification
from imblearn.over_sampling import BorderlineSMOTE
from matplotlib import pyplot
from sklearn.metrics import accuracy_score
from numpy import where
# Load and summarize the dataset
from pandas import read_csv
from collections import Counter
from matplotlib import pyplot
from sklearn.preprocessing import LabelEncoder
```

Figure 7: Libraries for SMOTE, Label encoder and Accuracy Score

5.1 Data Collection

The dataset utilized in this study is transactional data from a UK-based online retail gift shop named Online Retail II Data Source ¹. The dataset was available in .csv format and was downloaded from Kaggle. The dataset had 8 columns and 1,067,371 records. The data was loaded as a DataFrame using python pandas library Figure 8.

M	mor # 1 ret	ting O Importination	nline Ret ng trainin od.read_cs	ail Dataset ¶ g dataset using pd.read_csv v(r"online_retail_II.csv")					
₩	ret	iail.hea Invoice	StockCode	Description	Quantity	InvoiceDate	Price	Customer ID	Country
	0	489434	85048	15CM CHRISTMAS GLASS BALL 20 LIGHTS	12	2009-12-01 07:45:00	6.95	13085.0	United Kingdom
		400404							
	1	489434	79323P	PINK CHERRY LIGHTS	12	2009-12-01 07:45:00	6.75	13085.0	United Kingdom
	1	489434	79323P 79323W	PINK CHERRY LIGHTS WHITE CHERRY LIGHTS	12 12	2009-12-01 07:45:00 2009-12-01 07:45:00	6.75 6.75	13085.0 13085.0	United Kingdom United Kingdom
	1 2 3	489434 489434 489434	79323P 79323W 22041	PINK CHERRY LIGHTS WHITE CHERRY LIGHTS RECORD FRAME 7" SINGLE SIZE	12 12 48	2009-12-01 07:45:00 2009-12-01 07:45:00 2009-12-01 07:45:00	6.75 6.75 2.10	13085.0 13085.0 13085.0	United Kingdom United Kingdom United Kingdom

Figure 8: Loading Data to Pandas DataFrame

5.2 Execution of Code - Prerequisite

The Jupyter Notebook and the dataset should be uploaded to jupyter Notebook and should be placed in the same folder. Important Note: Before executing the .ipynb file and the dataset should be placed in the same folder Figure 10,

💭 Jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New 🗸 🖸
0 V 19220618	Name Last Modified A File size
۵	seconds ago
Final_Thesis_Coding (4).ipynb	Running 2 hours ago 9.44 MB
Online Retail Dataset.html	3 hours ago 1.21 MB
C online_retail_II.csv	3 hours ago 94.9 MB
Einal_Thesis_Coding_19220618.ipynb	Running 2 days ago 7.84 MB

Figure 9: Code file and dataset to be loaded in Jupyter Notebook

Ensure that all the packages are installed and libraries are imported as mentioned in section 5.

Open the ipynb file and go to Menu bar and click on 'Run All' to execute the entire file.

The progression of the code is explained with detailed screenshot in the below sections.

6 Data Pre-Processing

In this section, the data collection, pre-processing, feature creation performed on the dataset will be explained in terms of implementation.

