"'—-
\ National

Configuration Manual

MSc Research Project
Data Analytics

Sangeetha Pillay Anil Kumar
Student ID: 20232195

School of Computing
National College of Ireland

Supervisor: Prof. Qurrat Ul Ain

~

College
Ireland

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sangeetha Pillay Anil Kumar
Student ID: 20232195
Programme: Data Analytics
Year: 2022
Module: MSc Research Project
Supervisor: Prof. Qurrat Ul Ain
Submission Due Date: 19/08/2022
Project Title: Configuration Manual
Word Count: 631
Page Count: Ol

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | O
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Configuration Manual

Sangeetha Pillay Anil Kumar
20232195

1 Introduction

This study uses lesion features extracted from the images to classify the stages of diabetic
retinopathy (DR), using the retinal fundus image. There are code snippets from several
parts that are added as necessary in this document to provide all of the instructions
required to reproduce this study.

2 Hardware Configuration

The machine utilized for the implementation of this study has Windows 10 Pro, a 64-bit
operating system, an x64-based processor, an 7th Gen Intel(R) Core(TM) i5-7200U CPU,
and 20GB of RAM. The Hardware configuration of the system is depicted in Figure

Device specifications

Device name DESKTOP-PMSPMEH

Processor Intel(R) Core(TM) i5-7200U CPU @ 2.50GH=z 2.71 GH=z

Installed RAM 20.0 GB (19.9 GB usable)

Dewvice ID FEE3BFD1-26C4-4138-9949-1BB5B5632B9C

Product ID 003231-10000-00001-AA445

System type 64 -bit operating system, x64-based processor

Pen and touch MNo pen or touch input is available for this display
Copy

Rename this PC

Windows specifications

Edition Windows 10 Pro

“ersion 21H2

Installed on 8/20/2021

OS build 19044.1889

Experience wWindows Feature Experience Pack 120.2212.4180.0
Copy

Figure 1: Hardware Configuration

3 System Configuration

Jupyter Notebook (Anaconda Navigator). was used to carry out the project’s implement-
ation. All of the coding in this article is done with Python 3. The version of Anaconda
is 2.0.3 which shown in the Figure [2l The notebook server is at versions 6.3.0 and 3.8.8.
(default, Apr 13 2021, 15:08:03) v.1916 of MSC (AMD64) is the Python version running
on the server depicted in the Figure

About Anaconda Mavigator

Anaconda Navigater 2.0.3

Copyright @ 2016 Anaconda, Inc.

Created by Anaconda

For bug reports and Feature requests, please wisit our
zzue Trackeron GikHub.

Figure 2: AnacondaNavigator Configuration

About Jupyter Notebook

Server Information:

You are using Jupyter notebook.

The version of the notebook server is: 6.3.0
The server is running on this version of Python:

Python 3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AMD64)]
Current Kernel Information:
Python 3.8.8 (default, Apr 13 2821, 15:08:03) [MSC v.1916 64 bit (AMD64)]

Type 'copyright', 'credits' or 'license' for more information
IPython 7.22.8 -- An enhanced Interactive Python. Type '?" for help.

OK

Figure 3: JupyterNotebook Configuration

4 Library Requirement

The Figure 77 is a list of the Python packages that must be installed in the environment
for reproducing the study. Each package is installed using the ”pip” command. The
“import” method was used to import the remaining internal libraries which is depicted
in Figure ?77.

Table 1: Required Libraries

Packages Version
PIL 8.2.0
cv2 4.0.1
keras 2.8.0
matplotlib 3.3.4
pandas 1.2.4
seaborn 0.11.1
session_info 1.0.0
sklearn 1.1.2
tensorflow 2.8.0
theano 1.0.5

5 Data Collection

The Standard Diabetic Retinopathy Database and Kaggle provided the datasets for this
study. This datasets were allowed to downloaded from the websites in the system as
directories . The Kaggle dataset was loaded to the python. The Standard Diabetic
Retinopathy dataset was loaded into python as a csv file which consists of the images
along with the presence and absence of the lesions.

6 Data Preprocessing

The preprocessing of the datasets was done separately for the two datasets.

