ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
Programme Name

Abhijeet Anand
Student ID: X19216068

School of Computing
National College of Ireland

Supervisor: Vladimir Milosavljevic

Student
Name:

Student ID:

Programme:

Module:

Lecturer:
Submission
Due Date:

‘-—
National College of Ireland \ National

Collegeof
Ireland

MSc Project Submission Sheet
School of Computing

Abhijeet Anand

x19216068

Masters in Data Analytics Year: 2020-2021
Research Project

Vladimir Milosavljevic

16t December 2021

Project Title: Automated CAD System for Classification of Covid-19 using Xception

Word Count:

Model

......... 1546...ccciiiiiiiii . PA@g@ @ Count: (16

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Date:

Abhijeet Anand

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple m

copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both | o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Automated CAD System for Classification of Chest X-Rays
using Xception Model

Abhijeet Anand
Student 1D:x19216068

1 Introduction

This document is used to explain all the system requirements and the coding interpretation
briefly. It would also give the walkthrough of all the code execution, tools and libraries used
and the CAD system designed. It would briefly explain how to use pretrained model and
analyses the performance of model using the various metrices like recall, accuracy, precision,
F1 score and the confusion matrix. At last, it would show how to save the model and use it in
developing a web-based application using Flask.

2 Configuration of the System

This section is used to brief about the system configuration of the local machine used in the
implementation of research. While executing the Deep learning projects system specifications
plays and important role in efficiency and overall performance of the model. In this work
both local and virtual environment has been used:

2.1 Physical Machine Configuration:

The Physical Machine is used to run the Google Colab and Anaconda on it.
1. Operating System: Windows 10 64-bit
2. Processor: Intel i7 10th Generation
3. Hard Disk: 512 GB SSD
4. Memory: 8 GB of RAM

2.2 Tools & Library used:

1. Google Colab: Colab is also known as Colaboratory, it facilitates to run the code in
python using a browser. It is mostly used for the machine learning and data analytics.

2. Google Drive: It is a service deployed by Google in the year 2012 to store files in
synchronized way. It provides Cloud storage to synchronize and share files on various
platform and devices. The cloud is encrypted and proactively secured with malware
and phishing detection activated on them.

3. Anaconda Navigator: It is GUI based python distribution that is used to launch
common applications like jupyter Notebook, Spyder, etc. It is used for common
python programs without using the command line to install conda packages. It can
also search for new updates in local repository or on Anaconda.org.

1

3

10.

11.

Flask: It is a lightweight web framework which is coded in python for API designing.
It is sometime known as micro web framework because it gives a lot of features
without particular tools and libraries.

Spyder IDE: It is an open-source development platform used python programing. It
is used to execute the app.py code pass the images uploaded using html form into
model.h5 file.

NumPy: It is python library which is installed to work on multidimensional matrices
and arrays. It consists of many mathematical functions which helps in proper
calculation in neural network.

Pandas: It is a python library used for data analysis and manipulation. It consists of
some operations and data structures.

TensorFlow: It is a software library used in python to perform tasks in machine
learning Al. It is already installed in Google colab for training of deep neural
networks.

Keras: It is a python library used as a interface in TensorFlow and Aritifical Network.
It is used for neural network layers, activation functions, objectives, optimizers and
other tools which are necessary for working with image data.

Scikit-Learn: It is a python library used for statistical modeling and machine
learning which includes clustering, classification and regression.

HDF5 File: HDF5 stands for Hierarchical Data Format, it supports big and
heterogenous data. It consists of a structured directory which helps in keeping data
and file in structured and organized way. It is used for storing the trained model in
this project.

Implementation:

Download the dataset from the Kaggle website. The dataset contains two folders train
and test. (https://www.kaggle.com/bimsarananayakkara/kaggle-covid19-
classification/data)

kaggle-COVID19-Classification

Python - Chest X-ray (Covid-19 & Pneumonia)

Notebook Data Logs Comments (2)

Data

Data (2 directories) S >

2. Uploaded the dataset on the Google drive.
& G &) https:/drive.google.com/drive/folders/1Zy0tpCLI7NovaKi6AbXQHsHFqPI6WalA

L Drive Q, Searchin Drive

My Drive > My _Projects New > Projectd

I- New

Name Last modified
v @ My Drive
» [l Colab B test Dec 9, 2021
» Colab Notebooks . train e 201

» [l COVID-19 Radiography Data...