¹https://www.kaggle.com/mashlyn/online-retail-ii-uci

Cjupyter Final_Thesis	_Coding_19220618 Las	t Checkpoint: Last Tuesday at 15 03 (autosaved)
File Edit View Insert	Cell Kernel Widgets	Help Not Trusted Python 3 O
	Run Cells Run Cells and Select Below Run Cells and Insert Below	
Custome Dataset	Run All Run All Above Run All Below	nd Market Basket Analysis - Online Retail II
Table of Co	Cell Type	
2. <u>Importing Pad</u> 3. <u>Loading Data</u> • 3.1 <u>Descrip</u>	ption of the Datasets	
3.2 <u>Partoa</u> 4. <u>Data Preproces</u> 4.1 <u>Data P</u> 4.1 <u>Data P</u>	s Proming before Data Preproc ssing reprocessing	<u>essing</u>
4.2 <u>Handli</u> 4.3 <u>Detaile</u> 5. <u>Feature Engine</u>	<u>ng Missing Values</u> a <u>d Analysis</u> aering	
 5.1 <u>Splittin</u> 5.1.1 5.1.2 5.1.3 	ng the dataset to multiple data Dataframe for Cancelled Trans Dataframe for Successfully Pro Dataframe for Transactions wh	taframes action cessed Transaction ere Customer ID is zero
6. Exploratory Da	ta Analysis	

Figure 10: Execute All Cells

6.1 Pandas Profiling

As part of Data pre-processing, Pandas profiling was initially run to understand each attributes in depth Figure 11 and Figure 12

3.2	Pandas Profiling before Data Preprocessing					
M	<pre># Saving the output as profiling_before_preprocessing.html Profile_1 = ppf.ProfileReport(retail,title = " Online Retail Dataset 01") Profile_1.to_file(output_file ="Online Retail Dataset") # To output the pandas profiling report on the notebook. Profile_1</pre>					
	<pre>HBox(children=(FloatProgress(value=0.0, description='Summarize dataset', max=22.0, style=ProgressStyle(descrip</pre>					
	HBox(children=(FloatProgress(value=0.0, description='Generate report structure', max=1.0, style=ProgressStyle(…					
	HBox(children=(FloatProgress(value=0.0, description='Render HTML', max=1.0, style=ProgressStyle(description_wi…					
	HBox(children=(FloatProgress(value=0.0, description='Export report to file', max=1.0, style=ProgressStyle(desc…					

Figure 11: Pandas Profiling - Code

As highlighted in Figure 12, the variable, interactions, correlations, missing values, sample and duplicate rows all were explained in detail in the report. The duplicate records were deleted, and the missing values were replaced with a value that was not present in the database. For e.g., missing Customer id were replaced with '0' as no such value was present in the Customer id, and replacing with 0 helped understand the data better.

6.2 Exploratory Data Analysis

In this section, bar graphs, line plot, dashboards, pie plots, etc were plotted to understand and get useful insights from the dataset Figure 13 , Figure 14 and Figure 15.

Online Retail Dataset 01					
Overview Varia	bles Interact	ions Correlations	Missing values	Sample	Duplicate rows
Overview					
Overview Reproduction Warr	nings 7				
Dataset statistics		Variable types			
Number of variables	8	CAT	5		
Number of observations	1067371	NUM	3		
Missing cells	247389				
Missing cells (%)	2.9%				
Duplicate rows	34335				
Duplicate rows (%)	3.2%				
Total size in memory	65.1 MiB				
Average record size in memory	64.0 B				

Figure 12: Pandas Profiling - Report

(a) Revenue Generated per year

(b) Number of Products purchased per invoice

1400

Figure 14: Invoice Trends each year and Client Count per month

Figure 15: Top Selling Products and Least Selling Products

Based on the insights received, it was identified that only successful transaction will be used for implementation and a new dataframe for successful transaction was created Figure 16.

# Cre notca	eating a new datafram an_orders = retail[~r	e <i>for the Successf</i> etail.isin(cancell	ul transactions ed_orders)]
notca	an_orders.info()		
≺cla Int64 Data	ss 'pandas.core.frame 4Index: 1033036 entri columns (total 15 co	.DataFrame'> es, 0 to 1067370 lumns):	
#	Column	Non-Null Count	Dtype
0	Invoice	1013933 non-null	object
1	StockCode	1013933 non-null	object
2	Description	1013933 non-null	object
3	Quantity	1013933 non-null	float64
4	InvoiceDate	1013933 non-null	datetime64[ns]
5	Price	1013933 non-null	float64
6	Customer ID	1013933 non-null	float64
7	Country	1013933 non-null	object
8	Billing_Amount	1013933 non-null	float64
9	Invoice_year	1013933 non-null	object
10	Invoice_year_month1	1013933 non-null	object
11	Invoice_year_month	1013933 non-null	object
12	Invoice_year_day	1013933 non-null	object
13	year_month_day	1013933 non-null	object
14	time	1013933 non-null	object
dtype memoi	es: datetime64[ns](1) ry usage: 126.1+ MB	, float64(4), obje	ct(10)

Figure 16: Successful Transaction

7 Project Implementation

This section is divided into 3 parts: 1. Customer Segmentation 2. Multiclass Classification Modelling 3. Market Basket Analysis

7.1 Customer Segmentation using RFM and K-Means Clustering Technique

To perform segmentation, the Recency, Frequency and Monetary value of each consumer is calculated as shown in Figure 17 The RFM features extracted was then divided into

Figure 17: RFM Feature Creation

4 quintiles of 25% each, and assign a score of 1 to 4 to each Recency, Frequency and Monetary respectively. 1 is the highest value, and 4 is the lowest value. A final RFM score (Overall Value) is calculated simply by combining individual RFM score numbers as displayed in Figure 18

Figure 18: code to split data into quantiles

The RFM scale was then added up to get an RFM score Figure 19.

