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Configuration Manual

Ashwini Mohan
x19220618

1 Introduction

This configuration handbook outlines both software and hardware requirements, as well
as a step-by-step procedure for carrying out the research objective of implementing cus-
tomer segmentation using RFM analysis with K-Means Clustering, multiclass classifica-
tion model, and Market Basket Analysis.

2 Environment Specification and Configuration

Pre-requisite - Anaconda version 1.9.12 should already be installed with Jupyter Note-
book. Installation link - https://www.anaconda.com/products/individual#windows

2.1 Hardware Configuration

The screenshot of hardware configuration of system details in [1| can be seen.
e Windows Edition: Windows 10 Home.
e Processor: Intel(R) Core™ i5-8250U CPU @ 1.60GHz 1.80 GHz
e Installed Memory (RAM) : 8GB

e System type: 64-bit operating System, x64-based processor

2.2 Software Requirements

The specifications for software required is detailed below:
e Programming Language - Python (version - 3.7.6 )
e IDE - Jupyter Notebook - version 6.0.3

e Browser - Google Chrome

3 Environment Setup

The Jupyter Notebook is initiated from Anaconda to begin implementation execution.


https://www.anaconda.com/products/individual#windows

Device specifications

HP Pavilion Laptop 14-ceOxxx
Device name LAPTOP-04QPVT3P

Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80
GHz

Installed RAM 8.00 GB (7.88 GB usable)

Device ID A751A21F-638B-41E2-B023-00E7CD390CT1
Product ID 00325-96494-80191-AAOEM

System type 64-bit operating system, x64-based processor

Pen and touch  Touch support with 2 touch points

Figure 1: Windows Specification

Jupyter Quit | | Logout
Files
Select items to perform actions on them. Upload | New~ &
Do v M/ x19220618 Name Last Modified 4 File size

c seconds ago

O & Final_Thesis_Coding_19220618.ipynb 2daysago  7.84MB

Figure 2: Jupyter Notebook on Initiation



4 Library Packages Required

Before importing any packages /pip install is used to install those packages. For example,
to install NumPy, run the code as displayed in To install any library, the code will

Ipip install numpy

Requirement already satisfied: numpy in c:\users\ashwi\anaconda3\lib\site-packages (1.19.5)

Figure 3: !pip install code

also be available in the following url (just enter the package name) - https://pypi.org/
project/

5 Programming Environment Setup

The Jupyter Notebook is launched from the command prompt in order to start the
execution environment for its implementation.Import all the libraries as displayed in
Figure [} Figure [ Figure [ and Figure

#importing required packages
import numpy as np

import pandas as pd

import datetime as dt

pd.set_option('display.max_colwidth’, None) # To display all the data in each column
pd.options.display.max_columns = 5@ # To display every column of the dataset in head()
import warnings

warnings.filterwarnings('ignore') # To suppress all the warnings in the notebook.

import pandas_profiling as ppf
from datetime import timedelta
from numpy import mean
from numpy import std

#Packages to plot graph

import matplotlib.pyplot as plt

#matplotlib inline

import seaborn as sns

sns.set(style="whitegrid’, font_scale=1.3, color_codes=True) # To apply seaborn styles to the plots.
import plotly.graph objects as go

import squarify

import plotly.express as px

from matplotlib.gridspec import GridSpec

from pandas.plotting import scatter matrix

Figure 4: Libraries for Preprocessing


https://pypi.org/project/
https://pypi.org/project/

#Importing Feature Selection Package

#from sklearn.feature selection import RFE

#Importing K-fFold validation packages

from sklearn.model selection import KFold

from sklearn.model selection import RepeatedKFold

from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.model selection import cross_val_score

from time import time

# Import required lLibraries

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent patterns import association rules, apriori
from sklearn.metrics import f1_score

from sklearn.metrics import plot roc_curve

from sklearn.model selection import StratifiedKrold

Figure 5: Libraries for k-fold validation

#Classification ML Algorithms

from sklearn.datasets import make_classification
from sklearn.linear _model import LogisticRegression
from sklearn.svm import SVC

from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier

#Importing Classification Evaluation Metrics

from sklearn.metrics import recall score

from sklearn.model selection import train_test split

from sklearn.metrics import classification_report

import sklearn.metrics as metrics

from sklearn.metrics import classification_report, confusion matrix, accuracy_score

