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Abstract—As one of the fundamental concepts underpin-
ning the FAIR (Findability, Accessibility, Interoperability, and
Reusability) guiding principles, data provenance entails keeping
track of each version for a given dataset from its original to its
latest version. However, standard terms to determine and include
versioning information in the metadata of a given dataset are still
ambiguous and do not explicitly define how to assess the overlap
of information between items along a versioning stream. In this
work, we propose a novel approach for automatic versioning of
time series datasets, based on the use of parameters from two
dimensionality reduction approaches, namely Principal Compo-
nent Analysis and Autoencoders. That is to say, we systematically
detect and measure similarities (information distances) in datasets
via dimensionality reduction, encode them as different versions,
and then automatically generate provenance metadata via a
FAIR versioning service using the W3C DCAT 3.0 nomenclature.
We illustrate this approach with two time series datasets and
demonstrate how the proposed parameters effectively assess the
similarity between different data versions. Our results have
shown that the proposed version similarity metrics are robust
(s(0,1) = 1) to the alteration of up to 60% of cells, the removal of
up to 60% of rows, and the log-scale transformation of variables.
In contrast, row-wise transformations (e.g. converting absolute
values to a percentage of a second variable) yield minimal
similarity values (s(0,1) < 0.75). Our code and datasets are openly
available to enable reproducibility.

Index Terms—Data Provenance, Dimensionality Reduction,
Information Distance, Principal Component Analysis, Findability,
Accessibility, Interoperability, Reusability, Open Science, DCAT

I. INTRODUCTION

Reproducibility and comparability have long been consid-
ered sine qua non within data-intensive scientific discovery [1],
but an inadequate data organisation can easily imply that sub-
sequent runs of the same experiment yield distinct results due
to different data entities. If reproducibility and comparability
are to be further improved, then dataset provenance should
be recorded by keeping dataset lineage at a lower level of
granularity i.e. systematically tracking the associated entities
a.k.a. versions.

Versioning is typically considered as enabled when ı) a
dataset allows the access to all data, both retrospectively and
prospectively, via user-definable interfaces and documented
through metadata; and, ıı) the history of changes is retained
across entities where version labels are determined either by
the modification time or by some user-defined method.

The importance of versioning has been acknowledged by
initiatives such as the PROV-Template approach [2]. The

recommendations of the Provenance Incubator Group ([PROV-
XG]), include the definition of the following terms used by
the PROV standard to define versioning: derivation, revision,
specialisation, and alternate. Nonetheless, this framework is
still ambiguous, e.g. a revision is defined as “a derivation
(transformation of an entity into another, an update of an entity
resulting in a new one, or the construction of a new entity
based on a pre-existing entity) for which the resulting entity
contains substantial content from the original”. However, to
the best of our knowledge, there is no technical definition of
what “substantial” implies.

On the one hand, when it comes to scientific discovery, a
useful framework for versioning is arguably an information-
based one which defines labels according to the information
distance from an initial dataset. Such a scenario is often
intrinsic to the research method, due to the intermediate pre-
processing steps followed by each research group.

On the other hand, information-based versioning is not
necessarily aligned with the FAIR guiding principles. Based on
four main pillars—Findability, Accessibility, Interoperability,
and Reusability—the FAIR principles are an inter-sectional
attempt to ease the access, use, and reuse of digital resources
by both humans and machines [3]. They are being increasingly
required to share and publish data science research. Indeed, the
requirement of FAIR-compliant work has rightly permeated
different stakeholder communities, but the current solutions
offered to comply with them are not standardised.

The aim of our research is to automatically
generate standardised FAIR-compliant prove-
nance metadata using an information-based
versioning service, which efficiently detects
and measures changes (information distances)
in datasets and offers seamless interoperability
between data catalogues.