K-Means Clustering is then applied on the extracted feature to decide optimal number of segments appropriate for this dataset. However, k-means is effective when the data

	•										
[115]: 🔰	dat	a process.	head()								
Out[115]:		Customer ID	Recency	Frequency	MonetaryValue	R_quartile	F_quartile	M_quartile	RFM_Segment	RFM_Score	
	0	12346.0	326	34	77556.46	3	2	4	324	9	
	1	12347.0	2	222	4921.53	1	4	4	144	9	
	2	12348.0	75	51	2019.40	2	2	3	223	7	
	3	12349.0	19	175	4428.69	1	4	4	144	9	
	4	12350.0	310	17	334.40	3	1	1	311	5	

Figure 19: DataFrame with RFM Score

is distributed normally. Initially, the data was skewed and log function was applied to normalise the data Figure 20.

(a) Distribution of variables before data normal-(b) Distribution of variables after data normalization ization

Figure 20: Distribution of variables pre and post data normalization

Elbow method and three-dimensional graph plot and snake plot were used to identify optimal clusters. To run flattened graph 'TSNE' package should be imported as shown in Figure 23 The flattened graph was bit confusing to decide the clusters Figure 22

from sklearn.manifold import TSNE
<pre>(def kmeans(normalised_df_rfm, clusters_number, original_df_rfm):</pre>
<pre>kmeans = KMeans(n_clusters = clusters_number, random_state = 1)</pre>
kmeans.fit(normalised_df_rfm)
Extract cluster labels
cluster_labels = kmeans.labels_
Create a cluster label column in original dataset
df_new = original_df_rfm.assign(Cluster = cluster_labels)
Initialise TSNE
model = TSNE(random state=1)
<pre>transformed = model.fit_transform(df_new)</pre>
PLot t-SNE
<pre>plt.title('Flattened Graph of {} Clusters',format(clusters number))</pre>
<pre>sns.scatterplot(x=transformed[:,0], y=transformed[:,1], hue=cluster_labels, style=cluster_labels, palette="Set1")</pre>
return df_new
plt.figure(figsize=(10, 10))
plt.subplot(3, 1, 1)
df rfm k3 = kmeans(RFM Table scaled, 3, RFM table)
plt.subplot(3, 1, 2)
df_rfm_k4 = kmeans(RFM_Table_scaled, 4, RFM_table)
pit.subpid((), 1, 3)
<pre>dt_rtm_kb = kmeans(RrM_lable_scaled, 5, RrM_table) plt.tight_layout()</pre>

Figure 21: Importing Package TSNE and code for flattened graph

(a) Flattened graph for varied clusters

(b) Flattened graph for varied clusters

Figure 22: Cluster Selection based on flattened graph and Snake plot

Post analysis of snake plot, 4 clusters was considered as an optimal number of segments to split the data Figure 23 $\,$

[133]: 🗎	def rfm_ df_n retu	<pre>values(df ew = df.g rn df_new</pre>	[:]): ;roupby([v	'Cluste	er']).ag	:({'Recency': 'mean','Frequency': 'mean','MonetaryValue': ['mean', 'count'] }).round
	•					
[134]: N	rfm_valu	es(df_rfm	n_k4)			
Out[134]:	F	Recency F	requency	Monetary	yValue	
		mean	mean	mean	count	
	Cluster					
	0	34.0	393.0	9913.0	1273	
	1	255.0	46.0	943.0	1663	
	2	386.0	17.0	282.0	1391	
	3	116.0	115.0	1798.0	1554	
· · :	The first cl most (M=1 Customers little (M=4) The third of The last cl	uster belor). s in the sec). The comp cluster is m luster is ver	ngs to the cond cluste pany has t iore related ry Loyal C	" Best C er can be to come d to the A Custome	interprete up with ne At Risk se ers and the	"segment which we saw earlier as they purchase recently (R=1), frequent buyers (F=1), and spent th d as Needs Attention as their last purchase is long ago (R=4), purchased very few (F=4) and spent w strategies to make them permanent members. gment as they Haven't purchased for some time(R=3) but used to purchase frequently and spent a lot y also spent a lot and their recency and frequency is better than cluster 2 and 3.