Figure 6: Libraries for ML models and Evaluation Metrics

# borderline-SMOTE for imbalanced dataset

from collections import Counter

from sklearn.datasets import make classification
from imblearn.over_sampling import BorderlineSMOTE
from matplotlib import pyplot

from imblearn.over sampling import SMOTE

from sklearn.metrics import accuracy score

from numpy import where

# load and summarize the dataset

from pandas import read csv

from collections import Counter

from matplotlib import pyplot

from sklearn.preprocessing import LabelEncoder

Figure 7: Libraries for SMOTE, Label encoder and Accuracy Score



5.1 Data Collection

The dataset utilized in this study is transactional data from a UK-based online retail gift
shop named Online Retail IT Data Source E].The dataset was available in .csv format and
was downloaded from Kaggle. The dataset had 8 columns and 1,067,371 records. The
data was loaded as a DataFrame using python pandas library Figure [§]

Importing Online Retail Il Dataset |

M # Importing training dataset using pd.read csv
retail = pd.read csv(r"online_retail II.csv")

M retail.head()

Invoice StockCode Description Quantity InvoiceDate Price Customer ID Country
0 489434 85048 15CM CHRISTMAS GLASS BALL 20 LIGHTS 12 2009-12-0107:45:00 6.95 13085.0 United Kingdom
1 480434 79323P PINK CHERRY LIGHTS 12 2009-12-0107:45:00 6.75 13085.0 United Kingdom
2 489434 79323W WHITE CHERRY LIGHTS 12 2009-12-0107:45:00 6.75 13085.0 United Kingdom
3 480434 22041 RECORD FRAME 7" SINGLE SIZE 48 2009-12-01 07:45:00 2.10 13085.0 United Kingdom
4 489434 21232 STRAWBERRY CERAMIC TRINKET BOX 24 2009-12-01 07:45:00 1.25 13085.0 United Kingdom

Figure 8: Loading Data to Pandas DataFrame

5.2 Execution of Code - Prerequisite

The Jupyter Notebook and the dataset should be uploaded to jupyter Notebook and
should be placed in the same folder. Important Note: Before executing the .ipynb
file and the dataset should be placed in the same folder Figure

“~ Jupyter Quit || Logout

Files Running Clusters

Select items to perform actions on them Upload New~ &

Do ~ Wmi x19220818 Name Last Modified 4 File size

(s} seconds ago

] Final_Thesis_Coding (4).ipynb Running 2 hours ago 9.44 MB
m] 0O Online Retail Dataset.himl 3 hours ago 121 MB

0 O online_retail_il.csv 3noursago 949 MB

] Final_Thesis_Coding_19220618.ipynb Running 2 days ago 7.84 MB

Figure 9: Code file and dataset to be loaded in Jupyter Notebook

Ensure that all the packages are installed and libraries are imported as mentioned in
section b.

Open the.ipynb file and go to Menu bar and click on '"Run All’ to execute the entire
file.

The progression of the code is explained with detailed screenshot in the
below sections.

6 Data Pre-Processing

In this section, the data collection, pre-processing, feature creation performed on the
dataset will be explained in terms of implementation.

'https://wuw.kaggle.com/mashlyn/online-retail-ii-uci


https://www.kaggle.com/mashlyn/online-retail-ii-uci

f Jupyter Final_Thesis_Coding_19220618 Last Checkpoint Last Tuesday at 15:03 (autosaved) e Logout
Fle  Edt View Inset Cell  Kemel  Widgets  Help Not Trusted | Python 3 ©

B+ < & B |+ ¥ RunCells vn v =
Run Cells and Select Below

Run Cells and Insert Below

Run All
Custome  runaiaoe nd Market Basket Analysis - Online Retail Il
Dataset  runaiBeow

Cell Type »
Table of Cc¢

Current Outputs »