The problem of parameterising data versioning has strong
repercussions in many fields, but they can be specially critical
in research. Reproducibility of results usually requires the
analysis to use an identical version of the data. Hence, a
reproducible research environment should provide computa-
tional tools together with the ability to automatically track the
provenance of data, analyses and results, and to package them
(or to point to persistent versions of them) for redistribution.
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Fig. 1. High-level diagram representing the upload of a dataset to a platform, where the “Catalogue” follows the DCAT 3.0 nomenclature, which integrates
the element “Services” interacting with the “Dataset” information, constituting a resource of the Catalogue. A box is representing the metadata required and
produced by a FAIR versioning Service comparing the parameters from two different versions of a dataset.

Ensuring the convergence and interoperability of the data
science community on this matter, still requires significant
harmonisation aligned with the FAIR guiding principles [4].

This research puts forward dimensionality reduction tech-
niques as the basis of a quantitative approach to measure and
parameterise the versioning process of data. Namely, we com-
pare the performance of parameters extracted from a Princi-
pal Component Analysis (PCA) model [5]–a well-established
statistical technique to discard redundant variables [6] ergo
reducing dimensionality in datasets–and Autoencoders [7], [8].
Both techniques deal differently with the same mathematical
goal: modelling a low-dimensional representation of the origi-
nal dataset, which can be useful to retain a reduced number of
parameters as descriptors of the numerical information within
the data [9].

Our results show that values of PCA-based version similar-
ity metrics are consistently higher than the Autoencoder-based
metrics when altered and original versions are compared.
Moreover, the Least Significant Difference (LSD) intervals
for the PCA-based version similarity values indicate a perfect
match between the altered versions and the original one for
changes up to 60% of cells and up to the deletion of the
60% of rows (Cases I and III). Besides, even if non-linear
transformations are applied to the totality of variables, the
resulting versions still have a perfect match with the original
version parameters (column-wise transformation from Case
II). On the contrary, transformations affecting the correlation
pattern are the ones yielding the minimal similarity values
(s(0,1) < 0.75) for row-wise transformation from Case II).

The paper is structured as follows. Section II critically
compares some related approaches and then frames our con-
tribution. Section III explains the chosen methods for dimen-
sionality reduction. Section IV presents the results obtained as-
suming different scenarios of data versioning using two Open

Data time series: Dublin Footfall and Air Quality. Finally,
Section IV discusses the main conclusions of our work, along
with avenues for further research. In compliance with Open
Science principles, the code and data used are openly available
from https://github.com/SMARDY-NCI/ADV.

II. RELATED WORK

In data science, provenance is typically determined via the
amount of information describing all the elements and their
relationships, that contribute to the existence of a datum [10].
While adequate data provenance affords researchers access
to experimental reproducibility, knowledge reuse, and data
quality assessment, datasets are often released without any
provenance information in their metadata. There are two
traditionally accepted approaches to recording data provenance
in metadata [11]. A prospective one where metadata includes
annotations describing typically ab-initio the different ver-
sions; and an inversion one, where derivations of datasets
can be determined via data queries. While both methods have
merits in their own right, neither has been standardised in
terms of the FAIR principles, a sine qua non for open data.

While there have been some attempts to extract and annotate
automatically different code versions from source scripts,
documented methods for versioning data mostly focus on how
datasets are processed but rarely deal directly with datasets
contents and their structure [12]. On the other hand, com-
putational research has long studied the changes of datasets
from an infrastructure perspective, forming different versions
via a structured graph approach with an information retrieval
perspective to store datasets [13] or as part of large distributed
experiments with a general metadata storage and management
layer for parallel file systems [14].

We contend that such approaches do not represent the final
goal of the FAIR data principles. Further efforts should be
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carried out to define more quantitative and objective versioning
and provenance vocabularies. In fact, this critical intersection
between FAIRness, provenance, and versioning is aligned with
the definition of a proper environment tackling data prove-
nance, provided by W3C [15], stating that such environment
should:

• allow objects referring to versions of as they evolve over
time, or to temporal information statements of when the
object was created, modified, or accessed. In particular it
should provide for a representation of how one version
(or parts thereof) was derived from another version (or
parts thereof);

• include a standard way to represent a procedure which
has been enacted; and

• include a way to determine commonality of derivation in
two resources.