* <i>T</i> o	summarize	, the cluste	əring group	p is *		
0 - 1	Best Custo	omers				
1-1	Needs Atte	ntion				

Figure 23: Customer Segments

7.2 Multiclass - Classification Modelling

Before application Of models on data, the segments created are merged with each customer the imbalance is data clusters is verified, and then the data is split into train-test stratified split. Four models were applied - KNN Classifier, Random Forest Classifier, LGBM Classifier and Decision Tree Classifier

- 1. KNN Classifier:
 - Train Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 24.

KNN_classfier(X_	_train,y_tr	ain)					F1 [0 K-	Score is .78137128 0.82420749 0.8 Fold cross validation me	33046683 0.79822616] an: 0.8133997118087544			
Fitting KNN cla	ssifier						K- KN	Fold cross validation st eighborsClassifier()	td: 0.016669331508924353			
Training time: (Decision tree a	0.021064281 ccuracy:	463623047	precisior	recall	f1-score	support	0	17.11%	2.89%	0.00%	1.87%	0.20
0 1	0.78 0.82	0.78 0.83	0.78 0.82	386 516			-	3.46%	24.31%	0.91%	0.57%	0.15
2	0.81 0.82	0.85 0.78	0.83 0.80	399 464			~	0.06%	1.42%	19.15%	1.98%	0.10
accuracy macro avg weighted avg	0.81	0.81	0.81 0.81 0.81	1765 1765 1765			m	1.30%	1.13%	3.46%	20.40%	0.05
Herbucca and	0.01	0.01	0.01	1,05				0	1	2	3	0.00

(a) Accuracy and Training time of KNN on train(b) Confusion Matrix and K-fold score of KNN data on train data

Figure 24: Evaluation Matrix of KNN on Train Data

• Test Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 25.

(a) Accuracy and Training time of KNN on test(b) Confusion Matrix and K-fold score of KNN data on test data

Figure 25: Evaluation Matrix of KNN on Test Data

2. Random Forest Classifier:

• Train Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 26 and Figure 27.

(a) Accuracy and Training time of RFC on train(b) Confusion Matrix and K-fold score of RFC data on train data

Figure 26: Evaluation Matrix of RFC on Train Data

• Test Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 27.

(a) Accuracy and Training time of RFC on test(b) Confusion Matrix and K-fold score of RFC data on test data

Figure 27: Evaluation Matrix of RFC on Test Data

3. LGBM:

• Train Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 28 and Figure 29.

(a) Accuracy and Training time of LGBM on(b) Confusion Matrix and K-fold score of LGBM train data on train data

Figure 28: Evaluation Matrix of LGBM on Train Data

• Test Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 29.

(a) Accuracy and Training time of LGBM on(b) Confusion Matrix and K-fold score of LGBM test data on test data

Figure 29: Evaluation Matrix of LGBM on Test Data

4. Decision Tree Classifier:

• Train Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 30 and Figure 31.

decision_tree_clas	sifier(X_	_train,y_t	rain)				K-Fi K-Fi	old cross validation me old cross validation st	ean: 0.7553309474877755 td: 0.016254074038955922			
							Dec	isionTreeClassifier(max	<_depth=2, random_state=	1)		
Decision classfier	classif: 	ier ======					0		3.29%	0.00%	6.06%	0.25
Training time: 0.0 Decision tree accu	249543190 racy:	00024414	precision	recall	f1-score	support						0.20
0	0.84	0.57	0.68	386			-	1.87%	25.95%	0.34%	1.08%	0.15
1	0.76 0.82	0.89 0.70	0.82 0.75	516 399				0.00%	4.40%	45 755/	0.300/	0.10
3	0.70	0.85	0.77	464			N	0.00%	4.4076	10.70%	Z.30%	
accuracy	0.70	0.75	0.77	1765			n	0.51%	0.34%	3.12%	22.32%	0.05
weighted avg	0.78	0.75	0.76	1765				0	1	2	3	0.00

(a) Accuracy and Training time of DTC on train(b) Confusion Matrix and K-fold score of DTC data on train data

Figure 30: Evaluation Matrix of RFC on Train Data

• Test Data Evaluation: Evaluation was based on training time, accuracy and confusion matrix Figure 31.