1. Problem Stat¢
2. Importing_Pag
3. Loading Data

All Output »

« 3.1 Description of the Datasets
« 3.2 Pandas Profiling before Data Preprocessing
 Data Preprocessing

IS

« 4.1 Data Preprocessing
« 4.2 Handling Missing Values
« 4.3 Detailed Analysis

. Eeature Engineering

o

+ 5.1 Splitting the dataset to multiple dataframes
+ 5.1.1 Dataframe for Cancelled Transaction
+ 512 Dataframe for St Processed Ti
+ 513 Dataframe for Transactions where Customer ID is zero
6. Exploratory Data Analysis

Figure 10: Execute All Cells

6.1 Pandas Profiling

As part of Data pre-processing, Pandas profiling was initially run to understand each
attributes in depth Figure [11] and Figure

B.2 Pandas Profiling before Data Preprocessing

M # Saving the output as profiling_before_preprocessing. html
profile_1 = ppf.ProfileReport(retail,title = " online Retail Dataset ©1")
Profile_1.to_file(output_file ="Online Retail Dataset"” )
# To output the pandas profiling report on the notebook.
Profile_1

HBox(children=(FloatProgress(value=08.8, description='Summarize dataset’, max=22.0, style=ProgressStyle(descrip..

HBox (children=(FloatProgress(value=0.8, description='Generate report structure', max=1.8, style=Progressstyle(..

HBox(children=(FloatProgress(value=0.0, description="Render HTML', max=1.8, style=ProgressStyle(description_wi..

HBox(children=(FloatProgress(value=08.0, description="Export report to file', max=1.@, style=ProgressStyle(desc..

Figure 11: Pandas Profiling - Code

As highlighted in Figure [12] the variable, interactions, correlations, missing values,
sample and duplicate rows all were explained in detail in the report. The duplicate records
were deleted, and the missing values were replaced with a value that was not present in
the database. For e.g., missing Customer id were replaced with '0’ as no such value was
present in the Customer id, and replacing with 0 helped understand the data better.

6.2 Exploratory Data Analysis

In this section, bar graphs, line plot, dashboards, pie plots, etc were plotted to understand
and get useful insights from the dataset Figure 13|, Figure [14] and Figure [15]



Online Retail Dataset 01

Overview Variables

Interactions Correlations Missing values Sample

Duplicate rows

Overview

Reproduction Wamings o
Dataset statistics
Number of variables 8
Number of observations 1067371
Missing cells 247389
Missing cells (%) 2.9%
Duplicate rows 34335
Duplicate rows (%) 3.2%
Total size in memory 65.1 MiB

Average record size in memory

64.0B

Variable types
CAT 5
NUM 3

Figure 12: Pandas Profiling - Report

plt.rcParams["figure.figsize"] = (10,3)
i 0.35

width =

ax = notcan_orders_yr.plot.bar(x="Invoice_year’, y='Billing_Amount’, rot=9e, color="Teal")

ax = plt.gca()

ax.set_title( Revenue Generated Per Year')

plt.show()
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Figure 13: Revenue Generated per year and Number of Products per Invoice details
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(a) Invoice trends for year 2010 and 2011

(b) Customer Count per month

Figure 14: Invoice Trends each year and Client Count per month
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Figure 15: Top Selling Products and Least Selling Products

Based on the insights received, it was identified that only successful transaction will
be used for implementation and a new dataframe for successful transaction was created

Figure [16]

# Creating a new dataframe for the Successful transactions
notcan_orders = retail[~retail.isin(cancelled orders)]

notcan_orders.info()

<class 'pandas.core.frame.DataFrame’>
Inte4Index: 1833036 entries, @ to 1867370
Data columns (total 15 columns):

