

Malware Detection Using Conventional Neural

Network and Regression on smartwatches

Configuration Manual

Research Project

M.Sc. Cybersecurity

Raakesh babu Venkateswara

Student ID: X21105227

School of Computing

National College of Ireland

Supervisor: Mr. Niall Heffernan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student
Name:

Raakesh babu Venkateswara

Student ID:

21105227

Programme:

M. Sc. cybersecurity

Year:

2021-2022

Module:

Research project configuration manual

Lecturer:

Mr. Niall Heffernan
Submission

Due Date:

15/08/2022

Project Title:

Malware detection using Conventional Neural Network and Regression
on smartwatches

Word Count:

1103 Page Count: 9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Raakesh babu venkateswara

Date:

15/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Raakesh babu Venkateswara

X21105227

1 Introduction

In this proposal, "Malware Detection Using Conventional Neural Network and Regression

on Smartwatches" using CNN-R is implemented using various applications and hardware

requirements. The requirements to do the implementation are given below. The main goal of

this research is to detect malware using a conventional neural network with regression (CNN-

R), a deep learning method. From wireless sensors, the network traffic data under usual

conditions and when the attack is recorded in the WSN-DS dataset . This dataset is fed in to

one-dimensional CNN-R to classify the normal and abnormal or anomaly data traffic. In this

implementation, the data preprocessing, training, testing, and evaluation matrix are

implemented.

2 System Requirements

For the smooth processing of the model and to reduce the processing time, the following

hardware and software are required:

2.1 Hardware Requirement’s

The implementation was performed on an MSI laptop, the configuration of the device is as

follows

2

2.2 Software Requirements

The software requirements are listed below.

3 Data Preprocessing and Splitting

This part represents all steps required for preparing data for the machine learning model.

3.1 Importing Libraries

In order to begin the process of data preparation and visualization, the first step is to load

all of the essential libraries. These libraries include pandas, Matplotlib, seaborn, and

NumPy. Sklearn offers a variety of programs for dividing and converting data. Modeling

and layering using Keras for use in model training.

3

3.2 Data Loading

The 'WSN-DS' dataset has to be loaded into a pandas dataframe before the data.head() function

can be used to show all of the columns.

4

3.3 Data Visualization

The correlation between each column of the dataset is shown in the graphic that can be seen

above.Since there are no null or garbage values in the data, we can go ahead and split it up and

get it ready for the CNN model.

3.4 Data Splitting

The data is divided into training and testing sets using the SKELEARN train test split technique

with a test size of 30% and a random state of 42.

5

3.5 One Hot Encoding

Since there are no numbers in the target column, we will have to use one keras hot encoding to

turn it into a categorical format.

3.6 Convert data into 3D arrays

Convolutional layers need data in a 3D format, while the first one just needs data in a 2D

format. In this particular scenario, the data dimensions are altered with the help of numpy.

4 Model

Now the data is ready for training, we need to build a model that fits the data accurately and

makes good results.

4.1 Defining Model

The CNN model is initiated by the Sequential() function and the input layer. Then the model

is created with two layers of conv1D, Maxpooling1D, and batch normalization, one flattened

6

layer, and three densely connected layers as shown above. ReLU is the activation function in

the initial layers and the last layer has a softmax function due to multi-class classification.

These layers are defined using filters of 6 and 26 in the conv1D layer with the stride of 1 and

input size according to data shape which is 18 in this case. Maxpooling1D is used using a pool

size of 2 and 2 strides after each iteration.

4.2 Compiling Model

For compiling model, the categorical_crossentropy loss function is selected due to multi-class

classification, Stochastic gradient descent optimizer is used and the accuracy metric is declared

as shown in the above code.

4.3 Model Training

The model is now ready to fit on data using hyperparameters of batch size 128 and 80 epochs

with validation data that is used to validate model performance on unseen data.

4.4 Model Evaluation

Finally, the model is evaluated using ‘accuracy’ and ‘loss’ at each epoch obtained from seen

and unseen data which are further shown below.

7

The above picture shows the evaluation of our data test data. Then performance accuracy we

are achieving through this model is upto 96 % and testing loss we are achieving from this model

is 0.25.

After checking the model’s performance through testing it is now necessary to display the

confusion matrix for all the 5 labels. With help of confusion matrix we would be able to

measure the accuracy, precision, recall through the parameters of the confusion matrix.

4.5 Saving model

Then the model is saved with the'model.save’ function with the extension ‘.tflite’, which

represents the lightweight model for use further in the future.

5 Conclusion

In this model, implementation is explained in each phase in this configuration manual, and

the accuracy is 97.96%. So, the model is very light-weight and the size is very small, so it can

be implemented easily in IoT devices to detect the malware and stop them.

