w"'""l
\ National

Collegef
Ireland

Controlling Data Leaks from Pre-Installed
Android Applications

MSc Research Project
MSc in Cybersecurity

Rohan Singh
Student ID: 20105606

School of Computing
National College of Ireland

Supervisor: Niall Heffernan

‘-—
National College of Ireland \ National

MSc Project Submission Sheet %I,Oelizgl,fg
School of Computing

Student Name: RONAN SINGh....cooiii e
Student ID: = ... 20005606.... .o s e
Programme: ... MSc in Cybersecurity........ccc........ Year: ..2020-21.....
Module: ... Academic INternship.....coccoii e
Supervisor: ... Niall Heffernan..........c e e
Submission Due
Date: = ... 110 November 2021........cccoviuiieiiieeeeceee et s
Project Title: Controlling Data Leaks from Pre-Installed Android Applications
Word Count: ... 5648............... Page Count................... 20 s .

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = ... Rohan

Date: = 9th November 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o
copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, O

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Controlling Data Leaks from Pre-Installed Android
Applications

Rohan Singh
20105606

Abstract

In the modern world every organisation success is based on the quality of data that they possess. Hence,
they try to extract maximum possible ways. One of the easiest ways to get useful data is to extract from
a device which is too personal and in everyday use, such as smartphone. Hence, lots of big corporates
and manufacturers tries to target smartphones in the form of ‘free’ applications. And it has been said
that everything has the price to pay hence these free applications transmit lots of personal sensitive data
in the background. Fortunately, if these applications are downloaded by the user, then it can easily be
removed by simply clicking on the ‘uninstall’ button. But the actual problem arises when these
applications are marked as ‘system apps’ because these applications are impossible to remove and are
so essential that it is required by the user to perform the basic functionality of the smartphone. So, the
problem arises how we can make our smartphone secure that the personal data are not transmitted by
these system apps.

1 Introduction

We can see that the smartphone has become the central part of our day-to-day life. According
to one of the surveys conducted, it was shown that an average person spent more than five
hours on mobile device every day because constantly the person is downloading and uploading
a huge amount of data from his device all the time. Hence, we can imagine how much the data
IS being transmitted every day.

1.1 Source of data

We tried to find out which type of applications are more responsible for leaking the data. Hence
according to our investigation result we found that most of the data were originated from the
free applications which were downloaded by the user. but there were few applications which
were at the system level, and they were also sending data to the manufacturer server or IT firm
such as Google and Apple.

1.2 Possible Solutions

Now our main focus was to limit the data transmission from these system applications. Current
global mobile OS market share is highly dominated by two key mobile players that is Android
and iOS. i0S being a closed source we cannot do any system modifications whereas Android
being an open source a lot of possible solutions can be drafted based on the circumstances.
Some of the possible solutions are disabling those apps which are not required by the user,
other solutions are turning off those permissions which are not required by the applications and
last and foremost we can use some of the ADB tool commands in the modification of system
applications. But each steps requires a deep technical knowledge. Now let us see which solution
gives the most optimal result.

2 Related Work

The following section focus on the literature done prior on controlling data leaks from pre-
installed Android applications.

The research focuses on all those preinstalled applications which are present in all the Android
devices because they are making huge profit to this third party companies by selling the
sensitive private data's in the background. All these organisations are successful in escaping
from such type of allegations because their source code which were used to build applications
are black boxed. As mentioned by Yanhui Guo and Lin Yang in Beijing University of Post and
Telecommunications that it is very difficult to reveal without reverse engineering and then
static detection analyzes using those Android source codes (Guo et al., 2016). Hence the
question arises how we can ensure our sensitive data is protected in any Android device? And
is there any method we can limit the transmission of sensitive data by this system applications?

2.1 Research Objectives

Some objectives that need to be covered are: -
Objective 1: enabling the “Disable” option in any system application.
Objective 2: Using permission manager in such a way that it causes less frequent
application crashes.
Objective 3: ADB command tools more transparent and simpler to use.
Objective 4: If possible, generate a database of those applications which are proved to
be harmful for Android device in the past.