#  Column Non-Null Count Dtype

@ Invoice 1013933 non-null object
1 StockCode 1013933 non-null object
2  Description 1013933 non-null object
3 Quantity 1013933 non-null float64d
4 InvoiceDate 1013933 non-null datetime64[ns]
5 Price 1013933 non-null floatéd
6  Customer ID 1013933 non-null floate4
7 Country 1013933 non-null object
8 Billing_Amount 1013933 non-null float64
9 Invoice_year 1013933 non-null object
1@ Inveoice year monthl 1613933 non-null object
11 Inveoice_year_month 1013933 non-null object
12 Inveoice year day 1013933 non-null object
13 year_month_day 1013933 non-null object
14 time 1013933 non-null object

dtypes: datetime64[ns](1), floate4(4), object(10)
memory usage: 126.1+ MB

Figure 16: Successful Transaction



7 Project Implementation

This section is divided into 3 parts: 1. Customer Segmentation 2. Multiclass Classifica-
tion Modelling 3. Market Basket Analysis

7.1 Customer Segmentation using RFM and K-Means Cluster-
ing Technique

To perform segmentation, the Recency, Frequency and Monetary value of each consumer
is calculated as shown in Figure The RFM features extracted was then divided into

In [187]: M # --Group data by customerID--

# Create snapshot date
snapshot_date = notcan_orders['InvoiceDate’].max() + timedelta(days=1)
print(snapshot_date)
# Grouping by CustomerID
data_process = notcan_orders.groupby ([ 'Customer ID']).agg({
'InvoiceDate': lambda x: (snapshot_date - x.max()).days,
'Invoice': 'count’',
'Billing_Amount': 'sum'}).reset_index()
# Rename the columns
data_process.rename(columns={"'InvoiceDate': 'Recency’,
'Invoice': 'Frequency’,
'Billing_Amount': 'MonetaryValue'}, inplace=True)

2011-12-10 12:50:00

After getting the RFM values, a common practice is to create ‘quartiles’ on each of the metrics and assigning the required order. For example, suppose that we
divide each metric into 4 cuts. For the recency metric, the highest value, 4, will be assigned to the customers with the least recency value (since they are the
most recent customers). For the frequency and monetary metric, the highest value, 4, will be assigned to the customers with the Top 25% frequency and
monetary values, respectively. After dividing the metrics into quartiles, we can collate the metrics into a single column (like a string of characters {like 213'}) to
create classes of RFM values for our customers. We can divide the RFM metrics into lesser or more cuts depending on our requirements.

Figure 17: RFM Feature Creation

4 quintiles of 25% each, and assign a score of 1 to 4 to each Recency, Frequency and
Monetary respectively. 1 is the highest value, and 4 is the lowest value. A final RFM
score (Overall Value) is calculated simply by combining individual RFM score numbers
as displayed in Figure

quantiles = data_process.quantile(g=[0.25,0.50,8.75])
quantiles = quantiles.to_dict()

# create two functions, to calculate the Quantile scores for Recency, Frequency and Monetary.

#RFM Score

#1 - Potential

#2 - Promising

#3 - Can't Lose Them

#4 - At Risk

RScore(x,p,d):

if x <= d[p][0.25]:
return 1

elif x<=d[p][0.50]:
return 2

elif x<= d[p][@.75]:
return 3

else:
return 4

de-

-+

a
n
-+

FMScore(x,p,d):

if x<=d[p][8.25]:
return 4

elif x<=d[p][0.5]:
return 3

elif x<=d[p][@.75]:
return 2

else:
return 1

Figure 18: code to split data into quantiles

The RFM scale was then added up to get an RFM score Figure
K-Means Clustering is then applied on the extracted feature to decide optimal number
of segments appropriate for this dataset. However, k-means is effective when the data



In [114]: M |#concatenate the three score columns
data_process['RFM_Segment'] = data_process.R_quartile.map(str)+data_process.F_quartile.map(str)+data_process.M quartile.map(s
data_process['RFM _Score'] = data_process[['R_quartile’,'F_quartile’,'M_quartile’]].sum(axis=1)
»
In [115]: M data_process.head()
Out[115]: Customer ID Recency Frequency MonetaryValue R _quartile F_guartile M_quartiie RFM_Segment RFM_Score
o 123460 326 34 77556.46 3 2 4 324 9
1 123470 2 222 492153 1 4 4 144 9
2 12348.0 7 51 2019.40 2 z 3 223 7
3 123490 19 175 442869 1 4 4 144 9
4 123500 310 17 334 40 3 1 1 31 5

RFM segmentation readily shows customer for any business like Best Customers, Loyal Customer, Customers on the verge of losing, Highest revenue-
generating customers etc.