3. Open the Google Colab using the browser and mount the Google drive. It would
verify the access using a verification link.

° from google.colab import drive
drive.mount(" /content/drive’)

Mounted at /content/drive

4. Import the important Python Libraries like keras, numpy, Pandas, matplotlib and
tensorflow.

IV o) W
° import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import math

import datetime

import tensorflow as tf

import keras

from keras import models

from keras import layers

from keras import optimizers

from keras.models import Sequential

from keras.layers import Dense, Conv2D , SeparableConv2D, MaxPool2D , Flatten ,Dropout , BatchNormalization,

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img

from keras.callbacks import ReduceLROnPlateau

from keras import backend as K

from keras import optimizers

from sklearn.metrics import classification_report, recall_score, precision_score, confusion_matrix, f1_score,

5. Load the images from train folder and encode the classes as numerical 0,1 and 2.

path = '/content/drive/MyDrive/My_Projects_New/Projectd4/train’

diag_code_dict = {
'CovID19': 8,
"MORMAL": 1,
'PNEUMONIA': 2}

6. Load the image data into test and train path. ImageDataGenerator from keras library
is a class used to for data augmentation in real-time and generate images at every
epoch. Flow_from_directory is a method of Imagedatagenerator class used to take
the path of directory and generate augmented data.

test_path = '/content/drive/MyDrive/My_Projects_New/Projectd/test/’
train_path = '/content/drive/MyDrive/My_Projects_New/Projectd4/train/"

classes = ["COVID19", “NORMAL", "PNEUMONIA"]
num_classes = len(classes)

#Training data

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=10,
zZoom_range=90.4,
horizontal_flip=True,
validation_split=©.01

)

train_generator = train_datagen.flow_from_directory(
'/content/drive/MyDrive/My_Projects_New/Project4/train’,
target_size=(299, 299),
batch_size=32,
class_mode='categorical',
subset="training’
)

#validation data

val_generator = train_datagen.flow_from_directory(
' /content/drive/MyDrive/My_Projects_New/Project4/train"',
target_size=(299, 299),
batch_size=32,

class_mode="'categorical"',
subset="validation"')

#testing data

test_datagen = ImageDataGenerator(rescale=1./255)

test_generator = test_datagen.flow_from_directory(
'/content/drive/MyDrive/My_Projects_New/Project4/test’,
target_size=(299, 299),
batch_size=32,
class_mode="'categorical')

Found 5894 images belonging to 3 classes.
Found 58 images belonging to 3 classes.
Found 1288 images belonging to 3 classes.

7.

8.

Load a sample image of Covid-19 case from the database.

from keras.preprocessing import image ™~ v e [
#visualize data

image_path = "/content/drive/MyDrive/COVID-19 Radiography Database/COVID-19/COVID-19 (123).png"
new_img = image.load_img(image_path, target_size=(299, 299))

img = image.img_to_array(new_img)

img = np.expand_dims(img, axis=e)

print("COVID-19")

plt.imshow(new_img)

COVID-19
<matplotlib.image.AxesImage at ©x7f95e4f42210>

100 150 200 250

Load a sample image of Viral Pneumonia case from the database.

#visualize data

image_path = "/content/drive/MyDrive/COVID-19 Radiography Database/Viral Pneumonia/Viral Pneumonia (1©24).png"
new_img = image.load_img(image_path, target_size=(299, 299))

img = image.img_to_array(new_img)

img = np.expand_dims(img, axis=0)

print("Vviral Pneumonia")

plt.imshow(new_img)

Viral Pneumonia
<matplotlib.image.AxesImage at ©x7f95e4a9c450>

Load a sample image of Normal case from the database.

#visualize data

image_path = "/content/drive/MyDrive/COVID-19 Radiography Database/NORMAL/NORMAL (1013).png"
new_img = image.load_img(image_path, target_size=(299, 299))

img = image.img_to_array(new_img)

img = np.expand_dims(img, axis=0)

print ("NORMAL")
plt.imshow(new_img)

NORMAL

<matplotlib.image.AxesImage at ©Ox7f95e4alad50>
o
50

100

150

10. Instantiate the Xception architecture using pre-trained weights of ImageNet.
(Adusumilli, 2020)(f keras.applications.xception. Xception).