The structure of the research paper is divided into various sections and each section covers a
specific topic. Section 1 deals with the abstract, introduction along with the possible solutions.
Section 2 deals with the related work done in the past, literature review and the possible
outcomes along with the proposed solution. Section 3 deals with the research methodology
which helped in drafting a conclusion. Section 4 deals with the design specification used in
each method and their outcomes in completing this research. Section 5 deals in the final
implementation along with the minor drawbacks. Section 6 choose the evaluation obtained and
the case study done on the final method and a brief discussion. Last but not the least, Section
7 shows the conclusion of this research and the scope of the future work.

2.2 A Background Overview

Before we begin this research, it is important to understand the importance of personal data for
this organizations. As Thomas H. Davenport and Jill Dyche mentioned in their journal but how
“Big Data” are processed and converted into profits (Thomas H. Davenport and Jill Dyche,
2013). Because of the ever-growing number of devices each year it has increase the importance
of data more than ever. Therefore, companies like Google and apple started developing mobile
operating system that will help in collecting data and store them directly into their server.
According to the report from global mobile OS market share 2021 we can see that two
companies dominate the mobile OS market and they are 10S (from Apple) which contributes
26.34% and the other one is Android (from Google) which is 72.84% and all other mobile OS
contributes to 0.82% only (Mobile OS market share 2021, 2021).

100%

““““ * Android 72_84%
50% |
““““ . i0S 26.34%

* Unknown / Other 0.82%

LA
R

Market share

25%

P

Ura

A ” A A A o
RN RN NG BN I .\b‘ RN 1\% .\(:' .\67 .\b .\b 1\(0 Al At Al .\% 1\% .\rb N ‘\\‘») KN

O D D A
\e? @\ﬁ ;_)'z.Q \15\ @\ﬁ ;_529 \15\ @'S\ cje,Q \}Q ®'S\ C_J'Z,Q \a\.‘ ‘!ﬁ‘ ‘-J?’Q \,}o @ﬁ‘ c}e.Q \29 @(ﬁ ;jQ.Q \15\ @'S\ ;_)Q.Q \19 @{S\ cje? \}‘

V v‘-{qf
&
&

Figure 1: Mobile Operating System Global Share 2021 (Mobile OS market share 2021, 2021)

Since the data is being collected every day hence the volume of data has increased to such an
extent that it is able to reveal the human behavior pattern. These patterns are sufficient to show
but what are the likes and dislikes of a particular human. And nowadays companies are
publishing more of these applications in their respective App Store market (App Store market
is an application from there the paid or free applications can be downloaded). Some of the free
application mentions about the basic data it will transmit but they don't specify that basic data
will contain their sensitive information (Almuhimedi et al., 2015).

2.3 Sources of Data Collection

In IEEE International Conference on Social Computing, Yaniv Altshuler and Nadav Aharony
reveled in MIT Media Lab that how a mobile data can accurately predict the social behavior of
an individual (Altshuler et al., 2012). It highlighted that various data like location, device ID,
camera, contacts, call log, microphone, messages and many more were combined together and
creating a meaningful pattern.

L T

Other System Images

(e.g., framework dex)

..

[Android Framework APIs]

Figure 2: Android System Design (Han et al., 2014)

Michael Grace, Yajin Zhou and Zhi Wang showed that the Google has designed on a
permission based security model and each application requires the permission to access a
certain personal information(Han et al., 2014). These permissions are embedded at the root
level and can only be modified by the manufacturers.

2.4 Modifications in Android by The Manufacturers

Since the beginning of Android lots of changes were made to its core system but the major
changes related to privacy was introduced from Android version 4.4.4 (Famously known as
KitKat version) (Khokhlov and Reznik, 2018). Android is developed as an open-source
platform but the services running over the top is proprietary to Google. Because of this every
time a new version of Android is developed it has to be passed from the manufacturers of the
device so that they can customize the drivers which is hardware specific. During the
customization, these manufacturers at their proprietary apps as in adware and then it is passed
to the carrier specific companies. Again, carrier specific companies at their own proprietary
apps which finally results in lots of bloatware apps.