Figure 19: DataFrame with RFM Score

is distributed normally. Initially, the data was skewed and log function was applied to
normalise the data Figure [20]

(a) Distribution of variables before data normal-(b) Distribution of variables after data normal-

ization ization

Figure 20: Distribution of variables pre and post data normalization
Elbow method and three-dimensional graph plot and snake plot were used to identify

optimal clusters. To run flattened graph "TSNE’ package should be imported as shown
in Figure [23| The flattened graph was bit confusing to decide the clusters Figure

from sklearn.manifold import TSHE

def kmeans(normalised_df_rfm, clusters_number, original df_rfm):

ters_number, random_state = 1)

Label original dataset

Label g datas
= original_df_rfm.assign(Cluster = cluster_labels)

e=1)
1.fit_transform(df_new)

Flattened Graph of {} Clusters'.format(clusters_number))
plot(x=transformed(:,@], y=transformed[:,1], hue=cluster_labels, style=cluster_labels, palette="Setl”)

return df_new
plt.figure(figsize-(10, 18))

plt.subplot(3, 1, 1)

af_rfm_k3 = kmeans(RFM_Table_scaled, 3, RFM_table)
plt.subplot(3, 1, 2)

Gf_rfm_ka = kmeans(RFM_Table_scaled, 4, RFM_table)
plt.subplot(3, 1, 3)

@F_rém_kS - kmeans(RFM_Table_scaled, 5, RFM_table)
plt.tight_layout()

Figure 21: Importing Package TSNE and code for flattened graph

10
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Figure 22: Cluster Selection based on flattened graph and Snake plot

Post analysis of snake plot, 4 clusters was considered as an optimal number of segments
to split the data Figure

In [133]: M def rfm_values(df):
df_new = df.groupby(['Cluster']).agg({ Recency’: 'mean’,'Frequency’: 'mean’,'MonetaryValue': ['mean’, ‘count’] }).round(l
return df_new

»

In [134]: M rfm_values(df_rfm k4)

Out[134]: Recency Frequency MonetaryValue
mean mean mean count
Cluster
] 340 393.0 99130 1273
1 2550 46.0 9430 1663
2 386.0 170 2820 1391
3 1160 1150 17980 1554

The first cluster belongs to the “ Best Customers” segment which we saw earlier as they purchase recently (R=1), frequent buyers (F=1), and spent the

most (M=1)

« Customers in the second cluster can be interpreted as Needs Attention as their last purchase is long ago (R=4), purchased very few (F=4) and spent
little (M=4). The company has to come up with new strategies to make them permanent members.

« The third cluster is more related to the At Risk segment as they Haven't purchased for some time(R=3) but used to purchase frequently and spent a lot.

« The last cluster is very Loyal Customers and they also spent a lot and their recency and frequency is better than cluster 2 and 3.

*To summarize, the clustering group is *

0 - Best Customers
1 - Needs Attention
2 -AtRisk

3 - Loyal Customers

Figure 23: Customer Segments

7.2 Multiclass - Classification Modelling

Before application Of models on data, the segments created are merged with each cus-
tomer the imbalance is data clusters is verified, and then the data is split into train-test
stratified split. Four models were applied - KNN Classifier, Random Forest Classifier,
LGBM C(lassifier and Decision Tree Classifier

1. KNN Classifier:

e Train Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure

11



3 c ; FL Scare is
KiN_classfier(X_train,y_train) [0.78137128 9.82428749 0.83045683 6.79822615]
K-Fold cross validation mean: ©.8133997113087544
K-Fold cross validation std: 9.016669331508924353

Fitting KNN classifier KileighborsClassifier()

Training time: 0.021064281463623047

71%

Decision tree accuracy: precision  recall fl-score  support @
0 0.78 0.78 0.78 386 o
1 0.82 0.83 0.82 516
2 0.81 0.85 0.83 399
3 0.82 0.78 0.80 464 o