#Using pretrained Xception model

xception=tf.keras.applications.Xception(input_shape=(299,299,3),
include_top=False,
weights="imagenet"')

#freezing the layers
for layer in xception.layers:
layer.trainable=False

11. Relu function is used in the hidden layer and Softmax layer to classify the images in a
multiclass classification whereas Sigmoid is used in binary classification in logistic
regression. (S, 2021)

x=layers.Flatten()(last_output)

#adding an extra layer
x=layers.Dense({256,activation="relu’')(x)

#Foutput laver
x=layers.Dense(3,activation="softmax")(x)

xception_model=keras.Model(xception.input,x)

12. Configure the model using model.compile().

| xception_model.compile(optimizer="adam’,
loss='categorical_crossentropy',
metrics=["'accuracy'])

13. How the model looks like showing the 14 blocks and number of parameters which are
trainable and non-trainable.

xception_model.summary()

Model: "model™

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 299, 299, 3 © [l
)]
blockl_convl (Conv2D) (None, 149, 149, 32 864 ["input_1[e][e]"']
)
bleckl_convl_bn (BatchNormaliz (None, 149, 149, 32 128 ['blockl_convi[©][e]']
ation))
blockl_ceonvl_act (Activation) (None, 149, 149, 32 @ ['blockl_convil_bn[e][e]"]
)
blockl_conv2 (Conv2D) (None, 147, 147, 64 18432 ['blockl_convl_act[@][e]"']
)
blockl_conv2_bn (BatchNormaliz (None, 147, 147, 64 256 ['blockl_conv2[e][e]"']
ation))
blockl_conv2_act (Activation) (None, 147, 147, 64 @ ['blockl_conv2_bn[e][e]"']

block2_sepconvl (SeparableConv (None, 147, 147, 12 8768
2D) 8)

block2_sepconvl_bn (BatchNorma (None, 147, 147, 12 512
lization) 2)

bleck2_sepconv2_act (Activatio (None, 147, 147, 12 e
n) 8)

block2_sepconv2 (SeparableConv (None, 147, 147, 12 17536
2D) 8)

bleck2_sepconv2_bn (BatchNorma (None, 147, 147, 12 512

lization) 8)
conv2d (Conv2D) (None, 74, 74, 128) 8192
bleock2_pool (MaxPooling2D) (None, 74, 74, 128) @

batch_normalization (BatchNorm (None, 74, 74, 128) 512
alization)

blockl4_sepconvl_act (Activati (None, 10, 18, 1536 @
on))

blockl4_sepconv2 (SeparableCon (None, 1@, 16, 2048 3159552
v2D))

blockl4_sepconv2_bn (BatchNorm (None, 10, 18, 2048 8192
alization))

bleckl4_sepconv2_act (Activati (None, 1@, 1@, 2048 @

on))

flatten (Flatten) (None, 204808) 2]

dense (Dense) (None, 256) 52429056
dense_1 (Dense) (None, 3) 771

['bleckl_conv2_act[e][e]"]

['block2_sepconvi[e][e]"']

["bleck2_sepconvl_bn[e][e]"]

['block2_sepconv2_act[e][e]']

['bleck2_sepconv2[e][e]']

["blockl_conv2_act[e][e]"]
["block2_sepconv2_bn[e][e]']

['conv2d[e][e]']

['blockl4_5epconv1_hnLGJ[é] f_~

['blockl4_sepconvl_act[@][e]']

['blockl4d_sepconv2[e][e]']

['blockl4_sepconv2_bn[e][e]']

['blockld_sepconv2_act[e][0]']
['flatten[0][0]']

['dense[@][@]"]

Total params: 73,291,367
Trainable params: 52,429,827
Non-trainable params: 20,861,480

14. Train the model using Xception_model.fit()

history_xception=xception_model.fit(train_generator,

validation_data=val_generator, steps_per_epoch= 48,epochs=15)