We argue that data provenance should be automatically
defined and extracted in more specific FAIR terms to enable
experimental reproducibility [16]. The importance of data
provenance in data FAIRness is mentioned in several princi-
ples, namely, Interoperability Principle I3 and Reproducibility
Sub-Principle R1.2. Principle I3 states that “(meta)data in-
clude qualified references to other (meta)data”, referring to
the fact that data digital resources are often interlinked and
metadata should refer to these relationships between resources.
Some “upper ontologies” (e.g. SIO-biomedical research [17])
defining relationships can be used as-is, or as a starting-point
for a new and more specific relationships. Hierarchical rela-
tionships between data can ease the interpretation of the intent
of the new relationship, and also improve the interoperability.

Furthermore, efficient automatic metadata extraction gen-
eration has remained an open problem [18], particularly in
connection with data provenance. Specifically, Reproducibility
Sub-Principle R1.2 requires that “(meta)data are associated
with detailed provenance”, which includes all the transforma-
tions of processes that have been applied to an original data
object. Some of the tools focused on making the construction
of FAIR metadata easier include the CEDAR workbench [19],
CERN’s CASTOR [20], and the knowledge models in the Data
Stewardship Wizard [4].

As an RDF vocabulary designed to facilitate interoperabil-
ity between data catalogues, the Data Catalog Vocabulary
(DCAT) [21] describes datasets and data services in a cat-
alogue to allow consumption and aggregation of metadata.
While there have been initial guidelines suggestions to make
DCAT vocabularies FAIR compliant [22], to the best of our
knowledge, none of the aforementioned tools integrate FAIR-
compliant data versioning as part of DCAT metadata in a
quantitative, measurable, and automatic manner.

A. Contribution

In this work, we are proposing quantitative and measurable
data versioning, as a systematic approach to distance reporting
about the similarity between data versions, as part of a version-
ing streamline for time series datasets using dimensionality
reduction.

Figure 1 illustrates the integration of the version-similarity
parameters using the DCAT 3.0 nomenclature in our approach
by explicitly documenting the Dataset metadata and the Ser-
vice element. The FAIR-versioning service returns the version-
similarity values and provides new information to be integrated
as terms within the Catalogue.

In the short-term, the contributions of this work involve
the assessment and selection of a candidate set of parameters
that present a parsimonious and informative behaviour as a
function of the distance between altered and original versions.
Afterwards, the selected set of parameters for data versioning
will have to be articulated with other tools as part of a
data marketplace ecosystem. Thus, middle-term contributions
derived from this work will involve the integration of the
selected parameters with provenance and metadata standards.

Finally, in the long-term, there are several benefits of having
informative and quantitative data versioning protocols. First
of all, having an assessment on how numerically similar are
the final versions of the datasets used in different studies,
could facilitate a proper comparison between research stud-
ies. Moreover, one of the issues that prevents attaining full
reproducibility of research results, involves data owners reject-
ing requests to share data. However, assessing the similarity
between data versions through a set of parameters, instead of
doing so directly with the data, could be better accepted among
the data owners.

III. METHODOLOGY

Fig. 2. Visual representation establishing a parallelism between the PCA
(left) and the Autoencoder (right) model frameworks, and how the encoding
and decoding steps (P and P−1 terms, respectively) are represented in each
model.

Two different approaches are compared in this work, namely
the parameters extracted by a PCA model and by an Autoen-
coder. This set of parameters would be integrated as part of
the metadata, enabling a quantitative and standard framework
for data comparison that could be performed based on a set
of metadata fields.

A. Principal Component Analysis

Let X be a matrix with N observations on K variables.
After some pre-processing such as mean-centering and/or
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unit variance scaling, a PCA model is estimated. This is
done by compressing the high-dimensional X matrix into
a low-dimensional subspace of dimension A (with A ≤
rank(X)). PCA is based on the bi-linear decomposition of
X in X = TP⊤ +E, where T is an N ×A matrix of scores
and P is a K ×A matrix of loadings.