Silicon

Manufacturer
Android))) Partners)))))) Custormize with thee
Dessert Release Package own & caner

eQurements

Device Makers

Customizes snd s
shconspecific code

Carrlers

Phone SKU

ST (] - - K{(

fechencal X ooptance
(TA)

Figure 3: Android Customisation At Various Stages (Sarkar et al., 2019)

The functional modifications were allowed by Google so that each manufacturer can make
their devices looks unique and the user experience can also be enhanced by those applications.
The first physical evidence was seen by Samsung when it introduced quick toggles in the
notification bar. This modification was done in Android version 2.3.3 (famously known as
Gingerbread) as this Android version lacked those basic functionalities. These quick toggles
became so popular that from next version of Android (which is Android 4.0) it was integrated
into the framework.

21:26 jner,aom 21:22 iineraons s

o~ g a 7]
= & 32 @©

¥ :
WiFi Data Bluetooth GPS Flashlight

Auto
Vibration rotation

Figure 4: Quick Toggles on Samsung Android (Enghouse, 2016)

Slowly modifications by the manufacturers started getting popularity and this resulted in the
increase in the experiments. These applications were becoming the part of the system apps and
its removal were not easy (Shan, Neamtiu and Samuel, 2018). For forcefully removing of
system application the device needs to be “rooted” so that the user can get admin privileges.
And rooting a device needs lots of programming related knowledge (Boueiz, 2020).

2.5 Introduction of “Disable” In System Applications

Looking at the trend in the increase of adware applications, Google introduced few
modifications which will help the general user to disable certain system applications rather than
getting them uninstalled. The main benefits of disabling the applications are that it remains in
the device and can be re enable by the user if required because these applications are device
specific and will not be found on the play store (Ma et al., 2018).

The idea introduced by Google was tremendous, but it was badly executed by the
manufacturers. These manufacturers altered the applications in such a way that the disable
function was removed and continued the transmission of data in the background.

H2@ A NARMB0347T 2@ A A @ il B 0346

App info
Google Search
version 3.6.14.1337016.arm
Force stop Disable

| Show notifications

App info

5 Planner
37 version dda-imorosargut

Force stop Disable

Show notifications

STORAGE STORAGE

Total 691MB Total 48.00KB
Application 6.11MB Application 0.00B
SD card app 0.008B SD card app 0.008
Data B12KB Data 24.00KB
SD card data 0.008 SD card data 24.00KB

ovetoS Wi S
Move to SD Clear data MovetoSD Clear data
card card
CACHE CACHE
Cache 12.00KB Cache 12.00KB

Figure 5: System Apps With Disable And The Other One Without Disable Option

2.6 Permission Manager

Another major change in the Android ecosystem related to privacy was introduced in Android
6.0 (famously known as marshmallow version). A new concept “Permission Manager” was
integrated in which a user was given few privileges to control the permission level of any
application. Permission manager was easy to use as each applications broadcasting channels
were integrated with two options and they were “Allow” or “Deny” permission rights. If a user
feels to disable any of the broadcasting channel, he can deny those permissions and still
continue to use the applications (Krutz et al., 2017).

<

2]

©

Permission manager

Body sensors

0 of 2 apps allowed

Calendar
4 of 13 apps allowed

Calllogs

4 of 6 apps allowed

Camera
16 of 46 apps allowec

Contacts
15 of 56 apps allowed

Location

21 of 59 apps allowed

Microphone
17 of 46 apps allowed

Phone
18 of 45 apps allowed

Physical activity

10 of 10 apps allowec

SMS
11

f 17 apps allowed

Q

Figure 6: Permission Manager User Interface

Daniel E. Krutz and Nuthan Munaiah (from 4th International Conference on Mobile Software
Engineering and Systems) in his research showed that some applications were using certain
permissions which were not required in their basic functionality and deactivating those
permissions resulted in frequent app crashes (Krutz et al., 2017).