Epoch 1/15

4e/40 [] - 539s 13s/step - loss: 4.8889
Epoch 2/15

40/48 [] - 5@1ls 12s/step - loss: 1.3667
Epoch 3/15

4e/40 [] - 492s 12s/step - loss: 1.0682
Epoch 4/15

40/48 [] - 588s 12s/step - loss: ©.8879
Epoch 5/15

4e/40 [] - 497s 12s/step - loss: 8.4511
Epoch 6/15

48/40 [] - 495s 12s/step - loss: 0.4924
Epoch 7/15

4e/48 [] - 5@1s 12s/step - loss: ©.4806
Epoch 8/15

40/40 [] - 499s 12s/step - loss: 8.2949
Epoch 9/15

4e/48 [] - 496s 12s/step - loss: ©.2893
Epoch 18/15

4e/40 [] - 5@3s 13s/step - loss: ©.2376
Epoch 11/15

40/40 [] - 583s 13s/step - loss: ©.1791
Epoch 12/15

40/40 [] - 485s 12s/step - loss: ©.1713
Epoch 13/15

40/40 [] - 588s 13s/step - loss: ©.2096
Epoch 14/15

40/40 [] - 584s 13s/step - loss: ©.1472
Epoch 15/15

40/40 [] - 582s 13s/step - loss: ©.1589

accuracy: 8.8211 - val_loss: 1.2215

accuracy: 9.8852 - val_loss: ©.8170
accuracy: 9.8909 - val_loss: 2.03808
accuracy: 9.8961 - val_loss: 1.1789
accuracy: 9.9180 - val_loss: ©.6667
accuracy: 9.9662 - val_loss: ©.7951
accuracy: ©.9133 - val_loss: ©.2570
accuracy: 9.9305 - val_loss: ©.4168
accuracy: 0.925@ - val_loss: ©.3689

accuracy: 9.9141 - val_loss: ©.4542
accuracy: ©.9391 - val_loss: ©.2450
accuracy: ©.9330 - val_loss: ©.2007

accuracy: ©.9258 - val_loss: ©.3112

®

accuracy: 0.94e6 - val_loss: ©.3458

®

accuracy: ©.9406 - val_loss: ©.1733

15. Train and Validation loss Graph: It shows the model is learning and both loss are
gradually decreasing, with validation loss less than training loss is good for model. A
model is said to be underfitting if it has high training and validation error. A model is
said to be over fitting if it has low training error and high validation error.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

loss

plot(history_xception.history['loss'])
plot(history_xception.history['val_loss'])
title('model training loss')

ylabel('loss')

xlabel('epoch')

legend(['train', 'validation'], loc='upper right')
show()

model training loss

—— f{rain
validation
\\E*“\\\yr‘_Hﬂﬁﬁwg‘_*‘1-‘5—__bgﬂh—_ﬁ_—
0 2 4 6 B 10 12 14
epoch

16. Train and Validation Accuracy: Both Train and Test accuracy graph are at higher

values showing that model is good. Also, we can see that model is gradually learning.
plt.plot(history_xception.history['accuracy'])
plt.plot(history_xception.history['val_accuracy'])
plt.title('model training accuracy')
plt.ylabel('training accuracy')
plt.xlabel('epoch")
plt.ylim([©.5,1])
plt.legend(['train', 'wvalidation'], loc='upper right')
plt.show()

10

model training accuracy

0.9

o
=]

o
~

training accuracy

o
o

— ftrain

N validation
,_/‘\w

Vo

o
w

epoch

17. Evaluate the model on test data and check its loss and accuracy.

#Evaluate the model on test data and check its less and accuracy.
x=xception_model.evaluate(test_generator)

41/41 [==============================] - 441s 1lls/step - loss: ©.2571 - accuracy: ©.9123

print(f'Testing loss: {x[e]}")
print(f'Testing accuracy: {x[1]}')

Testing loss: ©.25709158182144165
Testing accuracy: ©.9122670888900757

18. Predict the class of the image

#Predict the class(Covid,Viral Pneumonia or Normal) of each image T v eoB R rI"_—-| L]
y_predictions=[]
for img in os.listdir("/content/drive/MyDrive/My_Projects_New/Project4/test/COVID19"):
img = load_img('/content/drive/MyDrive/My Projects_New/Project4/test/COVID19/'+img,target_size=(299,299))
img = img_to_array(img)

img = np.expand_dims(img, axis = @)
result = xception_model.predict(img/255.0)[@]
y_predictions.append(np.argmax(result))

for img in os.listdir("/content/drive/MyDrive/My_Projects_New/Project4/test/NORMAL"):
img = load_img('/content/drive/MyDrive/My_Projects_New/Project4/test/NORMAL/'+img,target_size=(299,299))
img = img_to_array(img)
img = np.expand_dims(img, axis = @)
result = xception_model.predict(img/255.0)[@]
y_predictions.append(np.argmax(result))

for img in os.listdir("/content/drive/MyDrive/My_Projects_New/Project4/test/PNEUMONIA™):
img = load_img('/content/drive/MyDrive/My_Projects_New/Project4/test/PNEUMONIA/'+img,target_size=(299,299)
img = img_to_array(img)

img = np.expand_dims(img, axis = @)
result = xception_model.predict(img/255.0)[8]
y_predictions.append(hp.argmax(result))

y_predictions=np.array(y_predictions)