The A columns of the loading matrix P are the loading
vectors pa, with a = 1, 2, . . . , A. The score matrix T can be
considered as a collection of row vectors τ⊤ (scores of an
observation) or column vectors ta (latent variables, with ta =
Xpa and a = 1, 2, . . . , A). The score matrix can be obtained
as T = XP, that is, as the projection of the X matrix on the
A−dimensional space of the PCA model (i.e., columns of P
matrix). Analogously, given an observation x of the original
K−dimensional space, its projection τ onto the subspace of
the model can be obtained using the projection matrix P as
well by τ = P⊤x. From the scores matrix one can recall the
explained part of X in the PCA model as X̂ = TP

⊤
. Thus,

the original data can be decomposed by the part explained
(i.e., predicted) by the model (signal or X̂) and the error not
considered in any of the A latent variables (noise or E).

B. Autoencoders

Autoencoders are a specific type of feed-forward neural net-
works where the input is compressed into a lower-dimensional
code, and then reconstructed to obtain the output. The code
is a compression of the input, which is the reason why
Autoencoders are mainly a dimensionality reduction algorithm
whose mathematical framework enables them to include non-
linearities in the encoding and decoding process.

Mathematically, the Autoencoder uses the encoding function
(ϕ : X → F ) to obtain a representation of observations
in X of a lower dimensionality. Then, the low-dimensional
representation, F, is decodified by applying the function
ψ : F → X . The goal of the Autoencoder is finding the set
of coefficients that will yield a loss value as low as possible:

ϕ, ψ = argmin
ϕ,ψ

||X− (ψ ◦ ϕ)X||2 (1)

where the second element of the subtraction refers to the
reconstruction (X̂) of the original input, X.

The optimisation problem formulated in the previous ex-
pression is the same one as for the PCA model. Both the
Autoencoder and the PCA will fit a set of parameters that will
try to reconstruct the original matrix X, minimizing the loss
of information, measured as the mean squared error between
the input and the reconstructed output.

C. Versioning parameters

As can be seen in the previous definition of the algorithms,
there is a commonality between PCA and Autoencoders [9]. In
fact, a PCA model can be regarded as a single-layer, linear case
of an Autoencoder (Fig. 2). Based on this conceptual overlap,
we decided to search for a comparable set of coefficients
that could be useful to track the difference between different
versions of a dataset.

It is important to remark that this versioning framework
would be based on the numerical information shared by
different versions of the same data. This assumption of a
hierarchical relationship between the compared datasets is the
basis of the proposed comparison based on the parameters of
a low-dimensional space which, by definition, should retain
the characteristic signal of the data.

The proposed metric to measure the similarity between
versions (0) and (1) of a dataset (s(0,1)a ), is the correlation
between pairs of homologous loading vectors:

s(0,1)a = corr(p(0)
a ,p(1)

a ) a ∈ 1, ..., A (2)

This correlation can be used to keep track of the differences
on how each model mathematically defines the latent variables
(the scores in the context of PCA, and coded information in
the context of Autoencoders). Fig. 3 illustrates the comparison
between two versions of the same dataset, yielding a vector of
A differential parameters obtained using the equation above.

In order to work with the same number of parameters for the
PCA and for the Autoencoder, the weights used to calculate
the code layer will be the ones compared across different data
versions. Hence, the correlation will be calculated between
pairs of the deepest encoding vectors, i.e., pa,AE = ϕ

(NL)
a,KH

,
with NL being the number of hidden layers and KH being
the number of nodes of the previous hidden layer.

IV. RESULTS

All analyses presented in this paper have been per-
formed using R version 4.2.0 (2022-04-22), and tested lo-
cally on a MacBook Pro (2021) with Apple M1 Pro, 8-
core CPU, 14-core GPU, 16GB of RAM, and 512GB SSD.
For longer running computations, we have used a 40-core
Intel Xeon Processor E5-2650 v3 server running Ubuntu
20.04.4. All code and data used are openly available from
https://github.com/SMARDY-NCI/ADV.