2.7 Gap Analysis

A huge gap between the solutions provided and the actual transmission of data in the
background can be clearly seen. Also, there are various solutions to limit the background data
transmission but because of less knowledge about the importance of personal data of a user and
more complexity in the Android ecosystem it is never practically implemented.

2.8 Proposed Solution

Some of the proposed methods can effectively reduce the background data transmission.
Implementing each methods has some advantages as well as some minor disadvantages. But
the most appropriate solution would be to use ADB (Android Debug Bridge) command
tools(‘How to Install ADB on Windows, macOS, and Linux’, 2021). These ADB command
tools can modify any system application without the root access.

3] Command Prompt

Figure 7: User Interface of ADB Command Tools

But to access ADB command tools the Android device needs to be connected to a laptop and
it is based on CLI (command line interface) and hence lacks GUI (graphical user interface). if
some of the basic ADB commands converted into a batch file but basic options then any normal
user can get their work done easily.

3 Research Methodology

Since lot of applications comes with preinstalled applications hence it is difficult to determine
how many applications are responsible in transmitting the data at the background. So, research

7

was conducted on one of the applications to find out how the data is transmitted (hence we
selected browser.apk). Using ADB command tools all 3™ party cookie sessions were blocked
that were responsible for sending data to a specified server and since the broadcasting channel
was unknown hence all the channels were blocked (it made the application a bit unusable to
those websites where third party cookies were needed). Using Wireshark a lot of IP address
were recorded and but focused on which IP address were re attempting to communicate with
the server and this experiment was conducted for next five days. In this experiment some values
were assigned as 0 and 1 whereas 1 = data transmission was attempted and 0 = data
transmission was not attempted. combining both this data a logistic linear regression was
drafted to find out the actual output.

The data set was created for those application which were trying to create a communication
with the server and hence the applications are the total number of sample size (which is 35).
More data set can also be generated by looking at the source code with the help of reverse
engineering with the help of tools like APKtool, DEX2 or Simplify. APKtool is selected
because it is easy to understand and gives sufficient information. all essential information like
other permission needed by the application and manifest files what extracted and saved into
CSV file format.

The complete data set was divided into two part in which first 70% were used as training the
data and the rest 30% were used in testing those data so that an accurate result can be drafted.

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
charges .188 1338 .000 815 1338 000

a. Lilliefors Significance Correction

Figure 8: Test of Normality

Null hypothesis (h0): Data are drawn from a normal distribution.
Alternate hypothesis (h1): Data are not drawn from a normal distribution.
For this test significance level alpha is 0.05.

since Alpha value is less than 0.05 is obtained a conclusion can be made that the data are drawn
from a normal distribution And binary laustic graph was created.

1.004

0.75 4

Data Sent

0.50 4

0.25 4

0.004 - -0 ome

2 3 4 5
Number of Days

Figure 9: Logistic Regression Model Result

From the graph we can see that the following few days the applications tried to send the data
in the background.

4 Design Specification

To conduct the experiment some of the hardware were used. A laptop (running windows 11),
memory 8GB ram, processor Intel i5 (8th generation) But the minimum storage of 5 GB were
used. Also a smartphone running Android ecosystem (Running Android 6.0 Marshmallow),
with the least modifications done by the OEM is the most preferred device.

In this experiment instead of Android as a hardware the emulator is used named LD player
(running Android 6.0 marshmallow). This emulator was assigned only two cores and the
emulated device model was named as Samsung SN-M508A, IMEI was assigned as
815606224189658 and network connection was bridged.

Some of the soft trips were used to conduct this experiment were-
e APKtools- for reverse engineering the system application so source code is obtained.
e ADB command tools- these are the list of commands which can be implemented to
modify the system application without gaining the root access.
e Command prompt- used to send ADB commands from the laptop to the Android
hardware.
Dev-Ops- A permission monitoring tool built in the Android core.
SPSS- to perform a binary logistic regression.
Android studio 3.0- to modified the Android source code.
Notepad++ - to edit the code.

4.1 Enabling Disable Option

This method includes to edit the source code so that the option to disable the system application
can be activated.