(a) Accuracy and Training time of DTC on test(b) Confusion Matrix and K-fold score of DTC data on test data

Figure 31: Evaluation Matrix of DTC on Test Data

7.3 Market Basket Analysis

To implement market basket analysis at segment level, the data was grouped based on the cluster as seen in Figure 32. The recommended products for each cluster are depicted in Figure 34, Figure 35, Figure 36 and Figure 10

Figure 32: Recommended product for Best Customers

1. Association Mining Rule on 'Best Customer Cluster'

M	fre	<pre>requent_itemsets_plus[(frequent_itemsets_plus['length'] >= 2) &</pre>											
]:		support itemsets length											
	66	0.037740	(WOODEN FRA	ME ANTIQUE WHITE , WOODEN P	ICTURE FRAME WHI	TE FINISH)	2						
	77 0.036327 (WHITE HANGING HEART T-LIGHT HOLDER, RED HANGING HEART T-LIGHT HOLDER) 2												
M	ass	ociation_	_rules(frequent_i	itemsets_plus, metric='lif	t',			T					
	<pre>min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)</pre>												
		antecedents consequents antecedent consequent support confidence lift leverage convicti											
]:			antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction		
]:	0	(WOOD	antecedents EN FRAME ANTIQUE WHITE)	consequents (WOODEN PICTURE FRAME WHITE FINISH)	antecedent support 0.063623	consequent support 0.060293	support 0.037740	confidence 0.593180	lift 9.838350	leverage 0.033904	conviction 2.309885		
]:	0	(WOOD (WOOD	antecedents EN FRAME ANTIQUE WHITE) EN PICTURE FRAME WHITE FINISH)	CONSEQUENTS (WOODEN PICTURE FRAME WHITE FINISH) (WOODEN FRAME ANTIQUE WHITE)	antecedent support 0.063623 0.060293	consequent support 0.060293 0.063623	support 0.037740 0.037740	confidence 0.593180 0.625941	lift 9.838350 9.838350	leverage 0.033904 0.033904	conviction 2.309885 2.503291		
]:	0 1 2	(WOOD (WOOD (WHITE	antecedents EN FRAME ANTIQUE WHITE) EN PICTURE FRAME WHITE FINISH) HANGING HEART T- LIGHT HOLDER)	CONSEQUENTS (WOODEN PICTURE FRAME WHITE FINISH) (WOODEN FRAME ANTIQUE WHITE) (RED HANGING HEART T-LIGHT HOLDER)	antecedent support 0.063623 0.060293 0.146367	consequent support 0.060293 0.063623 0.051261	support 0.037740 0.037740 0.036327	confidence 0.593180 0.625941 0.248190	lift 9.838350 9.838350 4.841665	leverage 0.033904 0.033904 0.028824	conviction 2.309885 2.503291 1.261940		

Figure 33: Recommended product for 'Best Customers' segment

2. Association Mining Rule on 'Needs Attention' Customer Cluster

Figure 34: Recommended product for 'Needs Attention' customer segment

3. Association Mining Rule on 'At Risks' Customer Cluster

Figure 35: Recommended product for 'At Risk' Customer Segment

4. Applying Association Mining Rule on At Loyal Customer Cluster

M	<pre>frequent_itemsets_plus3['length'] >= 2) &</pre>												
]:		support itemsets length											
	40	40 0.034027 (WHITE HANGING HEART T-LIGHT HOLDER, RED HANGING HEART T-LIGHT HOLDER) 2											
M	association_rules(frequent_itemsets_plus3, metric='lift', min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)												
]:			antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction		
	0	(RED HANG	GING HEART T-LIGHT HOLDER)	(WHITE HANGING HEART T- LIGHT HOLDER)	0.047736	0.150306	0.034027	0.712821	4.742462	0.026852	2.958756		
	1	(WHITE	HANGING HEART T- LIGHT HOLDER)	(RED HANGING HEART T-LIGHT HOLDER)	0.150306	0.047736	0.034027	0.226384	4.742462	0.026852	1.230927		
M													

Figure 36: Recommended product for 'Loyal' Customer segment