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1 Introduction 
 

In this proposal, "Malware Detection Using Conventional Neural Network and Regression 

on Smartwatches" using CNN-R is implemented using various applications and hardware 

requirements. The requirements to do the implementation are given below. The main goal of 

this research is to detect malware using a conventional neural network with regression (CNN-

R), a deep learning method. From wireless sensors, the network traffic data under usual 

conditions and when the attack is recorded in the WSN-DS dataset . This dataset is fed in to 

one-dimensional CNN-R to classify the normal and abnormal or anomaly data traffic. In this 

implementation, the data preprocessing, training, testing, and evaluation matrix are 

implemented. 

 

2 System Requirements 
 

For the smooth processing of the model and to reduce the processing time, the following 

hardware and software are required: 

 

2.1 Hardware Requirement’s 

 

The implementation was performed on an MSI laptop, the configuration of the device is as 

follows 
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2.2 Software Requirements 

The software requirements are listed below. 

 

3 Data Preprocessing and Splitting 
 

This part represents all steps required for preparing data for the machine learning model. 

3.1 Importing Libraries  

 
 

In order to begin the process of data preparation and visualization, the first step is to load 

all of the essential libraries. These libraries include pandas, Matplotlib, seaborn, and 

NumPy. Sklearn offers a variety of programs for dividing and converting data. Modeling 

and layering using Keras for use in model training. 
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3.2 Data Loading 

 
 

The 'WSN-DS' dataset has to be loaded into a pandas dataframe before the data.head() function 

can be used to show all of the columns. 
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3.3 Data Visualization 

 

The correlation between each column of the dataset is shown in the graphic that can be seen 

above.Since there are no null or garbage values in the data, we can go ahead and split it up and 

get it ready for the CNN model.  

 

3.4 Data Splitting 

 
 

The data is divided into training and testing sets using the SKELEARN train test split technique 

with a test size of 30% and a random state of 42. 
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3.5 One Hot Encoding 

 

Since there are no numbers in the target column, we will have to use one keras hot encoding to 

turn it into a categorical format. 

3.6 Convert data into 3D arrays 

 
 

Convolutional layers need data in a 3D format, while the first one just needs data in a 2D 

format. In this particular scenario, the data dimensions are altered with the help of numpy. 

4 Model 

Now the data is ready for training, we need to build a model that fits the data accurately and 

makes good results.  

 

4.1 Defining Model 

 

The CNN model is initiated by the Sequential() function and the input layer. Then the model 

is created with two layers of conv1D, Maxpooling1D, and batch normalization, one flattened 
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layer, and three densely connected layers as shown above. ReLU is the activation function in 

the initial layers and the last layer has a softmax function due to multi-class classification.  

These layers are defined using filters of 6 and 26 in the conv1D layer with the stride of 1 and 

input size according to data shape which is 18 in this case. Maxpooling1D is used using a pool 

size of 2 and 2 strides after each iteration. 

 
 

4.2 Compiling Model 

 
 

For compiling model, the categorical_crossentropy loss function is selected due to multi-class 

classification, Stochastic gradient descent optimizer is used and the accuracy metric is declared 

as shown in the above code. 

 

4.3 Model Training 

 
 

The model is now ready to fit on data using hyperparameters of batch size 128 and 80 epochs 

with validation data that is used to validate model performance on unseen data. 

4.4 Model Evaluation 

Finally, the model is evaluated using ‘accuracy’ and ‘loss’ at each epoch obtained from seen 

and unseen data which are further shown below. 
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The above picture shows the evaluation of our data test data. Then performance accuracy we 

are achieving through this model is upto 96 % and testing loss we are achieving from this model 

is 0.25. 

 

 

After checking the model’s performance through testing it is now necessary to display the 

confusion matrix for all the 5 labels. With help of confusion matrix we would be able to 

measure the accuracy, precision, recall through the parameters of the confusion matrix. 

 

4.5 Saving model 

 
 

Then the model is saved with the'model.save’ function with the extension ‘.tflite’, which 

represents the lightweight model for use further in the future. 

 

5 Conclusion 
 

In this model, implementation is explained in each phase in this configuration manual, and 

the accuracy is 97.96%. So, the model is very light-weight and the size is very small, so it can 

be implemented easily in IoT devices to detect the malware and stop them. 

 

 