In this work, the outcomes of both approaches are evaluated
on two open data repositories:

• The Dublin Footfall dataset has pedestrian footfall counts
registered in the city of Dublin from January 1st to April
3rd 2022 (N = 288,K = 30, A = 4). This dataset
contains the counts of pedestrians passing by 30 streets
in Dublin [23].

• The Air Quality dataset (N = 827,K = 13, A = 6)
contains the hourly averaged measurements of a gas
multi-sensor device deployed on the field in an Italian
city [24], [25].

Both datasets contain time series data, which is a frequent
type of resource in the Internet Of Things paradigm. Hence,
we consider that although this work focuses on this particular
type of data, it is still a relevant and significant problem
encountered by the data science community.

A common methodological approach was used for both
datasets. Firstly, an exploratory analysis was carried out to
obtain clean matrices without any potential artifacts, such
as missing values or outliers. Next, a PCA was fitted with
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Fig. 3. Calculation of versioning parameters comparing the reference data (X(0)) and a newer version (X(1)) by means of a version-similarity vector s(1,0)1,...,A,
based on the comparison of PCA or Autoencoder models of each version.
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Fig. 4. Average MSE and LSD intervals as a function of the number of hidden layers of the Autoencoder between the input and the latent layers (and between
the latent and the output layers), for the Dublin Footfall (left) and the Air Quality (right) datasets.

each dataset, in order to estimate the latent dimension A. The
latent dimension was selected considering a trade-off between
the explained variability and the information added by each
principal component. In this case, principal components were
added until at least 80% of the total variability was explained,
and ceased to be added when new principal components
explained no more than 2-3% of the variability. Table I
shows the cumulative explained variance for each dataset as
a function of the number of principal components. Following

the aforementioned criteria, the latent dimension was set to
A = 4 for the Dublin Footfall dataset, and to A = 3 for the
Air Quality dataset.

This outcome yielded by the optimization of the PCA
model, was used to determine also the latent dimension of the
Autoencoder, i.e., A was used as the number of nodes of the
“code” layer. The parameters considered in this optimization
were the number of hidden layers of the neural network
architecture, their number of nodes and also their activation
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TABLE I
CUMULATIVE VARIANCE EXPLAINED BY EACH PRINCIPAL COMPONENT

OF THE PCA MODELS (%)

Data set Principal Components (A)

PC 1 PC 2 PC 3 PC 4 PC 5

Dublin Footfall 69.2019 75.8691 79.8526 83.3379 85.7898
Air Quality 71.4170 85.8391 93.0434 95.5752 97.0972

functions. The loss metric used as the objective function
to fit the model parameters was the Mean Squared Error
(MSE). To assess the uncertainty in the MSE values, a double
cross-validation procedure was followed. This double cross-
validation set aside an eternal-validation set with 10% of
observations. Then, with the remaining 90%, a k-folds cross-
validation division is applied, dividing the set in k sets. Then,
in each round of the cross-validation scheme, models are
trained with k − 1 folds, and tested with the k left-out cross-
validation set and with the previous external-validation set.
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Fig. 5. Loss criteria as a function of the epochs obtained during the training
of the reference Autoencoders, (i.e., with the version (0) data, without any
artifacts applied), for the Dublin Footfall (top panel) and the Air Quality
(bottom panel) dataset.

Figure 4 shows the results trying several configurations of
the Autoencoder’s architecture. For both datasets, the optimal
architecture minimizing the MSE is achieved with one hidden
layer. For the Dublin Footfall dataset (Fig. 4, above), the
MSE values are considerably more overlapped than for the Air
Quality dataset. The overlap between all three cross-validation
MSE LSD intervals, means that there were not statistically
significant differences between MSE values yielded by each

architectures. However, the MSE values obtained with the
external-validation set, served to double-check the analysis
with results that removed the validation-set as a source of
variability. Indeed, when the width of the LSD intervals is
reduced, the differences between the MSE values become
more significant, pointing more clearly that one hidden layer
is associated with significantly lower MSE values.