005

accuracy 0.81 1765
macro avg 0.81 0.81 0.81 1765
weighted avg 0.81 0.81 0.81 1765

(]

(a) Accuracy and Training time of KNN on train(b) Confusion Matrix and K-fold score of KNN
data on train data

Figure 24: Evaluation Matrix of KNN on Train Data

e Test Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure

K-Fald cross validation mean: 0.816413¢713918849
KNN_classfier(X_test,y_test) K-Fold cross validation std: 0.22058238865805045

KieighborsClassifier()

05

Fitting KNN classifier

Training time: 0.009531497955322266

%]

Decision tree accuracy: precision  recall fl-score  support
0 0.85 0.84 0.85 386 uts
1 0.85 0.91 0.88 516
2 0.87 085 0.8 399 o o
3 0.87 0.82 0.84 464

05

accuracy 0.86 1765
macro avg 0.86 0.8 0.86 1765

weighted avg 0.6 0.8 0.96 1765 o

(a) Accuracy and Training time of KNN on test(b) Confusion Matrix and K-fold score of KNN
data on test data

Figure 25: Evaluation Matrix of KNN on Test Data

2. Random Forest Classifier:

e Train Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure 26| and Figure

12



don f t classfier(X trai — K-Fold cross validation mean: 0.8513033557193442
randon_forest_classfier(X_train,y_train) K-Fold cross validation std: 0.013862515033282428

RandonForestClassifier(max_depth=10, random_state=5)

Fitting RandomForest classifier

17.56%

Training time: 1.0322661399841309

Decision tree accuracy: precision  recall fl-score support
(4 0.86 0.80 0.83 386 o5
1 0.85 0.88 0.87 516
2 0.84 0.89 0.86 399 -
3 0.85 0.81 0.83 464

05

accuracy 0.85 1765
Macro avg 0.85 0.85 0.85 1765
weighted avg 0.85 0.85 0.85 1765

(a) Accuracy and Training time of RFC on train(b) Confusion Matrix and K-fold score of RFC
data on train data

Figure 26: Evaluation Matrix of RFC on Train Data

e Test Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure

. K-Fald cross validation mean: €.8432777349768875
randon_forest_classfier(X_test,y_test) K-Fold cross validation std: ©.1039581692065630

Randon~orestClassifier (max_depth=19, randon_stete=5)

Fitting RandomForest classifier

025

Training time: ©.5812742710113525

Decision tree accuracy: precision  recall fl-score  support
020
0 0.99 0.95 0.97 386
1 0.96 1.00 0.98 516 o
2 0.99 0.98 0.99 399
3 0.98 0.98 8.98 464 oo

accuracy 0.98 1765 s
macro avg 0.98 0.98 0.98 1765
weighted avg 0.98 0.98 0.98 1765

000

(a) Accuracy and Training time of RFC on test(b) Confusion Matrix and K-fold score of RFC
data on test data

Figure 27: Evaluation Matrix of RFC on Test Data

3. LGBM:

e Train Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure 28 and Figure

13



s E 5 K-Fold cross valication mean: 9.8362376869109295
LGB Classifier(X_train,y_train) K-Fold cross valicetion std: 2.01930662314472437

LGBNC assifier(leerning_rate=d.2, n_estinators=1108)

Fitting LGBM classifier

Training time: 5.381150722503662

Decision tree accuracy: precision  recall fl-score support
[ 0.82 0.78 0.80 386 o
1 0.83 0.85 0.84 516
2 0.84 0.85 0.84 399 w
3 0.79 0.80 0.80 464

accuracy 0.82 1765
macro avg 0.82 0.82 0.82 1765
weighted avg 0.82 0.82 0.82 1765

008

(a) Accuracy and Training time of LGBM on(b) Confusion Matrix and K-fold score of LGBM
train data on train data

Figure 28: Evaluation Matrix of LGBM on Train Data

e Test Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure

iy K-Fold cross validation mean: 0.331696199280945
LGBI_Classifier(X test,y_test) K-Fold cross validation std: 0.08STS5AT15041