19. Evaluation of model based on various parameters precision, recall and F1

#View the Class indices of the model
test_generator.class_indices
{'covID1g': @, 'NORMAL': 1, 'PNEUMONIA': 2}

#Evaluation metrices for model precision, recall, Fl- score
print(classification_report(test_generator.classes,y_predictions))

precision recall fl-score support

=] 1l.ee e.87 e.93 1l1e

1 e.74 e.96 e.84 317

2 2.98 2.89 e.93 855

accuracy @.99e 1288
macro avg 2.91 e.91 @.99e 1288
weighted avg e.92 e.%e e.91 1288

20. Print confusion matrix to check the number of True positives, True Negative, False
positive and False Negative values.

print(confusion_matrix(test_generator.classes,y_predictions))

[[1e1 9 6]
[0304 13
[o 97 758]]

import seaborn as sns

plt.figure(figsize=(12, 6))

ax = sns.heatmap(confusion_matrix(test_generator.classes,y predictions), annot = True, fmt = 'g' ,vmin = @, vm
ax.set_xlabel('Predicted',fontsize = 14,weight = 'bold")

ax.set_xticklabels(ax.get_xticklabels(),rotation =0);

ax.set_ylabel('Actual',fontsize = 14,weight = 'bold")

ax.set_yticklabels(ax.get_yticklabels(),rotation =8);
ax.set_title('Confusion Matrix - Test Set',fontsize = 16,weight = 'bold',pad=20);

Confusion Matrix - Test Set

- 250
04 101 9 6
200
-150
z
E 1 0
- 100
- 50
2 0
i i -0
0 1

Predicted

10

21. Print graph for recall, precision and F1-score

acc = accuracy_score(test_generator.classes,y_predictions)

from tensorflow.keras.metrics import PrecisionAtRecall,Recall

from sklearn.metrics import confusion_matrix, classification_report

from sklearn.metrics import precision_recall_fscore_support, accuracy_score

results_all = precision_recall_fscore_support(test_generator.classes,y_predictions, average='macro', zero_divi:
results_class = precision_recall_fscore_support(test_generator.classes,y predictions, average=None, zero_divis:

metric_columns = ['Precision’','Recall’', 'Fl-Score','s']

all_df = pd.concat([pd.DataFrame(list(results_class)).T,pd.DataFrame(list(results_all)).T])
all_df.columns = metric_columns

all_df.index = ['COVID','Normal', 'Viral Pneumonia’, 'Total']

def metrics_plot(df,metric):

plt.figure(figsize=(22,10))

ax = sns.barplot(data =df, x=df.index, y = metric,palette = "Blues_d")

#Bar Labels

for p in ax.patches:
ax.annotate("%.1f%%" % (1e@*p.get_height()), (p.get_x() + p.get_width() / 2., abs(p.get_height())),
ha='center', va='bottom', color='black', xytext=(-3, 5),rotation = 'horizontal',textcoords='offset poil

sns.despine(top=True, right=True, left=True, bottom=False)

ax.set_xlabel('Class',fontsize = 14,weight = 'bold')

ax.set_ylabel(metric,fontsize = 14,weight = 'bold')

ax.set(yticklabels=[])

ax.axes.get_yaxis().set_visible(False)

plt.title(metric+ ' Results per Class', fontsize = 16,weight = 'bold');

metrics_plot(all_df, 'Precision’)#Results by Class
metrics_plot(all_df, 'Recall')#Results by Class
metrics_plot(all_df, 'Fl-Score')#Results by Class

22. Save the trained mode as .h5 file to use it in flask.

xception_model.save('xception_model.h5")

/usr/local/lib/python3.7/dist-packages/keras/engine/functional.py:1410: CustomMaskWarning: Custom mask layers
layer_config = serialize_layer_fn(layer)

23. Install the Anaconda Navigator on the local system. Once Anaconda is installed open
the Anaconda Navigator and Lunch Spyder 4.1.5 IDE on it.