This approach was also followed for the Air Quality dataset
(Fig. 4, below). In this second case, the differences between
architectures were clearly pointing, both with the cross-
validation and the external-validation MSE, that one hidden
layer was yielding the lowest MSE values. As a result, a
single hidden layer was chosen for the architecture of the
Autoencoder for both the Dublin Footfall and the Air Quality
dataset. It is important to mention as well, that the chosen
activation function the rectified linear (“ReLu”) one. This
activation function returns the maximum value between zero
and its input value, ensuring that its output will always be a
positive number, which has good repercussions to deal with
vanishing-gradient effects, improving the efficiency during the
training process of the Autoencoders.

Finally, once the architecture of the Autoencoders was
optimised, the number of epochs used for the Autoencoders’
training was set in order to ensure the convergence of the loss
criteria. As it can be seen in Fig. 5, around 20 epochs were
enough to ensure the convergence, but 50 epochs were finally
set to give some flexibility in case modified versions of the
datasets required more iterations until model convergence.

In each one of the following experiments, sampling ap-
proaches were applied to measure the uncertainty on the
model estimates, varying the subset of observations used to
fit both models. A number of ten hold-out repetitions was
used to vary training and validation samples. Afterwards,
an ANOVA test [26] was carried out and LSD intervals
(calculated at a 95% of confidence level) were obtained to
assess the statistical significance (or not) of the differences
between the versioning parameters’ values in each case. Two
factors could be considered in the ANOVA: the Method (PCA
or Autoencoder), and, if applicable, the Artifact level, which
could vary depending on each case, i..e, percentage of missing
cells, or deleted rows. The Repetition was also considered as
a random factor in the ANOVA, since a different sample was
being used to fit the models in each hold-out sample. When the
Artifact level factor was present, the random factor Repetition
was modeled as a factor nested on the Artifact level factor.

A. Case I: imputation of missing data

In this case, different levels of missing data completely at
random (MCAR) were simulated. This type of missingness
assumes that a random percentage of cells in the matrix is
empty due to completely random effects [27]. Among the
approaches to impute missing values, in this case the algo-
rithm Trimmed Squares Regression was used, given its good
performance with several types of datasets and because of its
code availability [28]. Missing data are very frequent artifacts
in the original versions of datasets. In fact, in both original
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Method AutoEncoder PCA
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Fig. 6. Averaged version-similarity scores (solid and dashed lines) and their
LSD intervals (shadowed area) as a function of the method and the percentage
of generated missing data for each one of the four loading and encoding
vectors extracted from the Dublin Footfall dataset.

datasets included in this work, missing data were present, but
they were not imputed to avoid the potential distortions in the
results if comparisons were performed between two imputed
datasets. Thus, the “reference” dataset version had to be free
of any potential distortion, and only complete cases (i.e.,
the original datasets were pre-processed to initially remove
rows containing missing data values) were considered when
developing both the PCA and Autoencoder models.

The results in Fig. 6 and Fig. 7, show that the similarity
scores between the original and the new versions remain stable
over the range of missing data percentages. However, the sim-
ilarity values for the Autoencoder parameters are significantly
lower than the similarity values yielded by the PCA model.
One possible explanation is that the higher flexibility of the
Autoencoder (with more parameters to be trained), results also
in higher instability when the information used to fit the model
slightly changes. To avoid this effect, some pre-processing
steps could be studied to make more robust the performance
of Autoencoders.

Nevertheless, the similarity values yielded by the PCA
model are able to capture the common information shared
between the original complete dataset and the new versions
obtained by imputing generated missing values. The LSD
intervals of the similarity values, contain the correlation value
of 1.0 up to a 40% of missing values. From that percentage
of missingness, the average similarity values start to decay,
and from a 60% of missing values, the LSD intervals are not
overlapped anymore with previous similarity scores. Note that,

results with the Air Quality dataset (Fig. 7), show much more
stability in the different repetitions performed, which results
also in thinner LSD intervals.