LGBMCLassifier(learning _rete=0.2, n_estimators=1160)

Fitting LGBM classifier

Training time: 3.5396032333374023 ¢ o oo o5
Decision tree accuracy: precision  recall fl-score  support
0
0 100 1.0 1.08 38 oo
1 1.00 1.00 1.00 516 -
2 1.00 1.00 1.00 399
3 1.00 1.00 1.00 464 N 000% .
accuracy 1.00 1765
nacro avg 100 1.0 180 1765 . o “
weighted avg 1.00 1.00 1.00 1765

0

(a) Accuracy and Training time of LGBM on(b) Confusion Matrix and K-fold score of LGBM
test data on test data

Figure 29: Evaluation Matrix of LGBM on Test Data

4. Decision Tree Classifier:

e Train Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure |30| and Figure

14



3.3 e . . K-Feld cross validation mean: 0.7553369474877755
decision_tree_classifier(X_train,y train) K-Fald cross velidation sto: 0.015254674038055022

DecisionTreaClassifier(max_cepth=2, random_state=1)

Decision classfier classifier 0z

o 320% 000% 606%
Training time: 0.02495431960024414

(]

Decision tree accuracy: precision  recall fl-score support|
- 187% 108%
0 0.84 0.57 0.68 386 o
1 0.76 0.89 0.82 516
2 .82 0.70 0.75 399 u 000% 238% 0t
3 0.70 0.85 0.71 464

accuracy 0.77 1765 N 051% 038% v
macro avg 0.78 8.75 0.76 1765

weighted avg 0.78 0.77 8.76 1765 . ) ) s o

(a) Accuracy and Training time of DTC on train(b) Confusion Matrix and K-fold score of DTC
data on train data

Figure 30: Evaluation Matrix of RFC on Train Data

e Test Data Evaluation: Evaluation was based on training time, accuracy and
confusion matrix Figure

. . K-Fold cross validetion mean: ©.7450404468412943
decision_tree_classifier(X_test,y_test) K-Fald cross validetion std: 0.8676£7592493792303

DecisionTreeClassifier (nax_depth=2, random_state=1)

Decision classfier classifier 0%

° Uk asm% 000% a08%
Training time: @.007982969284057617

Decision tree accuracy: precision  recall fl-score  support o
125% 113%
0 0.89 0.56 0.69 386 ots
1 8.76 0.91 0.83 516
2 0.80 0.73 0.76 399
~ 0.00% 176% o1
3 8.71 0.83 0.77 464

accuracy 0.77 1765

005
macro avg 079 876 076 1765 v oo 04 3 -
weighted avg 0.78 0.77 0.77 1765 a0

0 1 H ]

(a) Accuracy and Training time of DTC on test(b) Confusion Matrix and K-fold score of DTC
data on test data

Figure 31: Evaluation Matrix of DTC on Test Data

7.3 Market Basket Analysis

To implement market basket analysis at segment level, the data was grouped based on
the cluster as seen in Figure The recommended products for each cluster are depicted
in Figure |34} Figure Figure |36| and Figure
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M #Split the dataset into to different dataframes based on their clusters

**9 - Best Customers<br>**

**] - Needs Attention<br>**

¥*2 - At Risk<br>**

*¥*3 - loyal Customers<br>**

#create unique List of names

UniqueNames1l = final mba.Cluster.unique()

H oW oH

#create a data frame dictionary to store your data frames
DataFrameDict2 = {elem : pd.DataFrame for elem in UniqueNames1}

for key in DataFrameDict2.keys():
DataFrameDict2[key] = final mba[:][final_mba.Cluster == key]

Figure 32: Recommended product for Best Customers

1. Association Mining Rule on ’Best Customer Cluster’

M frequent_itemsets plus[ (frequent_itemsets plus['length'] »>= 2) &

(frequent_itemsets_plus['support’] »>= ©.083) ]

support itemsets length
668 0.037740 (WOODEN FRAME ANTIQUE WHITE , WOODEN PICTURE FRAME WHITE FINISH) 2
77 0036327 (WHITE HANGING HEART T-LIGHT HOLDER, RED HANGING HEART T-LIGHT HOLDER) 2