2 Anaconda Navigator
File Help

_) ANACONDA NAVIGATOR @ vrarade N

Applications on ‘ base (root) vl Channels
n Environments
= <
S i ¢
W Learning A
IPTy /S

X ;
aaw Community QL Console Spyder

5.03 A

PyQt GUI that supports inline Figures, proper Scientific PYthon Development
multiline editing with syntax highlighting, EnviRonment. Powerful Python IDE with
Documentation graphical calltips, and more. advanced editing, interactive testing,

debugging and introspection features

Develoner Blon

wl L Lo

11

24. Browse the path of folder where the python file for the flask integration is stored.

9 Spyder Python 39 -0 X

jects Tools View Help

Bifeéd

25. Open the app.py file and install the necessary libraries. (Flask and Keras in this case)

....\Users\Abhijeet Anand\Downloads\Thesis Documents\Thesis_FinalCode&Data\Code\FlaskLocalSpyder\app.py
O app.py* X
In[6]:

rom flask import Flask, render_template, request
om keras.models import load_model
rom keras.preprocessing import image

import numpy as np

26. App is started using Flask(_name_) and dictionary is created a dictionary with classes
Covid :0, Normal :1 and Viral Pneumonia:2 (Ankit, 2021). Then the weight of trained
model is loaded into model.

app = Flask(__name_)
dic = {@ : 'COVID-19', 1 : 'NORMAL', 2 : 'Viral Pneumonia' }
model = load_model('xception_model.h5")

model.make_predict_function()

27. Predict function is used to take the images from the html form and them reshape then
into size which passes into model. i.e. 299x299 and then return the predicted value.

def predict_label(img_path):
new_img = image.load_img(img_path, target_size=(299,299))
img = image.img_to_array(new_img)
img = np.expand_dims(img, axis = @)

p = np.argmax(model.predict(img/255.0), axis=1)
return dic[p[@]]

12

28. Define the Routes

(";ﬂ'”’ methods:['GET'_, 'POST'])
def main():

return render_template("final.html")

("/submit”, methods = ['GET', 'POST'])
def get_output():
if request.method == 'POST':
img = request.files['my_image ']

img_path = "static/" + img.filename
img.save(img_path)

p = predict_label(img_path)

return render_template("final.htmlL"”, prediction = p, img_path = img_pat

29. To implement it without any problem, store the app.py file and model.h5 in the same
folder. Also create to more folders static and template. Static to store uploaded image
and Templates to render the HTML file.

« Code » FlasklocalSpyder v D £ Search FlaskLocalSpyder
A [Name Date modified Type
static 11-12-2021 11:57 File folder
templates 08-12-2021 08:42 File folder
@ app 11-12-2021 11:54 Python File
| | Flask_Image_classification .ipynb 07-12-2021 12:02 IPYNB File
| | xception_model.h5 11-12-2021 11:52 H5 File

30. Webpage on local machine This is a webpage is designed to work on local machine
only but I have also used Ngrok function and designed the same web page in Google
colab to communicate from outside and access the web page from anywhere.

(&7 @ 127.0.0.1:5000/submit

Upload Your Image : Choose File | No file chosen

Your Prediction : COVID-719

13

31. Test the Web-app using images in the folder CheckDisease_Images.

Thesis_FinalCode&Data » Data v D £ Search Data
A [Name Date modified Type
CheckDisease_Images 09-12-2021 22:04 File folder
ChestXray_Dataset 09-12-2021 11:25 File folder
References

Adusumilli, G., 2020. Image Recognition using Pre Trained Xception Model in 5 steps. Analytics Vidhya. URL
https://medium.com/analytics-vidhya/image-recognition-using-pre-trained-xception-model-in-5-steps-
96ac858f4206 (accessed 12.15.21).

Ankit, U., 2021. Image Classification of PCBs and its Web Application (Flask) [WWW Document]. Medium.
URL https://towardsdatascience.com/image-classification-of-pchs-and-its-web-application-flask-
€2b26039924a (accessed 12.15.21).

S, H., 2021. Activation Functions : Sigmoid, ReLU, Leaky ReLU and Softmax basics for Neural Networks and
Deep.... Medium. URL https://himanshuxd.medium.com/activation-functions-sigmoid-relu-leaky-relu-
and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e (accessed 12.15.21).

tf.keras.applications.xception.Xception | TensorFlow Core v2.7.0 [WWW Document], n.d. . TensorFlow. URL
https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/Xception (accessed
12.15.21).

14