This parsimonious behaviour showing a monotonic decrease
of the similarity values along with the increase of the miss-
ingness (the Artifact level), is desirable and useful to track the
differences between versions. Moreover, the quantification of
the uncertainty enables a quantitative assessment on the “sub-
stantial” differences between versions. Retaking the revision
term discussed in the Introduction, in this case it could be
applied for versions obtained from a 60% of missing values,
arguing that “substantial” differences had been found between
the new and the original versions, i.e.: LSD intervals of the
similarity indices do not contain anymore the 1.0 similarity
value.

B. Case II: transformation of values

In this case, two types of transformations were applied to the
original dataset. The first one was a row-wise transformation
applied to the Dublin Footfall dataset, expressing all the
variables as percentages, i.e., re-expressing the number of
pedestrians per day as the fraction of the total number of
pedestrians measured that day. In this case, error bars are used
to represent the results, since all rows had to be affected by
the transformation, and there were not different levels of the
generated artifact.

Figure 8 shows the similarity indices for each principal
component. In comparison to the Case I, Case II shows a
noticeable decrease in the similarity between versions of the
Dublin Footfall dataset, with a closer agreement between the
values of the Autoencoder-based similarity and of the PCA-
based similarity. This result exemplifies a case in which the
differences on the numerical information between the original
and the new version would be clearly substantial. Moreover,
it is also worth to mention that versions obtained in Case II
are far more different from the original dataset than versions
yielded by Case I (and also by Case III).

The second transformation was a column-wise transfor-
mation: a logarithmic (reference) transformation. This is a
type of non-linear transformation usually applied to normalize
skewed data. The Air Quality dataset contains information
about the concentration of several compounds and other pos-
itive magnitudes, making this dataset a good candidate for
such logarithmic transformations. In this case, the experiment
contemplated different percentages of transformed columns.
Moreover, ten repetitions were performed at each percentage
of transformed columns, changing the affected columns and
therefore, the resulting datasets.

Figure 9 illustrates that version-similarity parameters ex-
tracted from the PCA model are more stable over the range
of transformed columns than the ones extracted from the
Autoencoder. This is probably due to the fact that PCA is
accounting the covariance structure of the dataset. Thus, as far
as the transformation does not distort the correlation pattern (as
it happened in the row-wise transformation case, Fig. 8), PCA
will be robust to such transformations. This is why similarity
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Fig. 7. Averaged version-similarity scores (solid and dashed lines) and their LSD intervals (shadowed area) as a function of the method and the percentage
of generated missing data for each one of the three loading and encoding vectors extracted from the Air Quality dataset.
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Case II: Rowwise transformation - Dublin Footfall

Fig. 8. Averaged version-similarity scores and their LSD intervals as a
function of the method for each one of the four loading and encoding vectors
extracted from the Dublin Footfall set after converting the footfall counts to
percentages relative to the total counts of each day.

values in Fig. 9 are higher than the ones obtained in Fig. 8,
with version-similarity values not showing any substantial
difference between altered and reference datasets. In contrast,
Autoencoder results show once more a lower correlation value
and, in this particular case, a less parsimonious behaviour
along the range of transformed columns.

C. Case III: subsetting of rows

In this final scenario, a different percentage or rows were
removed from the dataset, to analyse whether or not there
was a sample size effect on the proposed set of statistical
parameters.

Results from Fig. 10 resemble the ones from Fig. 6. Once
again, both similarity metrics show a steady behaviour as
a function of the percentage of deleted rows, and the PCA
similarity metric also shows a major agreement between the
original and the new versions obtained by sub-setting rows.
Only for the similarity metric obtained for the fourth latent
variable (s4), there is a substantial difference between the 60%
and the 80% of removed rows.

This outcome could be a useful insight to determine if
studies based on different observations of a dataset, could be
comparable or not. Another way to look at this case of study
could be the symmetric scenario, when a dataset is updated
with new observations. In this case, tracking the agreement
between the original and the new updated version, could serve
to check that any substantial changes are affecting the new
information.