Dataset
('AP)K APPLICATION if%;gf; IN THE
Fies » e 2
EXTRACTION MANIFEST.XML
PUSH BACK TO ENABLE —
/SYSTEM | "DISABLE" | esuits
PARTITION OPTION ;

Figure 10: Disable Option Explained by Block Diagram

Any application can be identified using the system analyzer tool to figure out whether the
application is sending data in the background. each system application can be extracted using
ADB command “adb pull /system/app/package.name.apk”. Once the application is extracted
then using apktool.jar We look at the code under “AndroidManifest.xml” (Park, Chun and
Jung, 2018). Those system application where disable option is not enabled will contain the
code as shown <category android:name="android.intent.category.DEFAULT"/>. Then the
code is changed into <category android:name="android.intent.category.USER"/> and re-
compiled into apk package. the new modified application is pushed back into the /system
partition. Thus an option to disabled system application is enabled.

4.2 Using Permission Manager

Enabling the disabled option is the best method to stop any background data transmission but
it is not too effective because if the application is Disabled then it cannot be used by the user.
Moreover, this method needs to change the source code of each and every application which is
very time consuming. So, it is only useful if that system application is not at all needed by the
user. But if the user needs that system application, then the alternative method would be
“Permission Manager”. It is Android inbuilt feature which was introduced in Android 6.0
marshmallow version. This method is simple to use, the user has to simply turn off those
permissions of broadcasting channel which is misusing the permission in sending the data in
the background.

APPLICATION

(.APK MISUING TURN OFF THE Results

Fies) ’ BROADCAST =¥ PERMISSION =
CHANNEL

Figure 11: Permission Manager Explained by Block Diagram

10

It looks like a simple solution but turning some of the broadcasting channels were making the
application crash more often. but the same functionality can be done with the help of Dev-Ops
as those applications were substituted with the fake permissions(Sellwood and Crampton,
2013). Hence this method resulted in the less crashing of applications.

Again, this method is only applicable on those system applications where the authentication
token is not required. OEM manufacturers ensure that applications are constantly verified with
the token mechanism so that the data which they are receiving Are not corrupted and
continuously communicating to their server.

4.3 Using ADB Commands

This method can be termed as the most safest method to modify any system application because
it does not require any root permission and also does not causes frequent app crashes.

Start
application

User applications communicates with the
system application

Identify the permission that needs to b disabled

adb shell pm revoke package name android.permission NAME

App continues to work smoothly

Stop

Figure 12: Functionality of ADB Command Tools Explained by Flowchart

11

This process requires to execute a set of commands from a laptop Running any operating
system (in this case it is windows 11). The android device is connected to the Windows PC via
USB cable, Then ADB driver needs to be installed (this can be obtained from the
manufacturer's website because it is hardware specific). Once the device is connected then we
open a Command Prompt and try to locate the device By using “adb devices” command. After
locating the device another command is pushed to revoke the list of permissions using “adb
shell pm revoke package.name android.permission.NAME” command which is pushed from
Command Prompt.

Lots of possibilities can be done with the help of ADB command tools because these are into
android core ecosystem because Android was designed to be an open-source platform for some
modifications can be done without gaining a root privilege.

Some of the major challenges faced by ADB command tools are all these codes are CLI
(command line interface) hence it does not contain GUI (graphical user interface). Because of
non-presence of GUI, it becomes extremely difficult for a normal user to execute these
commands due to less knowledge of coding. If some of the basic commands are converted into
batch files, then those basic commands can easily be executed by any normal user.

5 Implementation

For in-depth understanding of implementation, the basics of android partition architecture need
to be understood. In any Android device the storage partition is divided into multiple different
partitions and they are named as /data, /system, /cache, /vendor, and many more. Apart from
all these partition names two partition which are primary to any Android devices are /system
and /data partition.

All those applications which are downloaded by the user from the play store are transferred to
/data partition memory allocation. This memory allocation has all the permissions like read,
right, modify and execute privileges. Because of this reason any manufacturer does not prefer
to push their adware application because if the user get aware of the applications it can easily
uninstall them(Lu et al., 2013). Whereas, /system partition contains only read and execute
privileges and user does not have any control over this memory allocation. Less privilege rights
are given to this partition because of the presence of main operating system. It contains all pre-
installed system application like calculator, calendar, clock, gallery, music player, contacts and
many more. Along with this pre-installed application it also contains manufacturer adware
applications like battery meter, files cleaner, browser and many more. For any type of
modification in this partition root permissions are required.