6.1 Standard Diabetic Retinopathy Database

The lesion feature was learned using this dataset. This image dataset was initially con-
verted to an array in order to extract the lesion feature from the images. For that, the
code shown in the Figure 4 was applied. For all four different types of lesions, this was
used,by changing the Image.open() argument. Then, the data was divided into train and
test sets as depicted in Figure [f

6.2 Kaggle Dataset

This image dataset was loaded into the python and the obtained importance feature from
the lesion dataset was used to extract the lesion feature from this dataset. And the data
was splited into train and test data as shown in Figure[6] This same Method was carried
out in the data training for the classification stage of DR.

3

i img_rows, img cols = 224, 224

immatrix=[]

imlabel=[]

for indx,item in df.iterrows():
imlabel.append(item[0])
im = Image.open(item[4])
img = im.resize((img_rows,img cols))
gray = img.convert('L")
immatrix.append(np.array(img).flatten())

immatrix = np.asarray(immatrix)

imlabel = np.asarray(imlabel)

Figure 4: Code for converting image to array

X train, X test, y train, y test = train test split(train data[@], train data[l], test size = 6.2, random state = 5)

Figure 5: Train Test Split

¢ len(imlabel)
for index in range(@,len(final matrix)):
cv2.imwrite(f'F:\\NCI Documents\\Final Thesis\\feature\\{index}.png',final matrix[index])
final matrix[index] = f'F:\\NCI Documents\\Final Thesis\\feature\\{index}.png'

i X_train, X test, y train, y_test = train_test split(final_matrix, imlabel, test_size = 0.2, random_state = 100)

: | data tuples = list(zip(X train,y train))

: data_tup = pd.DataFrame(data tuples,columns=['image’, 'label'])

Figure 6: Code for dataframe of DR No_DR image dataset

7 Data Augmentation

In order to accomplish real-time augmentation, image data generators were created. The
keras image data generators are implemented in the code depicted in Figure[7] This same
method was carried out with the DR stage classification image.

8 Model Building

Figure 8| depicts the model-building code for detecting the presence of DR or No DR, and
Figure 9 depicts the code for classifying the stage of DR.

9 Model Fitting

Pretrained VGG-16 and VGG-19 models from CNN were employed in this study. Fig-
ure |10 and Figure [11] shows the code used for fitting this pretrained models.

-
def create_gen(}:

o the Imoges
_generator
preprocessing f
validation split=8.1

e tor

]

test_generator = Uf _keras

amd Data Augmentat-ion
eprocessing. image . ImageDataGenerator|
f.keras . applications.mobilenet_v2.preprocess_ingut,

reprocessing. Image . ImageDataGenerator(

preprocessing_function=tf.keras. applications.moblilenet_vE. preprocess_ingut

¥

train_images = train_generator.flow_froe_dataframe(

target_size=(32,

32),
color_mode= .

class_mode
batch_size=

shuffle=True,

‘gb

omment [wse Jabo ougoes

zoom_range=8
width_shift
heigh
shear_range=2_15,
horizontal Flip=True,
Fill_mede="nearest”

H

wal_images

_generator . Flow_from_dataframe(
r_dF,

w_col=" .
target_size=(32,32},
color_mode b

class_mode tegorical”,
batch_size=32,
shuffle=True,
seed=8,
subset="wvalidat
rotation_range=3a,
zoon_range=8.15,
width_shift_range=a_
height_shifl_range=g
shear_range=2_15,
horizontal Flip=True,
Fill_mede="nearest”

!

Lo wse Sata ougmer

¥

test_images = test_generator.flow from_datafrane(
dataframe=test_df,
x_col="'inage",
v_col="label",
target_size=(32, 32},
color_mode b,
class_mode
batch_size=32,
shuffle=False

~ical”

¥

- wale cowntts ()

return train_generator,test_generator, train_images val_images, test_images

Figure 7:

def get model(model):
Load the pretained model
kwargs {'input_shape': (32,
‘include top':False
‘'weights':'imagenet
‘pooling’:"avg"}

pretrained model
pretrained model.trainable

Fa

inputs = pretrained_model.input

X
X

tf.keras.layers.Dense(128,
tf.keras.layers.Dense(128,

outputs tf.keras.layers.Dense

model tf.keras.Model (inputs=i
model.compile(

optimizer="adam"’,

Image Generators

32,3),
>

v
>

model (**kwargs)

lse

activation="relu’)(pretrained_model.output)
activation="relu’)(x)
(2, activation='softmax')(x)