Finally, results from Fig. 11 illustrate a very similar sce-
nario, with the PCA versioning parameters being significantly
more similar to the reference values than the Autoencoders’
versioning parameters. Besides, Case III with the Air Quality
dataset also resembles the results from the column-wise trans-
formation in Case II, with the versioning parameters relative
to the three latent variables, showing stability over the whole
range of deletion percentages. Moreover, the similarity values
s1 for the Autoencoder are the highest ones among the range
of covered scenarios in this work, suggesting that row-wise
deletion is one of the operations least affecting the model’s
coefficients.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a similarity index to
quantitatively assess the difference between data versions.
The concept of versioning is a pillar of the data provenance
information, which is a concept deeply embedded in the
FAIR principles guidelines and philosophy. Nonetheless, the
available terms to include this information in the data and
metadata are still ambiguous and do not offer any insight about
the changes on the numerical information between different
data versions.
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Case II: Column-wise transformation - Air Quality

Fig. 9. Averaged version-similarity scores (solid and dashed lines) and their LSD intervals (shadowed area) as a function of the method for each one of the
three loading and encoding vectors extracted from the Air Quality dataset after converting some air quality parameters to logarithmic scale.
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Case III: Subsetting rows - Dublin Footfall

Fig. 10. Averaged version-similarity scores (solid and dashed lines) and their
LSD intervals (shadowed area) as a function of the method and the percentage
of rows deleted from the training set for each one of the four loading and
encoding vectors extracted from the Dublin Footfall dataset.

To address this issue, we have formulated a similarity metric
to track changes on the information of different data versions.
Two different dimensionality-reduction models were used to
compute the similarity metric: Autoencoders and Principal
Component Analysis. The goal was to analyse the potential of
this approach to quantitatively assess the differences between
data versions. Three versioning scenarios were considered,
generating: (I) cellwise differences by missing data impu-
tation, (II) rowwise and columnwise transformations by re-
expressing rows and columns in different units, and (III)
sample size reduction by selecting subsets of observations.

The results illustrated the behaviour of the proposed simi-
larity metrics to track changes in the information. The PCA-
based similarity index showed a better agreement in general

between the artificially generated versions and the original
dataset. Moreover, the differences between Cases I-III and
Case II, also showed how the proposed versioning framework
reflects the nature of the transformations, objectively assessing
a major or minor versioning based on the difference between
the numerical information.

In our FAIR-compliant versioning service, the nomenclature
is also aligned with the Dublin Core metadata [29], which
includes elements to define the versions and relationships
between datasets. Thus, some future work will include the
seamless integration between standard versioning tags and the
set of the proposed versioning parameters to form complete
data workflows using Open Science repositories e.g. Zenodo.
Another area deserving further research is to investigate the
implications for comparability when similarity results are
extracted from different data versions.

In conclusion, this work has arguably presented some
promising results about the use of a quantitative, measur-
able and automatic versioning system of time series datasets.
Further research is needed to contemplate other versioning
scenarios (e.g. new versions based on subsets of variables,
combinations of several transformations, etc.), more data
types, and most importantly, to articulate how the proposed
versioning parameters can be included terms of provenance
metadata standards.
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Fig. 11. Averaged version-similarity scores (solid and dashed lines) and their LSD intervals (shadowed area) as a function of the method and the percentage
of rows deleted from the training set for each one of the three loading and encoding vectors extracted from the Air Quality dataset.
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[19] R. S. Gonçalves, M. J. O’Connor, M. M. Romero, A. L. Egyedi
et al., “The CEDAR workbench: An ontology-assisted environment for
authoring metadata that describe scientific experiments,” in ISWC 2017,
ser. LNCS, vol. 10588. Vienna: Springer, Oct. 2017, pp. 103–110.

[20] G. Lo Presti, O. Barring, A. Earl, R. M. Garcia Rioja et al., “CASTOR:
A distributed storage resource facility for high performance data pro-
cessing at CERN,” in MSST 2007. San Diego: IEEE, Sep. 2007, pp.
275–280.

[21] R. Albertoni, D. Browning, S. Cox, A. N. González-Beltrán, A. Perego,
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