To begin with the process first we will run a “system analyzer tool” which helps in highlighting
those application which are sending data at the background and using those broadcasting
channels which are not the main functionality of the applications. Then from the list of obtained
application we then find out how many applications are user installed because user installed
applications can be easily uninstalled. Then the remaining list will contains only the system
applications. Now we will see the application properties of each of these system applications
and if the system application disable option is present we can simply disable the application.
But if the disable option is not present then we will try to extract the application from /system
partition, make changes to AndroidManifest.xml and push back to the same /system partition
and then we can disable the system application.

12

Another less popular method includes the use of inbuilt feature “Permission Manager”. This
method is effective on both user as well as system application. The main advantage of using
permission manager is that the user can still use the application because the broadcasting
channel which was used to send the data at the background was only disabled rather than the
whole application. The user has to go to the settings of a device and select the permission
manager option. Then the list of all the applications present in the device are displayed.
Clicking on each application will show all the broadcasting channel with the privilege rights
and the user can simply turn off those channels which are not needed by the applications. But
this method may cause frequent app crashing and can make the application unstable to use.
The safest method to eliminate the data transmission in the background is the use of ADB
commands. Certain steps are needed to ensure that the ADB commands are properly pushed
from the laptop to the Android device because non proper execution may result in the bricking
of device And may cause the device to malfunction in long term. Hence we will focus on all
the basic steps that are needed to push the commands. These steps are as follows:-

Step 1- firstly we have to make sure that USB debugging option is enabled in the android
device. If it is not enabled then go to settings, then enable developer options.

& Developer options

On

Debugging

USB debugging

Debug mode when USB is connected

Bug report shortcut
Show a button in the power menu for
taking a bug report

Allow mock locations
Allow mock locations

Enable view attribute inspection

Select debug app
No debug application set

1

Figure 13: USB debugging Option Enabled Under Settings Menu

13

Step 2- Under developer options enable USB debugging. And also ensure that select debug
app no debugging application is selected from the beginning.

Step 3- A laptop is required running any operating system (in this case windows 11 is used)
Needs to be attached with the Android device via USB cable (in this case Android emulator is
used).

Step 4- Send ‘adb devices’ command to ensure that the devices is interacting with the PC and
when it shows the device ID in return it means that the secure connection is stablished between
the PC and the Android device.

Step 5- Now we will select one of the system applications (in this case we selected
browser.apk) and we navigated to one of the website which is loaded heavily by the
advertisement (in this case we navigated to https://www.adsoftheworld.com/) and we can
observe that the advertisement which is displaying is pulling the data from the cookies saved
in the browser section.

B https:/www.adsofthewol &R

Ads:World

Top Ads

o

(T

)~

Discord - The Movie (2021)
Featuring Danny DeVito

Figure 14: Enabled Cookies Resulted in Displaying of Ads

14

Step 6- Once everything is loaded, we will execute ADB tool.bat file. it contains all the basic
commands in the form of batch file which will help in disabling the broadcasting channel.
When initially launched it will ask from the user to select either 1 or 0. Here, 0 = disable all
broadcasting channel and 1 = enable all broadcasting channel. This application will only
highlight the application which is running in the foreground because all the applications
including the background running are selected then the list will be very huge. And some of the
applications are essential to run in order to maintain the smooth functioning of Android
environment.

ea] CAWINDOWS\system32\cmd.axe

Welcome to ADB tools by Rohan

1: Enable
@: Disable

Enter operation: @

System apps running in foreground
B: Browser

F: Filemanager

Enter package name: B

Press any key to continue . . .

Figure 15: ADB Tool Displaying Options

Step 7- Next we select option B for browser application from the available list. As soon as
option B is selected it turns of all the background broadcasting channels and now we go to the
same website we can see that the advertisements are not able to load because the cookie session
has been blocked.