nputs, outputs=outputs)

loss="'categorical crossentropy’,

metrics=['accuracy’]

return model

Figure

8: CNN model 1

def get model(model):
Load the pretained model
kwargs = {"input shape':(32,32,3),
'include top':False,
'weights':'imagenet',
‘pocling’:'avg'}

pretrained model = model(**kwargs)
pretrained model.trainable = False

inputs = pretrained model.input

x
x

tf.keras.layers.Dense(128, activation='relu')(pretrained model.output)
tf.keras.layers.Dense(128, activation="relu’)(x)

outputs = tf.keras.layers.Dense(4, activation='softtmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model . compile(

optimizer="'adam’,

loss="'categorical crossentropy’,
metrics=["'accuracy’]

Figure 9: CNN model 2

10 Evaluation

The model’s train accuracy, validation accuracy, training time, specificity, and sensitivity
were all calculated for the model evaluation. And compared the models’ levels of accuracy.
Figure [12] and shows the code used for evaluating the models.

Dictionary with the models

from time import perf counter

seed value = @

np.random. seed(seed value)

models = {
"WGG16": {"model":tf.keras.applications.VGG16, "perf":8},
"WGG19": {"model":tf.keras.applications.VGG19, "perf":0},

}

Create the generators

train_generator,test generator,train_images,val images,test imageszcreate gen()

print('\n")

trained models = []

Fit the models

for name, model in models.items():

Get the model
m = get model(model['model’])
models[name][‘model'] = m

start = perf counter()

Fit the model

history = m.fit(train images,validation data=val images,epochs=200,verbose=z1)
trained models.append(history)

Sav the duration, the train accuracy and the val accuracy

duration = perf counter() - start

duration = round(duration,2)

models[name]['perf'] = duration

print(f"{name:20} trained in {duration} sec")

val acc = history.history['val accuracy']
models[name]['val acc'] = [round(v,4) for v in val acc]

train_acc = history.history['accuracy']
models[name]['train_accuracy'] = [round(v,4) for v in train acc]

Figure 10: Model Fitting of CNN 1

Dictionary with the models

from time import perf counter

seed value = 200

np.random. seed(seed value)

models = {
"WGG16": {"model":tf.keras.applications.VGG16, "perf":08},
"WGG19": {"model":tf.keras.applications.VGG19, "perf":8},

¥

Create the generators

train_generator,test generator,train images,val images,test images=create gen()
print('\n")

Fit the models
for name, model in models.items():

Get the model
m = get model(model[‘'model'])
models[name]['model'] = m

start = perf_counter()

Fit the model
history = m.fit(train_images,validation_data=zval images,epochs=250,verbose=z1)

Sav the duration, the train accuracy and the val accuracy
duration = perf counter() - start

duration = round(duration,2)

models[name]['perf'] = duration

print(f"{name:28} trained in {duration} sec")

val acc = history.history['val accuracy']
models[name]['val _acc'] = [round(v,4) for v in val acc]

train_acc = history.history['accuracy']

models[name]['train_accuracy'] = [round(v,4) for v in train_acc]
models[name]['predictions']=m.predict(test images)

Figure 11: Model Fitting of CNN 2

Create a DotoFrame with the pesults
models_result = []

for name, v in models.items():
models_result.append([name,
models[name]('train_accuracy'][-1],
wodels[name]['val_ace'][-1],
models[name]['perf']])

df_results = pd.DataFrame(models_result,

columns = ['model’, 'train_accuracy','val accuracy’, 'Training time (sec)'])
df results.sort values{by='val accuracy', ascending=False, inplace=True)
df_results.reset_index(inplacesTrue,drop=True)
df_results

Figure 12: Model Accuracyl

pd.DataFrame(history.history)[['accuracy','val accuracy']].plot()
plt.title("Accuracy")
plt.show()

pd.DataFrame(history.history)[['loss', 'val loss']].plot()

plt.title("Loss")
plt.show()

from sklearn.metrics import classification report
y test = list(test df.label)

Figure 13: Learning curve

	Introduction
	Hardware Configuration
	System Configuration
	Library Requirement
	Data Collection
	Data Preprocessing
	Standard Diabetic Retinopathy Database
	Kaggle Dataset

	Data Augmentation
	Model Building
	Model Fitting
	Evaluation