M association_rules(frequent_itemsets plus, metric='lift",

min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)

antecedents consequents antz:::;e‘;g conssi%upir:té support confidence lift leverage conviction
0 (WKDWFWWEﬁmﬁfj mmo%mmgﬁﬁ;ﬁgﬁ 0.063623 0060293 0037740 0593180 9838350 0033904 2309885
1 (WOODENPICTURE ;ﬁfgﬁ (WOODEN FRAME AMJ%E) 0.060293 0063623 0.037740 0625941 ©9.838350 0.033904  2.503291
2 (WHITE HANGING Eg’igg‘) (RERLISNCING HEARLBHDGE'E 0.146367 0051261 0.036327 0248190 4.841665 0.028824  1.261940
3 (REDHANGING HEARLBESBEHRT) (NHITE AANGING :g’tggj 0051261 0145367 0.036327  0.708661 4.841665 0.028824  2.930037

Figure 33: Recommended product for 'Best Customers’ segment

2. Association Mining Rule on 'Needs Attention’ Customer Cluster
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M frequent_itemsets_plusl[ (frequent_itemsets_plusi['length'] »>= 2) &
(frequent_itemsets_plusl['support’'] »= 8.83) ]

ok support itemsets length

M association_rules(frequent_itemsets plusl, metric='lift',
min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)

Sk antecedents consequents antecedentsupport consequent support support confidence lift leverage conviction

M frequent_itemsets plusl[ (frequent itemsets plusl['length'] »= 2) &
(frequent_itemsets _plusi['support'] »>= ©.81) ]

L]: support itemsets length

M association_rules(frequent_itemsets_plusl, metric='lift’,
min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)

2] antecedents consequents antecedentsupport consequentsupport support confidence Ilift leverage conviction

Figure 34: Recommended product for 'Needs Attention’ customer segment

3. Association Mining Rule on At Risks’ Customer Cluster

M frequent_itemsets plus2[ (frequent_itemsets plus2['length'] 2= 2) &
(frequent_itemsets_plus2['support'] »>= 0.83) ]

1: support itemsets length

M = frequent_itemsets plus2[frequent_itemsets plus2['length'] >1]

b
b

]: support itemsets length

M association rules(frequent_itemsets plus2, metric='lift’,
min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)

1: antecedents consequents antscedent support consequentsupport support confidence lift leverage conviction

M frequent_itemsets plus2[ (frequent_itemsets plus2['length'] »= 2) &
(frequent_itemsets plus2['support'] »= ©.81) ]

1: support itemsets length

M association_rules(frequent_itemsets plus2, metric='lift’,
min_threshold=1).sort_values('lift', ascending=False).reset_index(drop=True)

I: antecedents consequents antecedentsupport consequentsupport support confidence lift leverage conviction

Figure 35: Recommended product for ’At Risk’ Customer Segment
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4. Applying Association Mining Rule on At Loyal Customer Cluster

IE support

M freguent_itemsets_plus3[ (frequent_itemsets_plus3['length']
(frequent_itemsets_plus3['support'] »>= 0.81) ]

>= 2) &

itemsets length

M association_rules(frequent_itemsets_plus3, metric="lift',
min_threshold=1).sort_values('lift’', ascending=False).reset_index(drop=True)

40 0.034027 (WHITE HANGING HEART T-LIGHT HOLDER, RED HANGING HEART T-LIGHT HOLDER) 2

1 LIGHT HOLDER) HOLDER)

- antecedent consequent § i .
antecedents consequents support support support confidence lift leverage conviction

(RED HANGING HEART T-LIGHT (WHITE HANGING HEART T- -
0 LT oA 0.047736 0150306 0034027 0712821 4742462 0026852 2956756
(WHITE HANGING HEART T- - (RED HANGING HEART T-LIGHT 0.150306 0.047726 0034027 0226384 4742462 0026852  1.230927

Figure 36: Recommended product for 'Loyal’ Customer segment
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