15

ER https://www.adsofthewol

Ads:World

Top Ads

Astronomer / Vampire By BBDO for Pedigree

.

Figure 16: Disabled Cookies Resulted in No Display of Ads

Step 8- Hence we were successful in preventing the transmission of personal data in the
background by following these steps.

6 Evaluation

Under this section we will compare the total data leak (in kB) from two system applications by
using all these methods.

6.1 Case Study 1

Here we selected browser.apk as an example its details are as follows: -

Table 1
Application Name Brower.apk
Version 7.1.2
Package Name me.android.browser
System Application Yes

16

Data (in kB) transmitted in Background by Browser.apk

1000
900
800
700
600
500

400
300
200 I
100 I
0 [| . [. [. [|

Day 1 Day 2 Day 3 Day 4

W Active App M Permission Manager ~ ® ADB Commands

Figure 17: Data Transmission by Browser.apk

6.2 Case Study 2

Here we selected store.apk as an example its details are as follows: -

Table 2
Application Name Store.apk
Version 512
Package Name me.android.store
System Application Yes

Data (in Kb) transmitted in Background by Store.apk

1000
900
800
700
600
500
400
300

I ll i
100
. |- I- l ll

Day 1 Day 2 Day 3 Day 4

B Active App B Permission Manager B ADB Commands

Figure 18: Data Transmission by Store.apk

17

From case 1 and case 2 we can observe there is a huge difference in the Total volume of data
transmitted. this evaluation does not contain the “disable” method because this method doesn't
allow the application to run hence the background data transmission will always be 0 As the
main objective of this research is to prevent the transmission of data in the background without
turning off the application.

6.3 Discussion

After evaluating the case 1 and the case 2 we can observe that the transmission of data in the
background was not fully prevented. In fact, after blocking all the broadcasting channels still
some data were able to transmit. But the experiment was successful in preventing almost 80%
transmission of data. theoretically it seems like the privacy of data can be fully implemented
but practically a lot of work needs to be done from Google itself. For example- Google needs
to ensure that certain guidelines are drafted for the manufacturers and must be forcefully
implemented like if the manufacturer claimed certain apps as system applications then it needs
to follow the limit of data transmitted in the background. If the data contains too much of
privacy then it must give explanations in details that why those data are needed. Also any
system apps can be disabled by the user because those applications causes the greater security
threat and increases the chances of malware attacks.

Some more changes like Privacy Manager should be given more user functionality like if a
certain broadcasting channel is turned off by the user the application should still function
smoothly (that means not causing the application to crash frequently). Also the free
applications under the “Play Store” should give the greater details about the type of data that
will transmit in the background So that the user will be well aware about their privacy.

Fully blocking the data transmission in the background is not possible because some data are
needed by the free applications to function. therefore, the ADB command tools need to be
optimized further so that it can identify based on the data type that it should be transmitted or
prevented.

7 Conclusion and Future Work

Therefore, we can conclude that Android ecosystem has the great flexibility (for this reason it
has captured the maximum percentage of mobile OS market share of 2021) it can be made
more secure if the mentioned solutions are implemented. Also, ADB tool.bat is based on
Android 6.0 that means any Android version which is greater than Android 6.0 these commands
may not give accurate result. Any changes to the Android SDK will break the functionality of
these codes hence the codes need to be updated whenever the Android SDK is upgraded. So
the objective is to make this ADB tool.bat to contain more Android versions and based on the
Android version certain codes will be auto implemented. Hope this research will make the
Android ecosystem more secure and give user more privacy control.

18

References

Almuhimedi, H. et al. (2015) ‘Your Location has been Shared 5,398 Times! A Field Study on
Mobile App Privacy Nudging’, in. doi:10.1145/2702123.2702210.

Altshuler, Y. et al. (2012) ‘Incremental Learning with Accuracy Prediction of Social and
Individual Properties from Mobile-Phone Data’, in 2012 International Conference on Privacy,
Security, Risk and Trust and 2012 International Confernece on Social Computing. 2012
International Conference on Privacy, Security, Risk and Trust and 2012 International
Confernece on Social Computing, pp. 969-974. doi:10.1109/Social Com-PASSAT.2012.102.

Boueiz, M.-R. (2020) ‘Importance of rooting in an Android data acquisition’, in 2020 8th
International Symposium on Digital Forensics and Security (ISDFS). 2020 8th International
Symposium on Digital Forensics and Security (ISDFS), pp. 1-4.
d0i:10.1109/ISDFS49300.2020.9116445.

Enghouse (2016) Set up Internet, Set up Internet - Samsung Galaxy S2. Available at:
https://www.helpforsmartphone.com/public/en/samsung/galaxy-s2/android-4-
1/guides/22/Set%20up%20Internet (Accessed: 8 November 2021).

Guo, Y. et al. (2016) ‘The static detection analysis technology of Android source codes’, in
2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-
NIDC). 2016 IEEE International Conference on Network Infrastructure and Digital Content
(IC-NIDC), pp. 288-292. d0i:10.1109/ICNIDC.2016.7974582.

Han, Z. et al. (2014) Systematic Analysis and Detection of Misconfiguration Vulnerabilities in
Android Smartphones. doi:10.13140/2.1.2383.2009.

‘How to Install ADB on Windows, macOS, and Linux’ (2021) xda-developers, 28 July.
Available at: https://www.xda-developers.com/install-adb-windows-macos-linux/ (Accessed:
14 August 2021).

Khokhlov, I. and Reznik, L. (2018) ‘Android system security evaluation’, in 2018 15th IEEE
Annual Consumer Communications Networking Conference (CCNC). 2018 15th IEEE Annual
Consumer ~ Communications Networking Conference (CCNOQ), pp. 1-2.
doi:10.1109/CCNC.2018.8319325.

Krutz, D.E. et al. (2017) “Who Added That Permission to My App? An Analysis of Developer
Permission Changes in Open Source Android Apps’, in 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILESoft). 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems (MOBILESoft), pp.
165-169. doi:10.1109/MOBILES0ft.2017.5.

Lu, L. et al. (2013) ‘A study of Linux file system evolution’, in Proceedings of the 11th
USENIX conference on File and Storage Technologies. USA: USENIX Association
(FAST’13), pp. 31-44.

Ma, Y. et al. (2018) ‘A Tale of Two Fashions: An Empirical Study on the Performance of

Native Apps and Web Apps on Android’, IEEE Transactions on Mobile Computing, 17(5), pp.
990-1003. doi:10.1109/TMC.2017.2756633.

19

Mobile 0S market share 2021 (2021) Statista. Available at:
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-
systems-since-2009/ (Accessed: 17 April 2021).

Park, J., Chun, H. and Jung, S. (2018) ‘API and permission-based classification system for
Android malware analysis’, in 2018 International Conference on Information Networking
(ICOIN). 2018 International Conference on Information Networking (ICOIN), pp. 930-935.
d0i:10.1109/1COIN.2018.8343260.

Sarkar, A. et al. (2019) ‘Android Application Development: A Brief Overview of Android
Platforms and Evolution of Security Systems’, in 2019 Third International conference on I-
SMAC (loT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2019 Third International
conference on I-SMAC (loT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 73-79.
d0i:10.1109/I1-SMAC47947.2019.9032440.

Sellwood, J. and Crampton, J. (2013) ‘Sleeping android: the danger of dormant permissions’,
in Proceedings of the Third ACM workshop on Security and privacy in smartphones & mobile
devices. New York, NY, USA: Association for Computing Machinery (SPSM ’13), pp. 55-66.
doi:10.1145/2516760.2516774.

Shan, Z., Neamtiu, I. and Samuel, R. (2018) ‘Self-Hiding Behavior in Android Apps: Detection
and Characterization’, in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pp. 728-739. doi:10.1145/3180155.3180214.

Thomas H. Davenport and Jill Dyche (2013) Big Data in Big Companies. Available at:
https://www.igpc.com/media/7863/11710.pdf (Accessed: 27 October 2021).

20

